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I.  INTRODUCTION  

In 2001, Popa and Noiri introduced the notions of minimal 

structure and m-continuous function as a function defined 

between a minimal structure and a topological space [7]. A 

minimal structure m on a nonempty set X is a collection of 

subsets of X such that  ϕ ∈ m and X ∈ m [7]. By (X, m), we 

denote a nonempty set X with minimal structure m on X. The 

members of the minimal structure m are called m-open sets 

and the complement of m-open set is said to be m-closed [7]. 

The closure of A and the interior of A are denoted by Cl(A) 

and Int(A), respectively. An ideal is defined as a nonempty 

collection I of subsets of X satisfying the following two 

conditions: (i) If A ∈ I and B ⊂ A, then B ∈ I; (ii) If A ∈ I 

and B ∈ I, then A∪B ∈ I [3]. For a subset A ⊂ X, A*m (m, I) 

={x∈X:U∩A∈I for each m neighborhood U of x} is called 

the local minimal function of A with respect to I and m [3]. 

We simply write A*m instead of A*m(I, m) in case there is no 

chance for confusion. For every ideal topological space (X, I, 

m), there exists a minimal structure m*(m, I) called the ∗-

minimal, finner than m. Additionally mCl ⃰ (A) = A ∪ A*m 

for every A ⊂ X. 

 

II. PRELIMINARIES  

Definition 2.1 A subset A of a minimal space (X, m) is said 

to be βm-open[1] (resp. m-semiopen [5], m-preopen [6],  

αm-open [7], m-b-open [11]) if A ⊂ mCl(mInt(mCl(A))) 

(resp. A⊂mCl(mInt(A)), A⊂mInt(mCl(A)), A⊂ 

mCl(mInt(mCl(A))), A ⊂mInt(mCl(A)) ∪ mCl(mInt(A))). 
 
Definition 2.2 Let (X, m) be a minimal space. For a subset A 

of X, the m-closure of A and m-interior of A are defined in 

[9] as follows: 

(a) mCl(A) = ∩{F : A ⊂ F, X − F ∈ m}, 

(b) mInt(A) = ∪{U : U ⊂ A, U ∈ m}. 
 
Definition 2.3 A function f:(X, m) → (Y, τ) is said to be βm-

continuous [1] (resp.  m-semicontinuous [5], m-

semicontinuous [6], αm-continuous [7],   m-b-continuous 

[11]) if the inverse image of every open set of Y is βm-open 

(resp. m-semiopen,  αm-open, m-preopen,  m-b-open) in (X, 

m). 
 
Definition 2.4 [11] A subset A of a minimal space (X, m, I) 

is said to be m-semi-I-open (resp. m-pre-I-open, m-α-I-open, 

m-β-I-open, strongly m-β-I-open, m-δ-I-open) if A ⊂ 

mCl*(mInt(A)) (resp. A ⊂ mInt(mCl*(A)), A ⊂ mInt(mCl* 

(mInt(A))), A ⊂ mCl(mInt(mCl*(A))), A ⊂ mCl* 

(mInt(mCl*(A))), mInt(mCl*(A)) ⊂ mCl*(mInt(A))). 
 
Remark 2.1 Let (X, τ) be a topological space. The families 

αIO(X, m), SIO(X, m), PIO(X, m) and βIO(X, m) are all 

minimal structures on X. 
 
Definition 2.5 [11] A function f :(X, m, I) → (Y, τ) is said to 

be m-pre-I-continuous (resp. m-semi-I-continuous, m-α-I-

continuous, m-δ-I-continuous) if the inverse image of every 

open set of (Y, τ) is m-pre-I-open (resp. m-semi-I-open, m-α-

I-open, m-δ-I-open) in (X, m, I).  
 
Lemma 2.1 [4] Let (X, m) be a minimal space and A, B 

subsets of X. Then x ∈ mCl(A) if and only if U ∩ A = ∅ for 

every U ∈ m containing x. And satisfying the following 

properties: 

 (a) mCl(mCl(A)) = mCl(A). 

(b) mInt(mInt(a)) = mCl(A). 

(c) mInt(X−A) = X−mCl(A). 

(d) mCl(X−A) = X−mInt(A). 

(e) If A ⊂ B, then mCl(A) ⊂ mCl(B). 

(f ) mCl(A ∩ B) ⊂ mCl(A) ∪ mcl(B). 
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(g) A ⊂ mCl(A) and mInt(A) ⊂ A. 
 
Lemma 2.2 [9] Let (X, m) be a minimal space and A be 

subset of X. Then x ∈ mCl(A) if and only if U ∩ A = ∅ for 

each U ∈ m containing x. 
 

III. WEAKLY M-SEMI-I-OPEN SET 

Definition 3.1 Let (X, m, I) be a minimal space. A subset A 

of X is said to be a weakly m-semi-I-open set if A ⊂ mCl* 

(mInt(mCl(A))). A subset A of X is said to be a m-semi-I-

closed set if its complement is a weakly m-semi-I-open set. 
 
Proposition 3.1 In a minimal space (X, m, I), the following 

hold. 

(a) Every m-α-I-open set is a weakly m-semi-I-open set. 

(b) Every strongly m-β-I-open set is a weakly m-semi-I-open 

set. 

(c) Every m-semi-I-open set is a weakly m-semi-I-open set. 

(d) Every m-pre-I-open set is a weakly m-semi-I-open set. 

Proof. (a) A is a m-α-I-open set, then A ⊂ mInt(mCl* 

(mInt(A))) ⊂ mCl*(mInt(A)) ⊂mCl*(mInt(mCl(A))). Hence 

A is a weakly m-semi-I-open set. 

(b) If A is a strongly m-β-I-open set, then A ⊂ mCl* 

(mInt(mCl*(A))) ⊂ mCl*(mInt(mCl(A))). Hence A is a 

weakly m-semi-I-open set. 

(c) If A is a m-semi-I-open set, then A ⊂ mCl*(mInt(A)) ⊂ 

mCl(mInt(A)) ⊂ mCl(mInt(mCl(A))). Hence A is a weakly 

m-semi-I-open set. 

(d) If A is a m-pre-I-open set, then A ⊂ mInt(mCl*(A)) ⊂ 

mInt(mCl(A)) ⊂ mCl*(mInt(mCl(A))). Hence A is a weakly 

m-semi-I-open set. 
 
Remark 3.1 The converse of Proposition 3.1 need not be 

true as shown in the following examples. 
 
Example 3.1 Let X = {a, b, c}, m = {∅, {a}, X} and I = {∅, 

{a}}. Then 

(i) A = {a, b} is a weakly m-semi-I-open set but not m-α-I-

open set. 

(ii) A = {a} is a weakly m-semi-I-open set but not strongly 

m-β-I-open set. 

(iii) A = {a, c} is a weakly m-semi-I-open set but not m-

semi-I-open set. 
 
Example 3.2 Let X = {a, b, c}, m = {∅, {a, b}, {a, c}, X} 

and I = {∅, {a}}. Then A = {a} is a weakly m-semi-I-open 

set but not m-pre-I-open set. 
 
Proposition 3.2 Let (X, m, I) be a minimal space and A ⊂ X. 

Then A is a weakly m-semi-I-open set if and only if A is a 

m-δ-I-open set. 

Proof.  

Necessity: If A is a weakly m-semi-I-open set, by 

Proposition 3.1, then A is a weakly m-semi-I-open set. Now 

we prove that mInt(mCl*(A)) ⊂ mCl*(mInt(A)). Since A is a 

m-semi-I-open set implies that A ⊂ mCl*(mInt(A)), so, 

mInt(mCl*(A)) ⊂ mInt(mCl*(mCl*(mInt(A)))) ⊂ mInt(mCl* 

(mInt(A))) ⊂ mCl* (mInt(A)). Hence A is a m-δ-I-open set. 

Sufficiency: If A is a m-δ-I-open set, then mInt(mCl*(A)) ⊂ 

mCl* (mInt(A)) and A is a weakly m-semi-I-open set, then A 

⊂ mCl*(mInt(mCl(A))). Then we have A ⊂ mCl* 

(mInt(mCl(A))) = mCl*(mInt(mCl*(A))) ⊂ mCl* 

(mCl*(mInt(A))) ⊂ mCl*(mInt(A)). Hence A is a m-semi-I-

open set. 

 

Proposition 3.3 Let (X, m, I) be a minimal space. Then any 

arbitrary union of weakly m-semi-I-open sets is a weakly m-

semi-I-open set. 

Proof. Let Uα be a weakly m-semi-I-open set for every         

α ∈ ∆, we have Uα ⊂ mCl∗ (mInt(mCl(Uα))) for every α ∈ ∆. 

Then ∪α∈∆ Uα ⊂ ∪α∈∆ mCl∗ (mInt(mCl(Uα))) 

= ∪α∈∆ ((mInt(mCl(Uα)))∗ ∪ mInt(mCl(Uα))) 

= ∪α∈∆ (mInt(mCl(Uα)))∗ ∪ ∪α∈∆(mInt(mCl(Uα))) 

⊂ (∪α∈∆ mInt(mCl(Uα)))∗ ∪ ∪ α∈∆(mInt(mCl(Uα))) 

⊂ (mInt(∪α∈∆ mCl(Uα)))∗ ∪ (mInt(∪α∈∆ mCl(Uα))) 

= (mInt(mCl(∪α∈∆ Uα)))∗ ∪ (mInt(mCl(∪α∈∆ Uα))) 

= mCl∗ (mInt(mCl(∪α∈∆ Uα ))).  

Hence ∪α∈∆ Uα is a weakly m-semi-I-open set. 

 

Proposition 3.4 Let (X, m, I) be a minimal space and A, B ⊂ 

X. If A is a weakly m-semi-I-open set and B ∈ m, then A∩B 

is a weakly m-semi-I-open set. 

Proof. If A is a weakly m-semi-I-open set, then A ⊂ 

mCl*(mInt(mCl(A))) and B is m-open, then mInt(B) = B. 

Now A∩B ⊂ mCl*(mInt(mCl(A)))∩B 

= ((mInt(mCl(A)))* ∪  mInt(mCl(A)))∩B 

= ((mInt(mCl(A)))*∩B) ∪  (mInt(mCl(A))∩B) 

⊂ (mInt(mCl(A))∩B)* ∪  (mInt(mCl(A))∩B) 

= (mInt(mCl(A))∩mInt(B))* ∪  (mInt(mCl(A))∩mInt(B)) 

⊂ (mInt(mCl(A∩mInt(B))))* ∪  (mInt(mCl(A∩mInt(B)))) 

⊂ (mInt(mCl(A∩B)))* ∪  (mInt(mCl(A∩B))) 

= mCl*(mInt(mCl(A∩B))).  

Hence A∩B is a weakly m-semi-I-open set. 
 
Proposition 3.5 Let (X, m, I) be a minimal space and A, B ⊂ 

X. If A is a weakly m-semi-I-open set and B is an m-α-I-

open set, then A∩B is a weakly m-semi-I-open set. 

Proof. Since A is an m-α-I-open set, then A ⊂ mInt(mCl* 

(mInt(A))) and B is a weakly m-semi-I-open set, then B ⊂ 

mCl*(mInt(mCl(B))). 

Now  

A∩B⊂mCl*(mInt(mCl(A)))∩mInt(mCl*(mInt(B))) 

=((mInt(mCl(A)))*∪ (mInt(mCl(A))))∩mInt(mCl*(mInt(B))) 

=((mInt(mCl(A)))*∩mInt(mCl*mInt(B))))∪ (mInt(mCl(A))∩

mInt(mCl*(mInt(B)))) 

⊂(mInt(mCl(A))∩mInt(mCl*(mInt(B))))*∪mInt(mInt(mCl(

A))∩mCl*(mInt(B))) 

=(mInt(mInt(mCl(A)))∩mCl*(mInt(B)))*∪mInt(mInt(mCl(

A))∩mCl*(mInt(B))) 

⊂(mInt(mCl*(mInt(mCl(A))∩mInt(B))))*∪mInt(mCl*(mInt

(mCl(A))∩mInt(B))) 

=(mInt(mCl*(mInt(mCl(A)∩mInt(B)))))*∪mInt(mCl*(mInt(
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mCl(A)∩mInt(B)))) 

⊂(mInt(mCl*(mInt(mCl(A∩mInt(B))))))*∪mInt(mCl*(mInt

(mCl(A∩mInt(B))))) 

⊂(mInt(mCl*(mInt(mCl(A∩B)))))*∪mInt(mCl*(mInt(mCl(

A∩B)))) 

⊂(mInt(mCl(mInt(mCl(A∩B)))))*∪mInt(mCl(mInt(mCl(A

∩B)))) 

=(mInt(mCl(A∩B)))*∪mInt(mCl(A∩B)) 

= mCl*(mInt(mCl(A∩B))).  

Hence A∩B is a weakly m-semi-I-open set. 
 
Proposition 3.6 Let (X, m, I) be a minimal space and A, B ⊂ 

X. Then 

(a) If A ⊂ B ⊂ mCl* (A) and A is a weakly m-semi-I-open 

set, then B, A* and B* are weakly m-semi-I-open sets. 

(b) If A ⊂ B ⊂ mCl*(A) and A is a m-pre-I-open set, then B 

is a strong m-β-I-open set. 

(c) If A ⊂ B ⊂ mCl(A) and A is a m-pre-I-open set, then B is 

a m-β-I-open set. 

Proof. (a) Suppose that A ⊂ B ⊂ mCl*(A) and A is a weakly 

m-semi-I-open set implies that A ⊂ mCl* (mInt(mCl(A))). 

Since B ⊂ mCl*(A) ⊂ mCl*(mInt(mCl(A))) ⊂ mCl* 

(mInt(mCl(B))). Hence B is a weakly m-semi-I-open set. 

Since A ⊂ B ⊂ A*, we have A* and B* are weakly m-semi-

I-open sets. 

(b) Suppose A ⊂ B ⊂ mCl*(A) and A is a m-pre-I-open set 

implies that A ⊂ mInt(mCl*(A)). Now B ⊂ mCl*(A) ⊂ 

mCl*(mInt(mCl*(A))) ⊂ mCl*(mInt(mCl*(B))). Hence B is 

a strongly m-β-I-open set. 

(c) Suppose A ⊂ B ⊂ mCl(A) and A is a m-pre-I-open set 

implies that A ⊂ mInt(mCl*(A)). Then we have B ⊂ mCl(A) 

⊂ mCl(mInt(mCl*(A))) ⊂ mCl(mInt(mCl*(B))). Hence B is 

a m-β-I-open set. 
 
Corollary 3.1 Let (X, m, I) be a minimal space and A ⊂ X. 

Then the following hold. 

(a) If A is a weakly m-semi-I-open set, then mCl*(A) and 

mCl*(mInt(mCl*(A))) are weakly m-semi-I-open sets. 

(b) If A is m-pre-I-open set, then mCl*(A) and mCl* 

(mInt(mCl*(A))) are strongly m-β-I-open sets. 
 
Proposition 3.7 Let (X, m, I) be a minimal space and A ⊂ X 

be a weakly m-semi-I-open set. Then the following hold. 

(a) If A ⊂ A*, then A* is a weakly m-semi-I-open set. 

(b) If A = A*, then every subset containing A is a strongly 

m-β-I-open set. 
 
Proposition 3.8 Let (X, m, I) be a minimal space and A ⊂ X. 

Then A is a weakly m-semi-I-closed set if and only if mInt* 

(mCl(mInt(A))) ⊂ A. 

Proof. If A is a weakly m-semi-I-closed set, then X-A is a 

weakly m-semi-I-open set and hence X-A⊂mCl* 

(mInt(mCl(X-A)))=X-mInt*(mCl(mInt(A))). Therefore 

mInt*(mCl(mInt(A)))⊂A. Conversely, let mInt* 

(mCl(mInt(A)))⊂A. Then X-A ⊂ mCl*(mInt(mCl(X−A))). 

Hence X-A is a m-weakly semi-I-open set. Thus A is a 

weakly m-semi-I-closed set. 
 

Proposition 3.9 Let (X, m, I) be a minimal space and A ⊂ X. 

If A is a weakly m-semi-I-closed set, then mInt(mCl* 

(mInt(A))) ⊂ A. 

Proof. If A is a weakly m-semi-I-closed set, then mInt* 

(mCl(mInt(A))) ⊂ A. We have mInt(mCl*(mInt(A))) ⊂ 

mInt*(mCl*(mInt(A))) ⊂ mInt*(mCl(mInt(A))) ⊂ A.  

IV. WEAKLY M-SEMI-I-CONTINUITY 

Definition 4.1 A function f :(X, m, I) → (Y, τ) is said to be a 

m-semi-I-continuity if f
−1

 (V) is a weakly m-semi-I-open set 

in (X, m, I) for every open V of (Y, τ). 

 

Proposition 4.1 For a function f:(X, m, I) → (Y, τ), the 

following hold. 

(a) Every m-α-I-continuous function is a weakly m-semi-I-

continuous function. 

(b) Every m-semi-I-continuous function is a weakly m-semi-

I-continuous function. 

(c) Every m-pre-I-continuous function is a weakly m-semi-I-

continuous function. 

Proof. It follows from Theorem 3.1. 

 

Proposition 4.2 Let f :(X, m, I) → (Y, τ) be a function. Then 

f is a weakly m-semi-I-continuous function if and only if f is 

a m-δ-I-continuous function. 

Proof: The proof follows from Proposition 3.4. 
 
Proposition 4.3 For a function f:(X, m, I) → (Y, τ), the 

following are equivalent. 

(a) f is a weakly m-semi-I-continuous function. 

(b) For each x ∈  X and each open V containing f (x), there 

exists a weakly m-semi-I-open set U such that f (U) ⊂ V. 

Proof. Let x ∈  X and V be a open set of Y containing f (x). 

Take W = f
−1

(V), then by definition, W is a weakly m-semi-

I-open set containing x and f (W) ⊂ V. 

Conversely, let F be a closed set of Y. Take V = Y−F, then V 

is a open set in Y. Let x ∈  f
−1

(V), by hypothesis, there exists 

a weakly m-semi-I-open set W of X containing x such that 

f(W) ⊂ V. Thus, we obtain x ∈  W ⊂ mCl*(mInt(mCl(W ))) 

⊂ mCl*(mInt(mCl(f
−1

(V)))) and hence f
−1

(V) ⊂ mCl* 

(mInt(mCl(V))). This shows that f
−1

(V) is a weakly m-semi-

I-open set in X. Hence f
−1

(F) = X−f
−1

(Y−F) = X−f
−1

(V) is a 

weakly m-semi-I-closed set in X. 
 
Proposition 4.4 A function f:(X, m, I) → (Y, τ) is a weakly 

m-semi-I-continuous function if and only if f
−1

(U) is a 

weakly m-semi-I-closed set in (X, m, I), for every closed set 

U in (Y, τ). 

Proof. Let f be a weakly m-semi-I-continuous function and F 

be a closed set in (Y, τ). Then Y−F is open in (Y, τ). Since f 

is a weakly m-semi-I-continuous function, f
−1

(Y−F) is a 

weakly m-semi-I-open set in (X, m, I). But f
−1

(Y−F) = 

X−f
−1

(F) and so f
−1

(F) is a weakly m-semi-I-closed set in (X, 

m, I). Conversely, assume that f
−1

(F) is a weakly m-semi-I-

closed set in (X, m, I) for every closed in F in (Y, τ). Let V 

be open in (Y, τ). Then Y−V is closed in (Y, τ) and by 
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hypothesis f
−1

(Y−F ) is a weakly m-semi-I-closed set in (X, 

m, I). Since f
−1

(Y−V) = X−f
−1

(V), we have f
−1

(V) is a weakly 

m-semi-I-open set in (X, m, I), and so f is a weakly m-semi-

I-continuous function. 
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