

© 2017, IJSRCSE All Rights Reserved 41

International Journal of Scientific Research in _______________________________ Research Paper .
Computer Science and Engineering

Vol.5, Issue.5, pp.41-46, October (2017) E-ISSN: 2320-7639

Effectiveness of SQLI Countermeasures

Daljit Kaur
1*

, Parminder Kaur
2

1*

Dept. of Computer Science, Lyallpur Khalsa College, Jalandhar, India
2
 Dept. of Computer Science, Guru Nanak Dev University, Amritsar, India

*Corresponding Author: jeetudaljit@hotmail.com, Tel.: 9779326951

Available online at: www.isroset.org

Received 10th Sep 2017, Revised 24th Sep 2017, Accepted 17th Oct 2017, Online 30th Oct 2017

Abstract— In the recent times web applications has become increasingly popular with the growth of web. At the same time,

there is an increase in number of attacks in web applications. Attacks like injection vulnerabilities such as SQL Injection, Cross

site Scripting, Cross site Request Forgery(CSRF) are common. This paper specially focuses on countermeasures of SQL

Injection vulnerability. Here, we have implemented various attacks on a Giftshop web application and also classified SQL

Injection countermeasures with respect to Software Development Life Cycle and tested them for their effectiveness with the

help of vulnerability scanners. Finally, the result of vulnerability scanners are shown and analyzed before and after the

implementation of known SQL Injection countermeasures.

Keywords— SQL Injection; Attacks; Vulnerability scanners; Threats; Web application; Security

I. INTRODUCTION

Security has been the critically important part of most of the

web applications. Online Services and rapid development of

Internet use the web paradigm. But with the growth of World

Wide Web and increase in these online services, attacks on

web have also grown. Therefore, effective security

mechanisms on web applications and addressing them seem

to be very important in these days. SQL injection (SQLI)

continues to be one of the most predominant web application

threats as it has compromised large number of websites

including those of some high profile companies. It allows

attackers to obtain unauthorized access to the back-end

database to change the intended application-generated SQL

queries. This type of attack exploits vulnerabilities existing

in web applications or stored procedures in the back-end

database server. It allows attackers to inject crafted malicious

SQL query segment to change the intended effect, so that

attacker can view, edit or make the data unavailable to other

users, or even corrupt the database server. When an

application becomes susceptible to SQLI Attack (SQLIA),

attacker can get total control and access to database [1]. A

successful SQLIA can read sensitive data from database,

modify database data (insert/update/delete), execute

administration operations on database (such as shut down

DBMS and make it unavailable), recover the content of given

file present on DBMS file system and in some cases can also

issue commands to operating system. This research paper

implements various attacks that can be performed on SQLI

vulnerable web applications and also implements existing

SQLI countermeasures in Software Development Life Cycle

(SDLC) to check the effectiveness of them. Section II

reviews the literature for known SQLI Vulnerabilities.

Section III gives the brief overview of SQLI vulnerability

and its counter measures in development life cycle. Section

IV implements various attacks in SQLI vulnerable web

application. Section V tests for the effectiveness of

countermeasures and result are shown with the help of

vulnerability scanners. In this research work, vulnerability

scanner OWASP-ZAP is used to confirm the SQLI

vulnerability. This vulnerability scanners is available with

operating system Kali Linux and also freely available at

www.owasp.org. Kali Linux is an open source project that is

maintained and funded by Offensive Security, a provider of

world-class information security training and penetration

testing services. Section VI concludes the result and gives

the future directions.

 In the literature many countermeasures are suggested by

various researchers and techniques are proposed to avoid

these attacks but their effect is not presented. This research

work is an effort to check the effectuality and potency of the

available countermeasures of the SQLI vulnerability.

II. RELATED WORK

SQLIA is the most popular, challenging and serious

threatening attack. Year after Year, it is ranked as the top

security vulnerability of the Internet which is responsible for

countless data breaches. This vulnerability was first

documented by Jeff Forristal in 1998[2]. Since then, lot of

http://www.isroset.org/
https://www.offensive-security.com/

 Int. J. Sci. Res. in Computer Science and Engineering Vol-5(5), Oct. 2017, E-ISSN: 2320-7639

© 2017, IJSRCSE All Rights Reserved 42

research in the field is done by Industry and academic

experts. There are many methodologies and algorithms

suggested in [3].Several techniques are proposed to provide a

solution for SQLIAs. This section gives the brief of the some

similar work done in the area.

In 2006, Ke Wei et al. [4] has suggested that by using SQL

injection attacks, an attacker could thus obtain and/or modify

confidential/sensitive information. They also suggest that an

attacker could even use a SQL injection vulnerability as a

rudimentary IP/Port scanner of the internal corporate

network. They proposed a novel technique to defend against

the attacks targeted at stored procedures. This technique

combines static application code analysis with runtime

validation to eliminate the occurrence of such attacks.

In 2008, Mehdi Kiani et al.[5] describe an anomaly based

approach which utilizes the character distribution of certain

sections of HTTP requests to detect previously unseen SQL

injection attacks and their practical results suggest that the

model proposed in this paper is better than existing models at

detecting SQL injection attacks.

In 2010, Ivano Alessandro Elia et al. [6] present an

experimental evaluation of the effectiveness of five SQL

Injection detection tools that operate at different system

levels: Application, Database and Network. To test the tools

in a realistic scenario, Vulnerability and Attack Injection is

applied in a setup based on three web applications of

different sizes and complexities. Based on experimental

observations they underline the strengths and weaknesses of

the tools assessed.

In 2011, Kai-Xiang Zhang et al. [7] suggest SQL injection

attacks, a class of injection flaw in which specially crafted

input strings leads to illegal queries to databases, are one of

the topmost threats to web applications. Based on their

observation that the injected string in a SQL injection attack

is interpreted differently on different databases, they propose

a novel and effective solution TransSQL to solve this

problem. TransSQL automatically translates a SQL request

to a LDAP-equivalent request. After queries are executed on

a SQL database and a LDAP one, TransSQL checks the

difference in responses between a SQL database and a LDAP

one to detect and block SQL injection attacks. Their

Experimental results show that TransSQL is an effective and

efficient solution against SQL

injection attacks.

In 2012, RamyaDharam et al. [8] present a framework which

can be used to handle tautology based SQL Injection Attacks

using post-deployment monitoring that help to detect and

prevent tautology based SQL Injection Attacks.

In 2012, TIAN Wei et al. [9] discuss how to generate more

effective penetration test case inputs to detect the SQL

injection vulnerability hidden behind the inadequate blacklist

filter defense mechanism in web applications. They propose

a model based penetration test method for the SQL injection

vulnerability. Their Experiments show the penetration test

case generated by their method can effectively find the SQL

injection vulnerabilities hidden behind the inadequate

blacklist filter defense mechanism thus reduce the false

negative and improve test accuracy.

In 2013, Amir Mohammad Sadeghian et al. [10] suggest that

a successful SQL injection attack interfere Confidentiality,

Integrity and availability of information in the database.

Based on the statistical researches this type of attack had a

high impact on business. Finding the proper solution to stop

or mitigate the SQL injection is necessary. To address this

problem security researchers introduce different techniques

to develop secure codes, prevent SQL injection attacks and

detect them. They present a comprehensive review of

different types of SQL injection detection and prevention

techniques. They criticize strengths and weaknesses of each

technique.

In 2013, Amir mohammad Sadeghian et al. [10] first they

provided background information on this vulnerability. Next

they present a comprehensive review of different types of

SQL injection attack. For each attack they provide an

example that shows how the attack launches. Finally they

propose the best solution at development phase to defeat

SQL injection and conclusion.

 In 2014, Manju Kaushik and Gazal Ojha [3] discuss and

comopare the existing methodologies for detecting and

preventing SQLIA in order to design better attack detection

and prevention methods in future. For better security they

also discuss encryption and decryption techniques.

Also many researchers [11], have classified the SQLIAs

based on the goal, motive, intention of the attacker or attack

methodology used in order to understand the attack in better

way.

III. SQL I VULNERABILITY AND ITS COUNTERMEASURES

Vulnerability is a weakness in the application which can be

a design flaw or an implementation bug. An attacker can use

such vulnerabilities, to harm the stakeholders of an

application. SQL Injection Attack, Cross-Site Scripting

(XSS), Cross- Site Request Forgery (CSRF), Broken

Authentication and Session Management are some of the

application layer vulnerabilities targeting most of the current

web applications [12]. According to reports that are provided

by OWASP and WHID , among all these attacks SQLIA and

XSS are very common. Also according to our previous

research, SQLIA is one of the major attacks after

Defacement and followed by XSS, Account Hijacking and

DDoS(Distributed Denial of Service) Attack[13]. SQLIA is

considered a severe of attack affecting confidentiality,

integrity and availability of information. SQL injection

vulnerability is a type of attack which adds Structured Query

Language code to a web form input box to gain access or

make changes to data. By using this vulnerability an attacker

can send his commands directly to web application's

underlying database and destroy functionality or

confidentiality. If the injection is successful, an attacker can

even read sensitive data from the database, modify database

 Int. J. Sci. Res. in Computer Science and Engineering Vol-5(5), Oct. 2017, E-ISSN: 2320-7639

© 2017, IJSRCSE All Rights Reserved 43

data (DML Commands, execute administrative operations on

database such as shut down the Database), and in some cases

issue commands to operating system.

SQLI attacks have been around years now and lot of research

in the field has been done by Industry and academic experts.

In literature, there are many methodologies, algorithms and

techniques proposed to provide a solution for SQLIAs.

Analysis of SQLI attacks reveal that they are caused due to

improper coding of web applications and inability to filter or

sanitize input [14,15]. So, here known SQLI

countermeasures and mitigation techniques from various

researchers are classified in phases of SDLC in this section.

Design Phase

 Use minimum text boxes and try radio

buttons/drop down list/check boxes instead

[16].

 Use principles of least privileges and disable

default accounts and passwords [1,17,18]. Also

use Read only views for SQL statements that

do not require any modification.

 Choose names for tables and fields that are not

easy to guess.

 Identify the list of SQL statements that will be

used by application and only allow those.

Coding Phase

 Santize/Validate Input by ensuring data is

properly typed and does not contain escaped

code [16-21]. Validate inputs with Data Type,

Data Length and Data Format [1,22].

 Validation of all inputs must be done at both

client and server side [1,17].

 Encode string in such a way that all meta-

characters are interpreted by the database as

normal characters [1,19,21,22].

 Use Stored procedure with static SQL wherever

possible[1,17,18,21]

 Use parameterized queries instead of dynamic

queries. Use Prepared statements in

programming languages like Perl, Java

[1,18,20].

 Use POST method instead of GET method for

form submission[16]

 Ensure that Error Messages do not disclose any

internal database structure, table names, or

account names. Use proper error handling

mechanism (Custom errors) also keep error

messages and usable[1,20,21].

Testing Phase

 Conduct penetration tests against applications,

servers and perimeter security[1].

Configuration &Implementation Phase

 Install the database on different machine than

Web server or Application server .

 Update and Patch production servers (including

operating system and application) [1,2,20].

 Disable potentially harmful SQL stored

procedure calls[16].

 Delete system stored procedures [17].

 Delete/Disable unnecessary stored

procedures/prepared statements .

IV. VARIOUS ATTACKS WITH SQLI VULNERABILITY

All organizations who maintain a web presence are at risk of

being attacked. However, the level of risk is different for

each organization with respect to intellectual property or

personally identifiable information stored by the

organization. The purpose of a web based attack is

significantly different than other attacks. SQLIA is most

commonly associated with extraction of valuable data

through web applications. SQLI vulnerability is also utilized

as a platform for launching other types of attacks. The other

types of attacks include Denial of Service (DoS),

Defacement, Account Hijacking and Authentication

Bypassing. This section concisely describes the attacks and

performs each of them successively on a web application.

The consequences of each attack possible with this

vulnerability can be visualized from this section.

For the case study of these attacks, a Giftshop web

application is selected. The selected web application is

vulnerable to the SQLI attacks. Above described attacks are

performed on Giftshop web application manually as well as

with the help of automated tool SQL Map. SQL Map is an

automated tool that performs SQLI attack and is capable of

capturing active database management system fingerprint,

enumerating entire database and much more [2].

A. Database Fingerprinting: This is actually a pre-attack

preparation by an attacker and this type of attack is

performed by entering some inputs which results in as an

illegal or logically incorrect queries. The error messages

reveal the table and column names that cause error and

attacker can come to know about the database used in the

backend server.

For database fingerprinting in Giftshop application,

vulnerable columns are found using ‘order by ‘ clause and

then database, its version are displayed at vulnerable column.

Database, version and tables are revealed with just a single

command in automated tool SQL Map as shown in figure 1.

 Int. J. Sci. Res. in Computer Science and Engineering Vol-5(5), Oct. 2017, E-ISSN: 2320-7639

© 2017, IJSRCSE All Rights Reserved 44

Figure1. Fingerprinting with SQL Map

B. Authentication Bypass: In this attack, an attacker exploits

an input field that is used in a SQL statement’s ‘WHERE’

conditional part. For example, in login form of the website

that takes username and password parameter to enable access

to certain section of website by validating entries in the back

-end database. When attacker enters the username as ‘abcd’

or 1=1 - -‘ and password =’passwd’, then the SQL Query

becomes:

Select * From Users WHERE username = ‘abcd’ or 1=1 - -‘

and password =’passwd’

Double hyphens character is interpreted as a comment by the

SQL Server, and everything after ‘- -‘ is ignored. Since 1=1

is always true so login is always validated. Giftshop

application is also found vulnerable and allows

authentication bypass.

C. Injection with UNION Query: In this attack, an attacker

exploits the vulnerable parameter to change the data set

returned for a given query. It is extraction of data from table

but not as the intention of developer.

Information about the database, its version and users

in the backend can also be revealed with the help of UNION

query. Also the extraction of the data from table is possible

as shown in figure 4.

D. Account Hijacking: This attack lets the attacker gain

access to administrative or user credentials. This is again

extraction of data from table. As figure 6 depicts the

extraction of the data from the table, and the credentials

received this way with SQLI lead to account hijacking as

administrative password can be changed by the attacker after

logging or even deleted from the database.

Figure 2. Extracting data with SQLmap

E. Denial of Service (DoS):This attack is to halt the web

application by shutting down the backend database or

consuming precious CPU time by sending database into time

consuming loops over lots of data.DoS is most likely the

well-known of all application attacks.

For the Giftshop application, Denial of Service attack was

performed using two methods: Firstly by shutting down all

the applications running on the remote system. The was done

by executing shutdown/f command in the shell uploaded with

the help of SQL map. Secondly by renaming the directory

containing giftshop application files. This was again the

execution of command on the shell as Shell on remote

operating system is the complete takeover of the

system/server revealed in figure 3. Thus, in result of both

methods, Giftshop application was unavailable.

Figure 3. Shell Uploading with SQL map

F. Defacement: In this attack, an attacker alters the content of

web site with offensive or erroneous graphics and/or text. An

attacker can also change the appearance of the page or

silently redirect a client to malware hosting server.

 Int. J. Sci. Res. in Computer Science and Engineering Vol-5(5), Oct. 2017, E-ISSN: 2320-7639

© 2017, IJSRCSE All Rights Reserved 45

In the Giftshop, changing the content of web page was also

possible through shell as done for previsously for DoS. But

here manually a file was created and uploaded to the server

with SQLI vulnerable URL (Uniform Resource Locator) as

clear from figure8.

Figure 4. Writing File through URL

V. EFFECTIVENESS OF SQLI COUNTERMEASURES

This section describes the results of the SQLI

countermeasures on the Giftshop application. This

application has been edited and implemented using the

countermeasures specified in section III during the

development cycle.

Firstly the Login page related database, table name and

privileges has been changed as per design phase

countermeasures. Then in the coding phase, input has been

properly sanitized and validated at both client and server

side. Also parameterized queries and prepared statement has

been used as:

$dbh->prepare("select * from usertable where email=? and

pass1=?")

Error messages has been handled with proper care.Similar

changes has been done with other web pages of the Giftshop

application. After these changes in design and coding of web

pages and related database, againG iftshop application has

been tested against SQLI attacks manually and with the help

of vulnerability scanners. Result of scanning of web

application with OWASP-ZAP (before and after the

countermeasures implementation) are shown in figure 5 and

figure 6.

Figure 5. OWASP -ZAP Scan Result(Before)

Figure 6. Scan Result with OWASP-ZAP(after)

Also the web application was tested manually against the

various attacks like Database fingerprinting, Defacement,

Account Hijacking and UNION query but it showed no

response to them. Thus web application is now safe from

attacks like Database fingerprinting, Account Hijacking,

Defacement, Injection with UNION query and DoS due to

SQLI vulnerability.

VI. CONCLUSION AND FUTURE SCOPE

In this paper, we have studied and implemented the various

attacks possible with SQLI vulnerability in web applications.

Thus the known countermeasures of this vulnerability are

classified in the SDLC fashion in section III and their

effectiveness is checked with vulnerability scanner. Section

IV has performed the various possible attacks on the web

application w.r.t SQLI vulnerability. Further the web

application is edited in order to implement the

countermeasures identified during the development cycle and

check the usefulness of these. Result of vulnerability scanner

before and after the implementation of respective

countermeasures in section V reveal that if applications are

developed with security in mind from the beginning of

SDLC, then many attacks on web applications can be

avoided almost without any extra effort and time. Thus only

need of the time is to aware the developers with known

countermeasures and their effectiveness. In future, other

vulnerabilities and their corresponding attacks can be

implemented to make web applications more safe and secure.

REFERENCES

[1] W.K. Torgby, N.Y.Asabere.”Structured Query Language
Injection (SQLI) Attacks: Detection and Prevention Techniques in
Web Application Technologies”. International Journal of Computer
applications Vol. 71, Issue.11 , Pp 29-40.ISSN: 0975-8887, 2013.

[2] M. Gandhi. and J. Baria. “SQL Injection Attacks in Web
Application”. International Journal of Soft computing and
Engineering (IJSCE), Vol2, Issue 6 (Jan 2013). 189-191.
ISSN:2231-2307. 2013.

[3] .Kaushik and G. Ojha.” SQL Injection Attack Detection and
Prevention Methods :A Critical Review”, International Journal of
Innovative Research in Science, engineering and Technology
(IJIRSET), Vol3, Issue 4 .pp 11370-11377. ISSN: 2319-8753,
2014.

 Int. J. Sci. Res. in Computer Science and Engineering Vol-5(5), Oct. 2017, E-ISSN: 2320-7639

© 2017, IJSRCSE All Rights Reserved 46

[4] K.Wei, M.Muthuprasanna and S.Kothari.”Preventing SQL
injection Attacks in stored Procedures”. In Software Engineering
Conference , Australia,2006.

[5] I.A.Elia, Fonseca,Vieira,”Comparing SQL Injection Detection
Tools Using Attack Injection: An Experimental study” in IEEE 21

st

International Symposium on Software Reliabiliry
Engineering(ISSRE).pp 289-298,November 2010.

[6] K.X.Zhang, C.J. Lin, S. Chen, Y. Hwang. “TransSQL:A
translation and Validation based solution for SQL Injection
attacks”, In first international conference on Robot, Vision and
Signal Processing, pp248-251.November 2011.

[7] R.Dharm, Shiva.,”Runtime monitors for tautology based SQL
injection attacks”, In international conference on cyberSec,pp.
253-258. June 2012.

[8] T. Wei,Y.J.Feng,X.Jing. “ Attack Model Based Penetration Test
for SQL Injection Vulnerability”, In IEEE 36

th
 annual Computer

Software and Applications Conference Workshops,pp. 589-594.
July 2012.

[9] A.Sadeghian,Zamani, Manaf.,”A Taxonomy of SQL Injection
Detectionand Prevention Techniques.”, In International
Conference on Informatics and Creative Multimedia.pp. 53-56.
September 2013.

[10] Aldar C.F.Chan, “A Security Framework for Privacy Preserving
data aggregation in wireless sensor networks”, ACM Transactions
on sensor networks. Vol 7, Issue 4, 29-40.
DOI: 10.1145/1921621.1921623

[11] R.Piplode,P.sharma and U.K.Singh,”Study of Threats, Risks and

Challenges in Cloud Computing”, International Journal of

Scientific Research in Computer Science and Engineering,

Volume 1, Isuue 1, 2013.

[12] M. Shema. “Seven Deadliest Web Application Attacks”, Elsevier
Inc., pp47-69. ISBN-9781597495431,2010.

[13] D. Kaur, P. Kaur. “Empirical Analysis of Web Attacks”. In
Procedia of Computer Science. Elsevier Publications. Volume 78,
pp. 298-306. DOI:10.1016/j.procs.2016.02.057, 2016.

[14] S. Junaid. “Analytical Study of Common Web Application
Attacks”. International Journal of Advanced Research in computer
engineering & Technology (IJARCET)”, Vol.3, Issue3, 611-617.

[15] G. Parmar, K.Mathur. “Proposed Preventive measures and
strategies Against SQL injection Attacks”. Indian Journal of
Applied Research, Vol.5, Issue 5,pp 664-671. ISSN- 2249555X,
2015.

[16] S. Madan, S. Madan. “Bulwark Against SQL Injection attack – An
Unified Approach”. International Journal of Computer Science and
Network Security(IJCSNS), Vol. 10 No.5.pp 305-313. 2010.

[17] Mahapatra and S. Khan. “A Survey of SQL Injection
Countermeasures”, International Journal of Computer science
&engineering(IJCSES) Vol.3, No.3,pp.55-74. DOI :
10.5121/ijcses.2012.3305 55, June 2012

[18] William, Jeremy and Alessandro. “Comparing SQL Injection
Detection Tools Using Attack Injection: An Experimental study” in
IEEE 21

st
 International Symposium on Software Reliabiliry

Engineering(ISSRE).pp. 289-298 , 2010.

[19] S. Kalaria and M.Vivekanandan. “Dark Side of SQL Injection”. In
the proceedings of ASAR International Conference, Banglore, Pp
67-72. ISBN: 978-81-927147-0-7. April 2013.

[20] D.Gollmann. “Securing Web Applications”.Article in ELSEVIER
Information Security Technical Report Volume 13 Issue1. Elsevier
Advanced Technology Publications Oxford, UK. 1-9.DOI:
10.1016/j.istr.2008.02.002

[21] U.Aggarwal, M.Saxena,K.S. Rana.” A Survey of SQL Injection
Attacks”. International Journal of Advanced Research in Computer
Science and Software Engineering (IJARCSSE), vol.5, Issue 3.
286-289. ISSN:2277128X., March 2015.

[22] M.Kiani,Clark,Mohay, “Evaluation of Anomaly Based Character
Distribution Models in Detection of SQL Injection attacks”. In 3

rd

International conference on Availability,Reliabilty and Security,
pp 47-55, 2008.

Authors Profile

Daljit Kaur pursed M.Sc(Networking and
Protocol Design) from Guru Nanak Dev
University in 2006. She is currently pursuing
Ph.D. and currently working as Assistant
Professor in Department of Computer
Science, Lyallpur Khalsa College,Jalandhar,
affiliated to GNDU, Amritsar since 2009.
She has published more than 15 research
papers in reputed international journals
including Elsevier, Thomson Reuters (SCI & Web of Science) and
conferences including IEEE and it’s also available online. Her main
research work focuses on Web applications Security, Software
Security and Secure development based education. She has 8 years
of teaching experience and 5 years of Research Experience.

Dr. Parminder Kaur, is presently working as

an Assistant Professor in the Department of

Computer Science, Guru Nanak Dev

University, Amritsar, India. She has

completed her Ph.D. in the research area of

Software Engineering from Guru Nanak

Dev University Amritsar in the year 2011.

She has a teaching experience of about

twenty three years. Her research interests include OpenSource

Software, Web Usability and Optimization, Web Services, Software

Security, Software Evolution, Version Management in Distributed

Environment and Image Processing. She has around 40 publications

in International/National Journals as well as Conferences. She has

contributed six book chapters. She is a life member of Punjab

Science Congress and Computer Society of India.

