
© 2017, IJSRCSE All Rights Reserved 10

International Journal of Scientific Research in ____________________________ Research Paper .
Computer Science and Engineering

Vol.5, Issue.5, pp.10-15, October (2017) E-ISSN: 2320-7639

Performance and Analysis of Flow between Annular Space Surrounded by a

Rotating Coaxial cylinder with Co-axial Cylindrical Porous Medium

Santosh Patil
1*

, Ediga Lingappa
2
, Mothe Rakesh

3

1*

Dept. of Computer Science and Engineering, Institute of Aeronautical Engineering, Hyderabad, India
2
Dept. of Computer Science and Engineering, Institute of Aeronautical Engineering, Hyderabad, India

3
Dept. of Computer Science and Engineering, Institute of Aeronautical Engineering, Hyderabad, India

*Corresponding Author: santosh.p.shr@gmail.com

Available online at: www.isroset.org

Received 11th Sep 2017, Revised 14th Sep 2017Accepted 19th Oct 2017, Online 30th Oct 2017

Abstract— Due to latencies, the hadoop map reduce are complicated to scale to multiple clouds. Because of latencies, the

hadoop map reduce are difficult to scale to multiple clouds. Because of this problem, to improve the performance at variable

load, it provides over-provisioning in internal cloud. Here we propose a Bstream - cloud bursting framework. It consists of two

major features. They are Stream-processing in the external cloud. Hadoop in the internal cloud. These two features are used to

realize inter-cloud map reduce. Stream processing in external cloud enables parallel uploading; processing and also parallel

downloading of data can minimize network latencies. It guarantees service-level objective (SLO) of meeting job deadlines.

Keywords— Bstream, Map Reduce, stream processing.

I. INTRODUCTION

In recent years, Hadoop Map Reduce is used extensively in

near real-time “Big Data” analytics like advertising, traffic

log analysis, sentiment analysis, and many. These

applications include severe service-level objectives such as

deadline and experience highly changeable input load.

Mislaid SLOs owing to high load can result in important

penalties which include; updating customer facing content

will be delayed, associated loss in revenue, and so forth.

Such situation will be handled by a private data center is

which is typically more-furnished; it may causes wastage of

resources.

Cloud bursting is an option which is alternative to over

provisioning by off-load the surplus load from the internal

cloud (IC) to an external cloud (EC) (e.g., Amazon EC2,

Rack space). However, it includes two main difficulties in

scaling Hadoop Map-Reduce with cloud bursting. First,

Hadoop being a batch-processing system, require the intact

input data for the job must be materialized before the start of

computation. As in inter-cloud data transfer latencies are at

slightest an order of magnitude greater than that within a

data center, batch processing using Hadoop in EC incurs

enormous startup latencies—stand by for the complete input

data to be uploaded, and later processing it. The second

complexity arises because of condensed coupling of shuffle

phase in Map-Reduce with reducers. Shuffle phase only

starts after reducers have started (Occupied slots). As shuffle

requires all-all node communication, data will be shuffled

from EC to reducers in IC, which takes prolonged due to

difference between intercloud and intra-cloud bandwidth.

This extended shuffle

Phase delays job completion time and also causes idle cpu

cycles within reducers. Mappers in EC to perform streaming

read from remote HDFS in IC which minimizes startup

latencies. They also propose techniques to reduce the effect

of elongated shuffle phase. But these jobs uses on previous

version of Hadoop(v1.0) that inherently causes idle cpu

cycles due to fixed partitioning of map and reduce slots on a

node. Thus, even if reduce slots are idle, a job cannot use

them for map tasks.

YARN, 2 is newer version of hadoop, in where fixed

partitioning of slots is no longer used. Now these slots are

free we can use these slots for performing map tasks, by

delaying the start of reducers. So slots are efficiently used,

thereby job completion time will be reduced. Start of

reducers cannot be delayed, until the shuffle is decoupled

from reducers in IC, because inter-cloud setting with

elongated shuffle. The shuffle from EC can be further

enhanced by performing reduce operation in EC that reduces

data download size.

Bstream is a new cloud bursting framework is proposed in

this project, that to address the above difficulties. Bstream

uses stream processing in EC and YARN is used in IC.

Using Storm, on the incoming stream of data both map and

reduce operations execute as and when it arrives in EC. This

http://www.isroset.org/
https://www.google.co.in/search?biw=1024&bih=659&q=define+prolonged&sa=X&ei=BkQBVcPFOcmwuAT_74DIAg&ved=0CCkQ_SowAA

 Int. J. Sci. Res. in Computer Science and Engineering Vol.5(5), Oct 2017, E-ISSN: 2320-7639

© 2017, IJSRCSE All Rights Reserved 11

minimizes startup latencies in EC by overlapping processing

with input data transfer. By executing reduce action in EC, it

minimizes the download size. Using check pointing

strategies shuffle phase is, that download intermittent

reduces output from EC to reducers in IC. Bstream allow

parallel uploading, processing and downloading of data by

using stream processing and check pointing strategies. We

currently consider meeting deadlines for individual jobs

whose input data is initially present only in IC. Such a

scenario is encountered by enterprises that use their private

data center (IC) for normal operation and employ cloud

bursting only when there are load surges. Extending the

framework to multiple jobs is part of future work.

In this paper we addressed the implementation of an

Efficient method for word count across external cloud and

internal cloud. Here we consider data file as job and make

use of stream processing and check pointing strategies.

Bstream make use of a stream processing in External cloud

(EC) and YARN in will be used Internal cloud (IC). On

incoming data storm map and reduce operations over are

executed; Check pointing strategies are used to enable

pipelined uploading, processing and downloading of data.

II. REVIEW OF LITERATURE

Herodotos Herodotou, Harold L, et al.[1], they propose a

novel Starfish approach, which builds on Hadoop whereas

adapting to user requirements and system workloads to

provide outstanding performance, with no need for users to

understand and handle the many tuning knobs in Hadoop.

Whereas Starfish’s system architecture is guide the work on

self-tuning database systems. Starfish’s tuning goals and

solutions are related to projects like Hive, MRShare, Pig,

Quincy, and Scope. The novelty in Starfish’s approach

describes about how it focuses concurrently on different

workload granularities.

Christian Vecchiola, Rodrigo N. et al., [2] , proposed a

technique, Aneka's deadline-driven provisioning mechanism

responsible for supporting QoS-aware implementation of

scientific applications in hybrid clouds. Aneka is a software

platform and which is development of distributed

applications in the cloud. Which uses the enumerate

resources of a various network of workstations, clusters, and

data centers, on demand. Platform as a Service model is

implemented in Aneka. System administrators influence a

collection of tools to supervise and control the cloud. Aneka

assign resources from different sources in order to decrease

application execution time. Some improvements are required

in Aneka's dynamic resource provisioning, are underneath

development, and one time these improvements are

accessible, we be expecting that applications will run much

efficiently in hybrid resources.

Tekin Bicer, David C, et al., [3], In this paper, they illustrate

a software framework which enables data rigorous

computing by cloud bursting, i.e., through a amalgamation

of work out resources from a local group and a cloud to

carry out Map-Reduce type processing. Here author

chronicle a middleware which backing Map-Reduce style

API, where the data will be circulated across a local cluster

and a cloud. Data at one end is handled using computing

resources at another end, by doing this we can achieve faster

execution i.e., work stealing.

Sriram Kailasam, Nathan Gnanasambandam, et al.,[4], In

this paper, They study the viability of cloud bursting for

data-intensive workloads. Here they assume that the data

necessary for computation is present in a single cloud. Based

on workload characteristics and the operating environment

(node and network bandwidth), also characterize the

operational regimes of cloud bursting into stabilization mode

and acceleration mode. As the workload characteristics

change from data-intensive to compute-intensive, the

operating mode shifts from stabilization mode to

acceleration mode.

Kamal Kc, Kemafor Anyanwu et al., [5], In this paper, they

expand real time cluster scheduling method to account for

the two-phase computing way of Map Reduce. In existing

cloud-based data processing environments User constraints

such, which are very important requirements, are not

considered. Here author describes, benchmark for

scheduling jobs based on user specified constraints and

preliminary valuation of a Deadline pressure Scheduler, that

assures, scheduled of execution of those jobs whose deadline

can met. The main drawback is that Author left out some

aspects of Constraint Scheduler such as map/reduce task

runtime estimation, filter ratio estimation, data distribution

and multiple Map Reduce cycle support.

Michael Mattess, Rodrigo N. et al., [6], propose a novel

policy that accelerate execution of deadline-constrained

MapReduce applications, by allowing parallel execution of

tasks, in sequence to meet up deadline for fulfillment of the

Map phase of the application. They offered a dynamic

provisioning policy for MapReduce applications and a

prototype implementation of the correspondent system in the

Aneka Cloud Platform. Proposed policy was capable to

convene deadlines of applications. But it’s difficult to scale

the policy to optimize the provisioning for more complex

scenarios, such as multiple independent applications and

composite MapReduce applications, where one application

consumes the output of a previous application.

Yuan Luo, Zhenhua Guo, et al., Judy Qiu1, Wilfred Li [7],

In this paper, they present a hierarchical MapReduce

framework which collect computation resources from

 Int. J. Sci. Res. in Computer Science and Engineering Vol.5(5), Oct 2017, E-ISSN: 2320-7639

© 2017, IJSRCSE All Rights Reserved 12

various clusters and run MapReduce jobs on them. The

global controller in their framework divide the data set and

distribute them to multiple “local” MapReduce clusters, and

based on capabilities of each cluster, workload will be

assigned. they propose a hierarchical MapReduce framework

which collect confined cluster resources into a further

proficient one for running MapReduce jobs. MapReduce

jobs grouped into four groups. In our framework map-

intensive computation achieved by distributing map reduce

jobs to, map-only and map-mostly categories and where

global node is responsible for collection and combing of

outputs. Here author fails to address data locality issue of

input dataset.

III. METHODOLOGY

Figure 1 gives the System Architecture of extending map

reduce across clouds with Bstream. The architecture is

divided into three parts; they are data input phase,

processing phase and result phase. The user submits the

MapReduce job to the controller along with its deadline. The

controller uses the estimator to determine the resource

allocation. The estimator refers the job profile database and

uses the analytical model to estimate the resource allocation

in IC. If the estimated resource allocation returned to the

controller by the estimator exceeds the available resources in

IC, then the controller initializes the burst coordinator with

number of maps to burst and the time to start bursting. The

controller submits the MapReduce job to the Hadoop

framework. Then coordinator splits the jobs, these jobs are

evenly distributed to both internal cloud and external cloud,

in external cloud initially in external cloud first it apply then

followed by mapping then output is sent to internal cloud, at

the same time in internal cloud mapping and reducing

operation is applied, then finally output from both external

cloud and internal cloud are combined to produce final out

as word count.

Figure 1: System Architecture for an efficient method for word count across

EC and IC.

The time spent in downloading the output from EC can

contribute a significant portion to the overall completion

time of the burst job if the output to input ratio is high. With

stream processing in EC, partial outputs are available at the

reducers as soon as some data is processed through the

Storm topology. We use check pointing to overlap output

transfer with input transfer/processing, thus minimizing the

overall completion time of the job.

The flowchart of the proposed system is as shown in Figure

2. The input is provided by user; here we consider the files

like pdf, ppt, doc etc as input file. And then the controller

uses the estimator to determine the resource allocation. The

estimator refers the job profile database and uses the

analytical model to estimate the resource allocation in IC. If

the estimated resource allocation returned to the controller

by the estimator exceeds the available resources in IC, then

Burst coordinator divides the job i.e. splits the file, and

equally distributes these files to external cloud and internal

cloud for processing, then the output from external cloud is

sent to internal cloud to produce combined output. If the

resources in internal cloud not exceeds, the processing task

is only assigned to internal cloud, finally internal cloud

returns the word count as output.

Figure 2: Flow chart of Bstream System

In check pointing, we take a snapshot of the current output

of a reducer and transfer the snapshot data to IC. Figure. 3

present the check pointing strategy in detail. The partial

outputs from reducer are stored in LevelDB. The data output

rate from Storm reducers is higher than the rate at which

 Int. J. Sci. Res. in Computer Science and Engineering Vol.5(5), Oct 2017, E-ISSN: 2320-7639

© 2017, IJSRCSE All Rights Reserved 13

data can be downloaded. Therefore, a key (present in the

output snapshot) can get updates from Storm reducer during

checkpoint transfer.

Such an updated key will require retransmission in the next

checkpoint. To reduce the probability of retransmission, the

checkpoint controller employs continuous updating strategy,

where it checks for updates before sending a key to reducers

in IC. If a key has received updates, then that key is not

transmitted as part of the current checkpoint, thus reducing

the retransmission overhead.

Figure 3: Checkpointing strategy used in External cloud

If the key does not receive any further updates, it will be

transmitted as part of the next checkpoint. Since the network

is kept busy throughout, there is no loss in terms of

bandwidth utilization. If a certain key gets updated after it

between its output value and checkpoint value are

transmitted as part of the next checkpoint. The next

checkpoint also includes keys that newly arrived in the

interval between the two checkpoints. Depending on the

characteristics of the data set and the size of data processed

so far, the probability of updates or addition of new keys

keeps varying.

Figure. 4 illustrate different ways to split a MapReduce job

across multiple clouds. In Fig. 4a, the map tasks are

distributed across IC and EC, while the reduce tasks are

executed only in IC. This results in huge data transfer

overheads during shuffle operation. This could be overcome

By splitting the MapReduce job into different sub-jobs and

executing them separately on IC and EC (refer Figure. 1b).A

final MapReduce job (G) is used to merge the results of

these jobs. However, this approach introduces the overhead

of launching an\additional job for performing global

reduction. Figure.4c avoids this by distributing both map and

reduces tasks across multiple clouds. Also, the final result

from reducers in EC has to be downloaded to IC. In

Bstream, we adopt an approach illustrated in Fig. 1d wherein

the output of MapReduce job in EC is directly transferred to

the reducers in IC. We propose a model to determine the

start time of reducers in IC, considering the overheads for

inter-cloud and intra-cloud data transfer. This minimizes

wastage of compute cycles during shuffle phase without

incurring the overhead of global reduction.

Figure 4: Approaches for implementing inter-cloud MapReduce.

IV. RESULT

In our proposed Bstream, a new cloud bursting framework to

address the above difficulties. BStream uses stream

processing engine called Storm3 in EC and YARN in IC.

Using Storm, both map and reduce operations execute on the

incoming stream of data as and when it arrives in EC. This

overlaps processing with input data transfer, thus

minimizing startup latencies in EC. By executing reduce

operation in EC, it decreases the download size. Shuffle

from EC is also decoupled from YARN reducers, allowing

the reducers to start much later in the job lifecycle.

Shuffle is further optimized using checkpointing strategies

that download intermittent reduce output from EC to

reducers in IC. Thus, using stream processing and

checkpointing strategies, Bstream enables parallel

uploading, processing and downloading of data. BStream

uses an analytical model to estimate what portions of

MapReduce job to burst, when to burst and when to start the

reducers, to meet job deadline. We currently consider

meeting deadlines for individual jobs whose input data is

initially present only in IC. Such a scenario is encountered

by enterprises that use their private data center (IC) for

normal operation and employ cloud bursting only when

there are load surges.

Figure 5 shows the output of external cloud where initially

words sorted in ascending then word count are displayed

then output of this is sent to internal cloud., similarly Figure

6 shows the output of internal cloud, words are sorted in

initially sorted in ascending then word count is displayed.

Figure 7 shows final output which displays the word counts,

initially mapping and reducing operations are applied on

jobs i.e. file during mapping process the data in file are

sorted in ascending order and in reduce phase the word

count are displayed. Jobs are distributed across internal and

 Int. J. Sci. Res. in Computer Science and Engineering Vol.5(5), Oct 2017, E-ISSN: 2320-7639

© 2017, IJSRCSE All Rights Reserved 14

external cloud, output of external cloud.

 Figure 5: Word count processing in External cloud

 Figure 6: Word count processing in Internal cloud

Figure 7: Combined output of EC & IC

Figure 8 gives the comparison analysis of time taken for

execution by existing system and proposed system. Here

existing system is Task stealing approach, which is

compared with proposed system i.e. BStream approach. In

task stealing approach are based on previous version of

hadoop where there is fixed partitioning of slots into map

slots and reduce slots. Here, the reducers start right at the

beginning of the computation. YARN a newer version of

hadoop is used in Bstream, In YARN this fixed partitioning

is no longer maintained. As in below figure execution time

taken by existing system is much higher as compared time

taken by proposed system.

Figure 8: Comparison Chart

V. CONCLUSION

In this paper, we presented BStream, which extends Hadoop

to multiple clouds by combining stream processing in

External cloud with batch processing in internal cloud.

BStream uses an analytical model to estimate resource

allocation and task distribution across clouds to meet

deadlines. We showed that the performance of analytical

model is reasonably accurate. We compared the performance

of BStream with other existing works and showed that

stream processing along with continuous checkpointing in

external cloud can significantly improve performance.

Finally, we characterized the operational regime of BStream,

paving way for meeting deadlines with multiple jobs.

REFERENCES

[1] H. Herodotou, H. Lim, G. Luo, N. Borisov, L. Dong, F. B. Cetin,

and S. Babu, “Starfish: A self-tuning system for big data analytics,”

in Proc. 5th Int. Conf. Innovative Data Syst. Res., 2011, pp. 261–

272.

[2] C. Vecchiola, R. N. Calheiros, et al.,“Deadline-driven provisioning

of resources for scientific applications in hybrid clouds with

Aneka,” Future Generation Comput. Syst., vol. 28, no.1, pp. 58–65,

2012.

 Int. J. Sci. Res. in Computer Science and Engineering Vol.5(5), Oct 2017, E-ISSN: 2320-7639

© 2017, IJSRCSE All Rights Reserved 15

[3] T. Bicer, D. Chiu, and G. Agrawal,“Time and cost sensitive data-

intensive computing on hybrid clouds,” in Proc. IEEE/ACM 12
th

Int. Symp. Cluster, Cloud Grid Comput, 2012, pp. 636–643.

[4] S. Kailasam, N. Gnanasambandam, J. Dharanipragada, and

N.Sharma, “Optimizing ordered throughput using autonomic cloud

bursting schedulers, ”IEEE Trans. Softw. Eng., vol. 39, no. 11, pp.

1564–1581, Nov. 2013.

[5] K. Kc and K. Anyanwu, “Scheduling hadoop jobs to meet dead-

lines,” in Proc. IEEE 2nd Int. Conf. Cloud Comput. Technol. Sci.,

2010, pp. 388–392.

[6] M. Mathess and R. N. Calheiros, R. Buyya,“Scaling MapReduce

applications across hybrid clouds to meet soft deadlines,” in Proc.

IEEE 27th Int. Conf. Adv. Inf. Netw. Appl., 2013, pp. 629–636.

[7] Y. Luo, Z. Guo, Y. Sun, B. Plale, J. Qiu, and W. W. Li,“A

hierarchi-cal framework for cross-domain MapReduce execution,”

inProc. 2nd ACM Int.Workshop Emerging Comput. Methods Life

Sc., 2011,pp. 15–22.

 [8] C. Olston, G. Chiou, L. Chitnis, et al., “Nova: continuous

Pig/Hadoop workflows,” in Proc. ACM Int. Conf. Manage. Data,

2011, pp. 1081–1090.

