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Abstract— In this paper a simple SIRS mathematical model with mass action type incidence is formulated and studied. Steady 

state, equilibrium point and the basic reproduction number are obtained for the system of differential equation. Existence and 

stability of the diseases free and endemic stages are investigated. An example is also furnished which demonstrates validity of 

main result. 
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I.  INTRODUCTION  

Mathematical modeling is an essential tool to know and 

predict the spread of communicable diseases. In this 

progression, rate of incidence plays a important role. The 

incidence in a mathematical model is pace at which 

susceptible become communicable. The first SIR epidemic 

model was studied by Kermack and Mc Kendric [16] in the 

year 1927. Mena Lorca and Hethcote [6] also analyzed. The 

SIRS epidemic model has been studied by various authors 

viz. Capaso and Serio [15], Porwal and Badshah 

[7,8,9,10,11], Hethcote [2,3,4], Anderson and May [12], 

Kumar et al. [9] studied modified SIRS epidemic model with 

immigration and saturated incidence rate. 

 Communicable diseases create a constant threat to 

human beings. Each person on the earth can be affected by a 

disease. The emergence and re-emergence of infectious 

diseases have become a noteworthy universal problem. 

Accurate understanding of transmission mechanisms of 

diseases caused by existing and new pathogens may facilitate 

devising prevention tools. Prevention tools against 

transmissions, including vaccines and drugs, need to be 

developed at a similar pace to that of the microbes. 

Implementation and proper use of these sophisticated tools 

against the microbes is one more challenge.  

 In this paper, we extend the model of Hethcote [5] 

by taking SIRS mathematical model with mass action type 

incidence in place of SIR mathematical model. Further we 

study the model and obtain diseases free and endemic 

equilibrium of the system and analyze for stability. Also give 

an example for verification of our results. 

 

 

II. THE MATHEMATICAL MODEL 

The proposed model describes a simple SIRS mathematical 

model with mass action type incidence. Here we adopt the 

following SIRS model: 
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   (2.1)  

where  RISN   

and S = Number of Susceptible, 

 I = Number of Infectious, 

R = Recovered Compartment, 

N = Total Population Size  

With other Parameters in the model are  

 b = Birth Rate, 

http://www.isroset.org/
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 K = Number of individual in the population 

 d = Natural Death Rate, 

α = Disease Induced Death Rate, 

β = Transmission Coefficient, 

               = Loss of Immunity Rate Constant, 

γ = Recovery Rate, 

III. STEADY STATE   

The disease free equilibrium of the model (2.1) is obtained 

by setting right hand side of model (2.1) equals to zero and 

taking 0I , we get. 
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 (3.1) 

From the third equation of system (3.1), we get 
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and from first equation of system (3.1), we get 
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Hence, the disease free equilibrium point 0E is 
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From Second equation of system (3.1) 
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by third equation of system (3.1) 
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Again by first equation of system (3.1) we get 
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Hence endemic equilibrium point is  ***
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The Basic Reproduction number 
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IV. STABILITY ANALYSIS 

To discuss the stability of the model (2.1) the governing 

dynamical system is 
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The Jacobian matrix of system (4.1) is 
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At equilibrium point 0E  , the Jacobian matrix is 
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Its characteristics equation is 
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Whose eigen values are 
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All the eigen values are negative if 02 
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Hence the equilibrium point 0E is locally asymptotically 

stable if 10 R
 
and unstable if 10 R . It is also globally 

asymptotically stable if 10 R .  

At equilibrium point 1E  the Jacobian matrix is 
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Clearly  

01 a , 02 a , 03 a  and 321 aaa  if 10 R  

and by the Routh Hurwitz Criteria , the endemic equilibrium 

is locally asymptotically stable for 10 R . 

V. EXAMPLE  

We take the parameters of the system, ,33.2d
 

,4.1K ,9.2b ,1 ,28.0 ,2.1

49.0 . Then  0,0,7424.10 E and 15.00 R . 

Hence the diseases free equilibrium is asymptotically stable. 

  

Now, we take parameters of the system as 

,16.0d 4.1K , ,9.2b ,1  5.0 , 

2.1 , 18.0 . Then  894.0,764.5,7.01 E  

and 1905.40 R . Hence the endemic equilibrium point 

1E  is locally asymptotically stable. 

Remark  If ,0 then we gets one of the models of 

Hethcote [5]. 

VI. CONCLUSION 

In this paper, we see that the basic reproduction number 

plays an important role to control the disease. If 10 R  

then there is a disease free equilibrium which is locally 

stable, that is the disease dies out. But when 10 R  then 

the diseases persist and the endemic equilibrium is stable. 
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