Full Paper View Go Back

Oblique Electromagnetic Ion Cyclotron Instability with A.C. Electric field for Loss-cone Distribution Function

J. Kumari1 , R. S Pandey2 , G Varughese3 , K. M Singh4

  1. Dept. of Physics, Amity Institute of Applied Sciences (Amity University), Noida, India.
  2. Dept. of Physics, Amity Institute of Applied Sciences (Amity University), Noida, India.
  3. Dept. of Physics, Veer Kumar Singh University, Ara Bihar, India.
  4. Dept. of Physics, Veer Kumar Singh University, Ara Bihar, India.

Correspondence should be addressed to: rspandey@amity.edu.


Section:Research Paper, Product Type: Isroset-Journal
Vol.5 , Issue.4 , pp.1-12, Aug-2017


Online published on Aug 20, 2017


Copyright © J. Kumari, R. S Pandey, G Varughese, K. M Singh . This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
 

View this paper at   Google Scholar | DPI Digital Library


XML View     PDF Download

How to Cite this Paper

  • IEEE Citation
  • MLA Citation
  • APA Citation
  • BibTex Citation
  • RIS Citation

IEEE Style Citation: J. Kumari, R. S Pandey, G Varughese, K. M Singh, “Oblique Electromagnetic Ion Cyclotron Instability with A.C. Electric field for Loss-cone Distribution Function,” International Journal of Scientific Research in Physics and Applied Sciences, Vol.5, Issue.4, pp.1-12, 2017.

MLA Style Citation: J. Kumari, R. S Pandey, G Varughese, K. M Singh "Oblique Electromagnetic Ion Cyclotron Instability with A.C. Electric field for Loss-cone Distribution Function." International Journal of Scientific Research in Physics and Applied Sciences 5.4 (2017): 1-12.

APA Style Citation: J. Kumari, R. S Pandey, G Varughese, K. M Singh, (2017). Oblique Electromagnetic Ion Cyclotron Instability with A.C. Electric field for Loss-cone Distribution Function. International Journal of Scientific Research in Physics and Applied Sciences, 5(4), 1-12.

BibTex Style Citation:
@article{Kumari_2017,
author = { J. Kumari, R. S Pandey, G Varughese, K. M Singh},
title = {Oblique Electromagnetic Ion Cyclotron Instability with A.C. Electric field for Loss-cone Distribution Function},
journal = {International Journal of Scientific Research in Physics and Applied Sciences},
issue_date = {8 2017},
volume = {5},
Issue = {4},
month = {8},
year = {2017},
issn = {2347-2693},
pages = {1-12},
url = {https://www.isroset.org/journal/IJSRPAS/full_paper_view.php?paper_id=425},
publisher = {IJCSE, Indore, INDIA},
}

RIS Style Citation:
TY - JOUR
UR - https://www.isroset.org/journal/IJSRPAS/full_paper_view.php?paper_id=425
TI - Oblique Electromagnetic Ion Cyclotron Instability with A.C. Electric field for Loss-cone Distribution Function
T2 - International Journal of Scientific Research in Physics and Applied Sciences
AU - J. Kumari, R. S Pandey, G Varughese, K. M Singh
PY - 2017
DA - 2017/08/20
PB - IJCSE, Indore, INDIA
SP - 1-12
IS - 4
VL - 5
SN - 2347-2693
ER -

309 Views    192 Downloads    218 Downloads
  
  

Abstract :
Electromagnetic ion cyclotron (EMIC) waves play an important role in magnetospheric dynamics and their global distribution has been of great interest. In this paper, the effect of cold plasma injection on oblique propagating Electromagnetic Ion Cyclotron waves in the presence of A.C electric field due to distribution of hydrogen ions in a background plasma having bi-maxwellian and also loss-cone distribution function has been examined in the magnetosphere of Earth. In these cases the effect of cold plasma injection and other parameters have been compared. Applying kinetic approach, expression for dispersion relation and growth rate has been derived. It is found that the A.C frequency has profound effect on growth rate for both bi-maxwellian and loss cone distribution. Growth rate increases with increase in the A.C. frequency. Increase of temperature anisotropy also increases the growth rate, thus it can be concluded that the source of free energy for this instability is not only temperature anisotropy but also A.C. field frequency. There is marginal decrease in growth rate with increase in angle of propagation for bi-maxwellian distribution but for loss cone distribution, growth rate increases significantly. The ratio of cold injected plasma to background plasma (nc/nw) reduces the growth rate.

Key-Words / Index Term :
Magnetosphere of Earth, Ion-cyclotron waves, Cold Injection, Loss cone distribution Functions

References :
[1]. U. Sharma, S. S. Chauhan, A. K. Sanyasi, K K Choudhary, J. Sharma, J. Ghosh, “Development of Experimental setup for plasma facilities at SVITS, IJSRPAS., 2, 22-26, 2015.
[2]. R. Z. Sagdeev, and V.D. Shafranov, “On the instability of plasma with an anisotropic distribution of velocities in a magnetic field”, Sov. Physics, JETP English Transl., 12, 130–132, 1961.
[3]. J. M.Cornwall, “Cyclotron instabilities and electromagnetic emissions in the ultra-low frequency and very low frequency ranges”, J. Geophys. Res., 70, 61–69,1965.
[4]. C. F. Kennel and H.E. Petschek, “Limit on stably trapped particle fluxes”, J. Geophys. Res., 71, 1–28, 1966.
[5]. J. T Horng, “Cyclotron instabilities in hydrogen plasma”, Chinese. J. Phys., 14, 85–89, 1977.
[6]. S. Cuperman., “Electromagnetic kinetic instabilities in multicomponent space plasmas, Theoretical predictions and computer simulation experiments”, Rev. Geophys., 19, 307–343, 1981.
[7]. L. Gomberoff, and R. Neira, “Convective growth rate of ion cyclotron waves in a H+-He+ and H+-He+-O+ plasma”, J. Geo-phys. Res., 88f, 2170–2174, 1983.
[8]. J. U. Kozyra, T. E. Gravens, A. F. Nagy, E. G. Fontheim, and R. S. B. Ong, “Effects of energetic heavy ions on electromagnetic ion cyclotron wave generation in the plasmapause region”, J. Geophys. Res., 89, 2217–2233, 1984.
[9]. P. A. Bespalov and V. Yu Trakhtengerts, “Cyclotron instabilities of the Earth radiation belts”, Rev. Plasma Phys., vol. 10, 1986.
[10]. J. A Bittencourt, “Fundamentals of plasma physics” , Pergamon Press, 1986.
[11]. S. P Gary, “Theory of space plasma micro instabilities”, Cambridge Univ. Press, New York, (1993).
[12]. S. Xue, R.M. Thorne, and D Summers, “Parametric study of electromagnetic ion cyclotron instability in the Earth magnetosphere”, J. Geophys. Res., 101 A7, 15 467–15 474, 1996.
[13]. S. Dasso, F. T. Gratton, and C. J. Farrugia, “The role of alpha particles in the emission of plasma waves inside solar ejecta”, Brazilian J. Phys., 32, 632–635, 2002.
[14]. G. V. Khazanov, K. V. Gamayunov, and V. K. Jordanova “Self consistent model of magnetospheric ring current and electromagnetic ion cyclotron wave: The 2–7 May 1998 storm”, J. Geophys. Res., 108, A12, 1419–1436, 2003.
[15]. T. M. Loto’aniu, B. J. Fraser and C. J. Waters, “Propagation of electromagnetic ion cyclotron wave energy in the magnetosphere”, Geophys, Res., 110, A07214, 2015.
[16]. R. M. Thorne and R. B. Horne, “Energy transfer between energetic ring current H + and O+ by electromagnetic ion-cyclotron waves”, J. Geophys. Res., 99, 17275-17282, 1994.
[17]. G. Ahirwar, P. Varma, M. S. Tiwari (2007), “Beam effect on electromagnetic ion-cyclotron waves with general loss-cone distribution function in an anisotropic plasma-particle aspect analysis”. Ann. Geophys., 25, 557-568, 2007.
[18]. M. E. Usanova, et al., “Conjugate ground and multisatellite observations of compression-related EMIC Pc1 waves and associated proton precipitation”, J. Geophys. Res., 115, A07208, 2010.
[19]. J. M. Cornwall, F. V. Coroniti, and R. M. Thorne, “Turbulent loss of ring current protons”, J. Geophys. Res., 75, 4699-4709, 1970.
[20]. L. T. Lyons and R. M. Thorne, “Parasitic pitch angle diffusion of radiation belt particles by ion cyclotron waves”, J. Geophys. Res., 77, 5608-5616, 1972.
[21]. J. M. Cornwall, F. V. Coroniti and R. M. Thorne, “Unified theory of SAR arc formation at the plasmapause”, J. Geophys. Res., 76, 4428-4445, 1971.
[22]. B. H. Mauk, “Electromagnetic wave energization of heavy and ions by the electric "phase bunching" process”, Geophys. Res. Lett., 9, 1163-1166, 1982.
[23]. D. Le Queau, and A. Roux, “Heating of oxygen ions by resonant absorption of Alfven waves in a multi component plasma”, J. Geophys. Res., 97, 14929-14946, 1992.
[24]. R. M. Thorne and R. B. Horne, “Cyclotron absorption of ion-cyclotron waves at the bi-ion frequency”, Geophys Res. Lett., 20, 317-320, 1993.
[25]. B. J. Anderson, R. E. Erlandson, and L. J. Zanetti, “A statistical study of Pc 1-2 magnetic pulsations in the equatorial magnetosphere”, 1, Equatorial occurrence distributions, J. Geophys. Res., 97, 3075-3088, 1992a.
[26]. B. J. Anderson, R. E. Erlandson and L. J. Zanetti, “A statistical study of Pc 1-2 magnetic pulsations in the equatorial magnetosphere”, 2, Wave properties, J. Geophys. Res., 97, 3089-3101, 1992b.
[27]. R. E. Erlandson, and A. J. Ukhorskiy, “Observations of electromagnetic ion cyclotron waves during geomagnetic storms: Wave occurrence and pitch angle scattering”, J. Geophys. Res., 106(A3), 3883–3895, 2001.
[28]. M. Fok, T.E. Moore and M.E. Greenspan, “Ring curent development during storm main phase”. Journal of Geophysical Research 101, 1996.
[29]. M. Spasojević, J. Goldstein, D. L. Carpenter, U. S. Inan, B. R. Sandel, M. B. Moldwin, and B.W. Reinisch, “Global response of the plasmasphere to a geomagnetic disturbance”, J. Geophys. Res., 108, 1340, A9,2003.
[30]. L.F. Xiao, Y. He Chen, Z. Su, and H Zheng, “Modelling for precipitation loss of ring current protons by electromagnetic ion cyclotron waves”, J. Atmos. Sol. Terr. Phys., 73, 106, 2011.
[31]. K. Keika, Kazue Takahashi, Aleksandr Y Ukhorskiy, Yoshizumi Miyoshi, “Global characteristics of electromagnetic ion cyclotron waves: Occurrence rate and its storm time dependence”. 2013.
[32]. D. Summers, and R. M. Thorne, “Relativistic electron pitch-angle scattering by electromagnetic ion cyclotron waves during geomagnetic storms”, J. Geophys. Res., 108(A4), 1143, 2003.
[33]. V. K. Jordanova, J. Albert., and Y. Miyoshi, “Relativistic electron precipitation by EMIC waves from self-consistent global simulations”, J. Geophys. Res., 113, A00A10, 2008.
[34]. K. D. Misra and R. S. Pandey, “Generation of Whistler emission by injection of hot electrons in the presence of a.c. electric field in the magnetosphere”, J. Geophys. Res., Vol. 100, 19405, 1995.
[35]. R. S. Pandey and K.D. Misra, “Excitation of oblique whistler waves in magnetosphere and in interplanetary space at 1AU”, Earth Planets & Space, Vol. 54, 159, 2002.
[36]. B. D. Fried and S. D. Conte, “The Plasma Dispersion Function”, Academic, San Diego, Calif., 1961.
[37]. R. S. Pandey, D. K. Singh, “Study of electromagnetic ion-cyclotron instability in magneto plasma”, Progress in electromagnetic research, 14, 147-161, 2010.
[38]. N. P. Meredith, R. B. Thorne, T. Kersten, B. J. Fraser and R. S. Grew, “Global morphology and spectral properties of EMIC waves derived from CRRES observations”, J. Geophys. Res. Space Physics, 119, 5328-5342,2014.
[39]. S. Jivan, G. Ahirwar, “Study on EMIC waves in multi-ions around the plasmapause region”, Res. J. Physical Sci, 1(3), 26-29, 2320-4796, 2017.
[40]. Q. Zhou, F. Xiao, J. Shi, and L.Tang, “Instability and propagation of EMIC waves in the magnetosphere by a kappa” , J. Geophys. Res., 117, A06203, 2012.
[41]. R. B. Horne, and R. M. Thorne, “On the preferred source location for the convective amplification of ion cyclotron waves”, J. Geophys. Res., 98(A6), 9233–9247, 1993.

Authorization Required

 

You do not have rights to view the full text article.
Please contact administration for subscription to Journal or individual article.
Mail us at  support@isroset.org or view contact page for more details.

Go to Navigation