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Abstract— T-Lymphocytes are crucial for health and disease as they provide cell-mediated immunity. The elevation of 

intracellular free calcium concentration is an essential triggering signal involved in activation of T-Lymphocytes by antigen. 

Various calcium concentration distribution patterns are required by the cell to initiate, sustain and terminate its processes for 

providing immunity. The regulatory mechanisms involved in T-Lymphocytes are not well understood. In this paper, the 

mathematical model has been developed to study intracellular calcium distribution in T-Lymphocytes for one dimensional 

steady and unsteady state. The steady state model incorporates the parameters like diffusion coefficient, source influx, 

ryanodine receptors and buffers while unsteady state model is proposed to study the effect of SERCA pump and buffers on 

temporal calcium concentration distribution. The Finite element method has been employed to obtain the solution of the 

proposed mathematical model. The boundary conditions have been framed using biophysical conditions of the problem. A 

computer program has been developed in MATLAB 7.10 for the entire problem and numerical results are used to study 

relationships among concentration, position and time with respect to physiological conditions. 
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I. INTRODUCTION 

 

Calcium (Ca
2+

) is an important messenger in every cell type. 

It plays a significant role in a number of cellular processes 

like muscular contraction, synaptic plasticity, gene 

expression, cell differentiation and so on [27]. In most cases 

Ca
2+

 has its major signaling function when it is elevated in 

the cytosolic compartment. From there it can also diffuse 

into organelles such as mitochondria and the nucleus [27]. 

The Ca
2+

 concentration is tightly regulated inside by various 

Ca
2+

 channels, pumps, exchangers (collectively referred to as 

transporter), and buffers that determine the proportion of 

Ca
2+

 that is free versus bound. The mechanisms involved in 

Ca
2+

 signaling in the cells of living beings are still not well 

understood. Thus, there is a need to study the mechanisms 

involved in Ca
2+

 dynamics in various cells of a living body 

for better understanding of the normal functions of the cells 

and causes of the diseases. 

 

 T cells are no exception in this regard. T-lymphocytes or T 

cells are a type of lymphocyte (itself a type of white blood 

cell) that play a central role in cell-mediated immunity [8].  

They can be distinguished from other lymphocytes, such as 

B cells and natural killer cells (NK cells), by the presence of 

a T-cell receptor (TCR) on the cell surface.  They do not 

have antigen-presenting properties (but rather, requiring B 

cells or NK cells for its antigen-presenting property). TCRs 

are not capable to recognize epitopes (antigen determinant) 

directly. They only [9] bind epitopes associated with an 

MHC protein and act primarily against cells that harbor 

intracellular pathogens. T cells develop in the bone marrow, 

but in order to mature, they need to migrate to thymus. They 

are called T cells because they mature in the thymus. There 

are several subsets of T cells, each with a distinct function.  

They circulate in the lymph and blood; migrate to the lymph 

nodes, spleen and Payer‟s patches. T-cells are essential for 

human immunity. There are several calcium channels and 

transporters that play a key role in balancing cytoplasmic 

calcium levels in T cells. Pathways of calcium homeostasis 

participate in a number of cellular processes that determine 

the short and long-term function of T-lymphocytes. 

Therapeutic strategies are now evolving based on the 

modulation of T-lymphocyte calcium homeostasis in order to 

combat immune - mediated disorders [1]. 

 

Ca
2+

 entry across the plasma membrane is the most important 

Ca
2+

 stores for T cell activation [2]. The ion channels that 

regulate calcium influx from the extracellular space in T 

cells, either by conducting calcium ions or by modulating the 

membrane potential that provides driving force for calcium 

influx [3, 4]. The best characterized calcium channel in T 

cells is the calcium released-activated calcium (CRAC) 

channel, which is composed of ORAI and stromal interaction 

molecule (STIM) proteins [1]. The ORAI proteins and most 
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prominently ORAI1 are the molecular basis for Ca
2+

 release-

activated calcium (CRAC) channels. CRAC/ORAI1 channels 

are well defined through their biophysical and 

pharmacological properties [2]. 

Ca
2+

 dynamics [5] is the exchange of Ca
2+

 ions between 

intracellular Ca
2+

 stores and the cytosol, entering and leaving 

ions between the cells and binding activity of calcium and 

calcium binding proteins. The most important calcium 

binding proteins are itself buffers that are located in Ca
2+

 

stores. The binding of calcium molecules with buffer 

depends on calcium concentration in the cell [6, 7]. In T-

lymphocytes, the main buffer within cytosol is calmodulin 

(CaM) with 4 calcium binding sites per CaM [1]. There is a 

diversity of measured CaM concentrations depending on cell 

type and organ [8]. The concentration dependent binding of 

Ca
2+

 to buffers serves as an indicator of the concentration of 

free calcium concentration in intracellular measurements. 

Furthermore, other second messengers derived from the 

adenine dinucleotides, nicotinamide adenine dinucleotide 

(NAD), and nicotinamide adenine dinucleotide phosphate 

(NADP) has also been implicated in T-cell calcium signaling 

[9]. Nicotinic acid adenine dinucleotide phosphate (NAADP) 

acts as a very early second messenger upon TCR/CD3 

engagement, while cyclic ADP-Ribose (cADPR) is mainly 

involved in sustained partial depletion of the endoplasmic 

reticulum by stimulating calcium release via ryanodine 

receptors (RyRs) [1]. It is also important to understand the 

calcium dynamics in T-lymphocytes, which is possible by 

studying the temporal calcium distribution in T-

lymphocyte cell. The efflux of Ca
2+ 

from the cytosol into the 

ER plays a crucial role in mediating cytosolic calcium on a 

temporal scale [21]. 

 

A good number of theoretical attempts [12-26] are reported 

in the literature for the study of calcium signaling in neuron 

cells, astrocytes, oocytes, acinar cells, fibroblasts, etc. But 

very few attempts are reported [2, 8, 10] for theoretical 

studies of calcium signaling in T-lymphocytes. No attempt is 

reported in the literature for calcium diffusion based study of 

calcium signaling in T-lymphocytes. The present paper is an 

attempt to develop the mathematical model for intracellular 

calcium distribution in the T-lymphocyte cell for one 

dimensional steady and unsteady state case. The parameters 

like diffusion coefficient, buffers, source influx and influx of 

Ca
2+

 from ryanodine receptor channels are taken in steady 

state case, while the SERCA pump, source influx and buffers 

are taken in unsteady state case. The finite element method 

has been used to obtain the solution. The numerical results 

are used to study relationships among concentration, position 

and time with respect to physiological conditions. A 

computer program has been developed in MATLAB 7.10 for 

the entire problem and executed on Intel® core
TM

 i3 CPU, 

4.00 GB RAM, 2.40 GHz processor. 

II. MATHEMATICAL FORMULATION 

A. Mathematical formulation of Calcium Dynamics 

Calcium kinetics in T-lymphocytes are governed by a set of 

reaction-diffusion equations which can be framed assuming 

the following bimolecular reaction between Ca
2+ 

and buffer 

species [6, 19] 

                                                                                                                                                                                                                           

                                                                                (1)  

Where ][ 2Ca , ][ jB  and ][ jCaB  represent the cytosolic 

2Ca concentration, free buffer concentration and calcium 

bound buffer concentration respectively and ' 'j is an index 

over buffer species, 


jk  and 


jk  are „on‟ and „off‟ rates for 

thj  buffer respectively. Using Fickian diffusion, the buffer 

reaction diffusion system in one dimension is expressed as 

[19] 
2

2 2[ ]
[ ]Ca j

Ca
D Ca R

t




  



                     

(2)
 

2
[ ]

[ ]
j

j

B j j

B
D B R

t


  

                                 

(3)
 

2
[ ]

[ ]
j

j

CaB j j

CaB
D CaB R

t


  

                      

(4)
 

Where reaction term jR  is given by                

2[ ][ ] [ ] (5)j j j j jR k Ca B k CaB    
                                   

 

CaD ,
jBD ,

jCaBD are diffusion coefficients of free calcium, 

free buffer and 
2Ca bound buffer respectively and

Ca is 

the net influx of 
2Ca from the source. Let 

 [ ] [ ] [ ]j T j jB B CaB  be the total buffer concentration 

of 
thj  buffer and the diffusion coefficient of buffer is not 

affected by the binding of calcium i.e., 
jj CaBB DD  . The 

equation (5) can be written as [19] 

   2[ ][ ] [ ] [ ] 6j j j j j T jR k Ca B k B B     
                              

It is assumed that the buffer concentration is present in 

excess inside the cytosol so that the concentration of free 

buffer is constant in space and time i.e.,  ][][ jj BB . 

Under this assumption equation (6) is approximated by [22]
 

   2[ ][ ] [ ] [ ] 7j j j j T jk Ca B k B B  

 
                                          

 

2[ ] [ ] [ ]
j

j

k

j j
k

Ca B CaB




 



  Int. J. Sci. Res. in Computer Science and Engineering                                               Vol.4(2), Apr  2016, E-ISSN: 2320-7639 

© 2016, IJSRCSE All Rights Reserved                                                                                                                                      3 

Where 

 2

[ ]
[ ]

[ ]

j j T

j

j j

k B
B

k k Ca



   






  is the background 

buffer concentration. Thus for single mobile buffer species 

equation (2) can be written as [20] 

Thus for single mobile buffer species equation can be written 

as 

 
(8)

  
Here 2[ ]Ca  is background calcium concentration. We assume 

a single point source of 2Ca  ,
Ca  at 0;r  there are no 

sources for buffers and buffer concentration is in equilibrium 

with 2Ca  far from the source and  is the Laplacian 

operator i.e,,
rrr 









2
2

2
2 . The point source of calcium 

is assumed at 0r  and as we move away from the source, 

the calcium concentration achieves its background value 

i.e., 0.1 M . Therefore the boundary conditions are given 

by 

                                               

 

 

                                            

(10)   

The initial condition is given by 

                     

2

0[ ] 0.1tCa M

 
        (11)           

Thus the equation (8) along with (9), (10) and (11) form an 

initial boundary value problem. The method of solution is 

presented in the next section. 

 
Figure 1 - Scheme of the transmembrane proteins included in the 

mathematical model [8]. 
 

B. Steady state case 

The mathematical model (8) for a steady state case involving 

RyR is given by [20] 

 2 2 2 2[ ] [ ] [ ] [ ] ( ) 0Ca j j RyRD Ca k B Ca Ca r    

      
   
(12)             

Here 
2[ ]Ca 

is background calcium concentration 

and RyR  is the influx of calcium through ryanodine 

receptor channels which is given by [14] 

 2 2[ ] [ ] (13)RyR RyR o ERV P Ca Ca             

The T-lymphocyte cell is assumed to be spherical in shape 

[8]. The equations (12) along with (13) for a one dimensional 

case in polar spherical coordinates is given by 

 

 

2
2 2 2

2

2 2

1 [ ]
[ ] [ ] [ ]

[ ] [ ] ( ) 0 (14)

Ca j j

RyR o ER

Ca
D r k B Ca Ca

r r r

V P Ca Ca r


  

 

 

  
  

  

   

 

 The boundary conditions are given by (9) and (10). For our 

convenience we write ''u in lieu of ][ 2Ca . Equation (14) 

with (9) and (10) in the discretized variational form are 

expressed as 

 
2

( ) ( )
2

( ) 2 2 ( ) 2 ( ) ( )

0

1
2 (15)

2 4

j

i

r e e
e e e e

Car r

u u
I r r u r u dr

r D


  




    
       

     


 

          Where  
1

[ ] ,j j RyR o

Ca

k B V P
D

 

   

 
1

[ ] ,RyR o ER j j

Ca

V P u k B u
D

 

    
( ) 1e   for 1e and 

( ) 0e   for rest of the elements where 1,2,3,.....50.e 
 

The shape function of concentration variation within each 

element is defined as: 

rccu eee )(

2

)(

1

)( 
       

(16)
 
 

Or  
)()( eTe cpu 
           

(17)
    

 

Where ]1[ rpT 
           

(18)
    

 

And   ][ )(

2

)(

1

)( eee ccc
T


       

(19)                                                

 Substituting nodal conditions in equation (17), we get          

)()()( eee cPu             (20)   

Where 









j

ie

u

u
u )(

    

(21)

 











j

ie

r

r
P

1

1
)(

      

(22)  

From the equation (19), we have 

2
2 2 2 2[ ]
[ ] [ ] ([ ] [ ] )Ca j j Ca

Ca
D Ca k B Ca Ca

t



   

 


    



2
2

0

[ ]
lim 4 (9)Ca
r

Ca
D r

r
 





 
 

 
2lim[ ] 0.1

r
Ca M


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)()()( eee uRc        (23)  

Where 
1)()( 

 ee PR     (24)  

Substituting 
)(ec from equation (23) in (17), we get                                                                    

)()()( eeTe uRpu 
     

(25)
    

 

Now the integral 
)(eI can be written in the form 

( ) ( ) ( ) ( ) ( )e e e e e
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
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e
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i
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2
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e
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04

e e e

k r
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D




 


      

(30)  

Now we extremize the integral 
( )eI w.r.t. each nodal calcium 

concentration iu  as given below 

( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( )
0

e e e ee

l m n k

e e e e e

dI dI dI dIdI

du du du du du
    
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,
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. .
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 
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u
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 
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 
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Assembling the integrals (26), we get 





50

1

)(

e

eII                        (33)                      

This leads to a following system of linear differential 

equations 

1`511515151 ][][][   BuA
        

(34)
                   

 

 Here,   1[uu  2u
3u …………………. ]51u , A is the system 

matrix and B is the system vector. 

C. Unsteady state case 

The efflux of 
2Ca 

from the cytosol into the ER plays a 

crucial role in mediating cytosolic calcium. The efflux of 

SERCA pump is given by [23] 
2[ ]pump pumpJ K Ca 

                  (35)                                                                                                                                                                                       

 Where pumpK  is the maximum pump conductance. 

Incorporating SERCA pump from equation (35) into the 

equation (8), we get 
2

2 2 2 2

2

[ ]
[ ] [ ] ([ ] [ ] )

[ ] (36)

Ca j j

pump Ca

Ca
D Ca k B Ca Ca

t

K Ca 
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 
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
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The T cell is assumed to be in spherical shape. Therefore 

equation (36) in polar spherical coordinates for a one 

dimensional unsteady state case is given by 
2 2

2 2 2

2

2

[ ] 1 [ ]
[ ] ([ ] [ ] )

[ ] (37)

Ca j j

pump Ca

Ca Ca
D r k B Ca Ca

t r r r
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 



   
   

   

 

 

The same boundary and initial conditions (9), (10) and (11) 

are imposed and rewritten as 

             
2

0[ ] 0.1tCa M

 
      0 r   (38)                                                                                                                                            

          Boundary Conditions: 

           

2
2

0

[ ]
lim(4 )Ca Ca
r

Ca
D r

r
 








       for t >0   

(39)  

          

2lim[ ] 0.1
r

Ca M


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                   for t >0       

(40)    

 

 

For our convenience, we write ''u in lieu of ][ 2Ca . 

Equation (37) along with (38) to (40) in discretized 

variational form is expressed as 
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where 

 

 

Here 1,2,3,......50e  . The term in the last expression of 

equation (41), 
( ) 1e 

 
for 1e  and

( ) 0e  for rest of 

elements, here 
( ) 1e  implies the location/elements in 

which source of calcium is present. The shape function of 

concentration variation within each element is defined as: 
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Substituting nodal conditions in equation (43), we get                                                           
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From the equation (46), we have 
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 ee PR     (50)                        

Substituting 
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Now the integral 
)(eI can be written in the form 
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Assembling the integrals from (52), we get 

 

 

Extremizing the integral 
( )eI w.r.t. each nodal calcium 

concentration iu  as given below 
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This leads to a following system of linear differential 

equations. 
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Where E and F are system matrices and G is system vector. 

The Crank-Nicolson method is employed to solve the system 

of equation (61). The time step is taken by us is 0.001 sec.   

A computer program in MATLAB 7.10 is developed to find 

numerical solution to the entire problem.  
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The numerical values of biophysical parameters used in the 

above models are as stated in the Table-I. 

 
TABLES I. VALUES OF BIOPHYSICAL PARAMETERS 

 

III. RESULTS AND DISCUSSION 

 
 

Figure 2 - Radial variation of Calcium concentration for different 

Source Amplitudes i.e., ,3,2,1 pApApA B=25μM. 

Fig.2 shows radial calcium concentration for different source 

amplitudes and 25B M . The calcium concentration is 

maximum at 0r m i.e., source and it decreases as we go 

away from the source up to 5r m . It is observed that the 

calcium concentration is higher for higher values of source 

amplitudes. 

 
Figure 3 - Radial variation of Calcium concentration for 

1pA 
 
four different concentrations of BAPTA buffer 

i.e, 50 ,B M 100 ,M 150 ,M 200 M
 

 

Fig.3 shows the radial calcium concentration distribution for 

σ =1pA and different values of BAPTA buffer concentrations 

B=50μM, 100μM, 150μM and 200μM. The calcium 

concentration is maximum at source, i.e., r =0. The peak 

value of calcium decreases with the increase in the buffer 

concentration. The gaps among the curves in Fig. 3 indicate 

that buffer has a significant effect on the calcium 

concentration distribution in the cell. 

 
Figure 4 - Radial variation of Calcium concentration for 

1pA 
 
in presence and absence of RyR. 

Fig.4 shows the radial calcium concentration distribution in 

the presence and absence of RyR. It is observed that the 

Symbol Parameter Value 

CaD
 

Diffusion Coefficient 250
2sec/m  



jk
 

On rate for EGTA 3 / M sec 



jk
 

Off rate for EGTA 1/sec 



jk
 

On rate for BAPTA 100/ M  



jk
 

Off rate for BAPTA sec/10  

][B
 

 Total Buffer Concentration 100 M  

  Source Amplitude 1 pA  

RyRV  RyR Receptor Rate 0.5 sec/M  

ERCa ][ 2
 Calcium Concentration of ER 400 M  

oP  Rate of Calcium Efflux 0.5 / secM  

pumpK
 

Maximum pump conductance 20 / sec  
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presence of RyR raises the peak calcium concentration at the 

source r =0. Further the gap between the curves indicates the 

effect of RyR on calcium concentration distribution in the 

cell.  

 
Figure 5 -  Radial variation of Calcium concentration for two 

different types of Buffers EGTA= 100 M  and 

BAPTA=100 M , 1 .pA   

 
Fig.5 shows the radial calcium concentration distribution due 

to the two different types of buffers namely BAPTA and 

EGTA buffers. The fall in the calcium concentration profiles 

for BAPTA buffer is sharper as compared to that for EGTA 

buffer. This is because the BAPTA buffer is a fast buffer and 

binds the calcium ions at a faster rate than the EGTA buffer. 
 

 
 

Figure 6 - Temporal variation of calcium concentration in T-

lymphocytes for different concentrations of Buffers i.e., 

B=50μM, 100μM, 150μM, 200μM. 

 

Fig.6 shows that the temporal variation of Ca
2+

 concentration in 

T-lymphocytes for different concentrations of buffer. The 

effect of changing the buffer concentration is clear in this 

figure. We observe that the calcium concentration reaches a 

steady state in less than 1000 milliseconds. The peak value of 

Ca
2+

 concentration is different for different values of buffer 

concentration. The peak value of Ca
2+

 concentration is higher 

in lower concentration of buffer. It is also observed that the 

steady state is achieved early for higher buffer concentration. 

The reason for this is that the higher concentration of buffers 

binds more calcium and then forcing the system to reach steady 

state early.   

 
Figure 7 - Temporal variation of calcium concentration in T 

lymphocytes in the presence and absence of pump. 

Fig.7 shows temporal variation of Ca
2+

 concentration in T- 

lymphocytes in the presence and absence of SERCA pump. It 

is observed that Ca
2+

 concentration is lower in the presence of 

SERCA pump. The Ca
2+

 concentration is higher at 100 

milliseconds after that it decreases rapidly and becomes almost 

steady at 600 milliseconds.  

The results obtained here are in agreement with biological 

facts. But no such experimental results are available for 

comparison at the best of my knowledge. Similar results have 

been observed in other cells like neuron cells, astrocytes, 

oocytes etc., [12-26] and our results are in agreement with 

them. 

IV. CONCLUSION AND FUTURE SCOPE 

The two finite element models were proposed and successfully 

employed in the present work to study calcium distribution in T 

-lymphocyte cell. In the first model the effect of RyR and 

buffers on spatial calcium distribution in T-lymphocyte cell was 

studied for a one dimensional steady state case. From the results 

it is concluded that the buffers and RyR have a significant effect 

on the spatial calcium concentration distribution and thus play 

an important role in regulating different calcium concentration 

levels in the cell. In the second model the effect of SERCA 

pump and buffers on temporal calcium concentration 

distribution in T-lymphocyte cell. On the basis of results it is 

concluded that the SERCA pump and Buffers lower down the 
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calcium concentration to regulate the calcium concentration at 

the appropriate levels in the cell. In all the cell shows a beautiful 

coordination among the various components and processes to 

regulate the calcium concentration levels required for 

performance of the functions of the cell. Such models can be 

developed further to get deeper insights of calcium 

concentration regulation mechanisms in T-lymphocytes and 

generate the information, which can be of great use in 

developing protocols for diagnosis and treatment of 

diseases/disorders caused in T- lymphocytes. In all it is a new 

research progress in the area of computational cell biology. 

 

There is great scope for development of such models for 

understanding calcium distribution in T-lymphocytes. The 

one dimensional models were presented in this thesis. These 

models can be extended to two and three dimensional studies 

in order to have more realistic models. The shape of the cell 

and more details of microstructure can be incorporated in the 

model for more realistic studies. Different types of influxes 

and effluxes, can be incorporated to develop more realistic 

models. The present study was conducted in the normal case. 

However, it can be extended to the problems involving 

abnormalities in the structure and processes of the cell 

leading to various disorders. Thus, there is great scope for 

developing new models which will be an attention in the area 

of computational cell biology.   
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