

International Journal of Scientific Research in _ Mathematical and Statistical Sciences Vol.4, Issue.2, pp.14-17, April(2017)

A Fixed Point Theorem for a Contractive Mapping in Dislocated Quasi Metric Space

V.H. Badshah¹, V.P. Bairagi^{2*}, A. Pariya³

¹School of studies in Mathematics, Vikram University, Ujjain, India ²Department of Mathematics, Govt. M.L.B. Girls P.G. College, Indore, India ³Department of Mathematics, Medi-Caps University, Indore,India

Corresponding Author: vishnuprasadbairagi@yahoo.in

Abstract- Aage and Salunke [1] proved the result on fixed point theorem in dislocated and dislocated quasi metric space. Dass and Gupta [2] given an extentionsion of Banach Contraction Principle through rational expression. In this paper, we establish a common fixed point theorem for continuous contractive mapping in dislocated quasi metric space which is the generalized result of Isufati. A [4] ,Mujeeb Ur Rahman and Muhammad Sarwar [11].

Keywords- Dislocated Quasi metric space, common fixed point, continuous contractive mapping

AMS Subject Classification- 47H10, 54H25

I. INTRODUCTION AND PRELIMINARIES

In1922, Banach proved fixed point theorem for contraction mapping in complete metric space. It is well known as a Banach fixed point theorem . In 1975 Dass and Gupta [2], generalized Banach contraction principle in metric space. In 1977 Rhoades [7], gave a comparison of various definitions of contractive mappings. In 2005 Zeyada et al. [10], given a generalization of fixed point theorem due to Hiltzler and Seda [3], in dislocated quasi metric space. In 2008 Aage and Saluke [1] proved result on fixed point theorem in dislocated & dislocated quasi metric space. After this in 2010 Isufati [4], established a fixed point theorem in dislocated quasi metric space, also in 2010 Kohliet al.[5], in 2011 Shrivastava and Gupta [8], Pagey and Nighojkar [6] and in 2014 Shrivastava et al. [9], Mujeeb Ur Rahman and Muhammad sarwar [11], worked on a common fixed point theorem in dislocated quasi metric space. In this paper, we establish a common fixed point theorem for continuous contractive mapping in dislocated quasi metric space which is the generalized result of Isufati, A. [4] and Mujeeb Ur Rahman and Muhammad sarwar [11].

Definition 1.1 [3&10] Let X be a non-empty set and let d :X $\times X \rightarrow [0,\infty)$

be a function satisfying the following conditions:

 $(\mathbf{d}_1) \, d(x \, , x) = 0$

 $(d_2) d(x, y) = d(y, x) = 0 \text{ implies} x = y.$

 $(d_3) d(x, y) = d(y, x)$ for all $x, y \in X$

 $(d_4)d(x, y) \leq d(x, z) + d(z, y)$ for all $x, y, z \in X$

If d satisfies conditions only (d_2) and (d_4) , then d is called a dislocated quasi metric on X.

If *d* satisfies conditions (d_1) , (d_2) and (d_4) , then *d* is called a quasi metric on X. If *d* satisfies conditions (d_2) , (d_3) and (d_4) , then *d* is called a dislocated metric on X. If *d* satisfies all the conditions (d_1) , (d_2) (d_3) and (d_4) , then *d* is called a metric on X.

Definition 1.2 [10] A sequence $\{x_n\}$ in a *d*-qmetric space (dislocated quasi metric space) (X, d) is called a Cauchy sequence if for given $\in >0$, there corresponds $n_0 \in N$ such that for all m, $n \ge n_0$, implies $d(x_n, x_m) < \in$

Definition 1.3 [10] A sequence in *d*-qmetric space converges to a point x if there exists $x \in X$ such that $d(x_n, x) \rightarrow 0$ as $n \rightarrow \infty$ or $\lim_{n \rightarrow \infty} d(x_n, x) = 0$

Definition 1.4 [3] A dislocated quasi metric space (X, d) is a complete metric space if every Cauchy sequence in (X, d) is convergent sequence with respect to d.

Definition 1.5 [10] Let (X, d) and (Y, ρ) be any two dislocated quasi metric spaces and Let $T: X \to Y$ be a function then T is a continuous function at $x_0 \in X$, if for each sequence $\{x_n\}$ which is convergent to x_0 in X, the sequence $\{T(x_n)\}$ is convergent to $\{T(x_0)\}$ in Y.

Definition 1.6[10] Let (X, d) be a d-metric space. A map *T*: $X \rightarrow X$ iscalled contraction mapping if there exists a number λ with $0 \le \lambda < 1$ such that $d(Tx, Ty) \le \lambda d(x, y \text{ .for all } x, y \text{ in } X.$

Lemma 1.1[10] Limits in a d-q metric space are unique.

Theorem 1.1[1] Let (X, d) be a complete *d-q* metric space and suppose there exist non negative constants α , β , γ with $\alpha+\beta+\gamma<$ 1.Let T : X \rightarrow X be a continuous mapping satisfying condition

$$d(Tx,Ty) \leq \alpha d(x,y) + \beta d(x,Tx) + \gamma d(y,Ty) \text{ for all } x,y \in X.$$

Then T has a unique fixed point .

Theorem 1.2 [4] Let (X, d) be a *d*-*q* metric space and let

T :X \rightarrow X be a continuous mapping satisfying the following condition

$$d(Tx,Ty) = \alpha \frac{d(y,Ty)[1+d(x,Tx)]}{1+d(x,y)} + \beta d(x,y) \forall x,y \in X,$$

and $\alpha > 0, \beta > 0$, $\alpha + \beta < 1$. Then T has a unique fixed point.

Theorem 1.3 [9] Let (X, d) be a *d*-*q* metric space and

T :X \rightarrow X be a continuous mapping satisfying the following condition

$$d(Tx,Ty) = \alpha \frac{d(y,Ty)[1+d(x,Tx)]}{(d(x,Ty))[1+d(x,Ty)]} + \beta d(x,y) + \gamma d(x,Ty)$$

 $\forall x, y \in \mathbf{X},$

and $\alpha\!\!>\!0{,}\beta\!\!>\!0$, $\gamma\!\!>\!0\,$, $\alpha\!+\!\beta\!+\!\gamma\!\!<\!1$; Then T has a unique fixed point.

Theorem 1.5[11] Let (X, d) be a complete d-q metric space and let $T : X \rightarrow X$ be a continuous self-mapping satisfying the condition

$$d(Tx, Ty) \le \alpha \ d(x, y) + \beta \frac{d(x, Ty)d(y, Ty)}{d(x, y) + d(y, Ty)} + \gamma \frac{d(x, Tx)d(y, Ty)}{1 + d(x, y)}$$
$$+ \mu \frac{d(x, Tx)d(x, Ty)}{1 + d(x, y)} \text{for all } x, y \in X$$

and α , β , γ , $\mu \ge 0$ with $\alpha + \beta + \gamma + 2\mu < 1$.

Then T has a unique fixed point

II. MAIN RESULT

Theorem 2.1 Let(X, d) be a complete d-q metric space and T :X \rightarrow X be a continuous mapping satisfying the following condition

$$d(Tx,Ty) \leq \alpha \frac{d(y,Ty)d(x,Tx)}{[1+d(x,Tx)][1+d(y,Ty)]} + \beta \frac{d(x,y)d(x,Tx)}{1+d(x,Tx)[1+d(y,Ty)]} + \gamma \frac{d(x,y)d(y,Ty)}{1+d(x,y)[1+d(y,Ty)]} \forall x,y \in \mathbf{X}$$
(1)

and $\alpha\!\!>\!0,\!\beta\!\!>\!0$, $\gamma\!\!>\!0\,$, $\alpha\!\!+\!\beta\!\!+\!\gamma\!\!<\!1$; Then T has a unique fixed point.

Proof.

© 2017, IJSRMSS All Rights Reserved

Let $\{x_n\}$ be sequence in *d*-*q* metric space (X, d) defined as under, For any $x_0 \in X$, we define $T(x_0) = x_1$.

$$T(x_1) = x_2 T(x_2) = x_3 ..., T(x_n) = x_{n+1} ... \forall n \in \mathbb{N}$$
 (2)

Consider $n, n+1 \ge n_0$ where $n_0 \in N$

$$d(x_n, x_{n+1}) = d(Tx_{n-1}, Tx_n)$$

$$\leq \alpha \frac{d(x_n, Tx_n)d(x_{n-1}, Tx_{n-1})}{[1+d(x_{n-1}, Tx_{n-1})][1+d(x_n, Tx_n)]}$$

$$+\beta \frac{d(x_{n-1}, x_n)d(x_{n-1}, Tx_{n-1})}{1+d(x_{n-1}, Tx_{n-1})[1+d(x_n, Tx_n)]}$$

$$+\gamma \frac{d(x_{n-1}, x_n)d(x_n, Tx_n)}{1+d(x_{n-1}, x_n)[1+d(x_n, Tx_n)]}$$

$$= \alpha \frac{d(x_n, x_{n+1})d(x_{n-1}, x_n)}{[1+d(x_{n-1}, x_n)][1+d(x_n, x_{n+1})]} + \beta \frac{d(x_{n-1}, x_n)d(x_{n-1}, x_n)}{1+d(x_{n-1}, x_n)[1+d(x_{n-1}, x_n)]}$$

$$+\gamma \frac{d(x_{n-1}, x_n)d(x_n, x_{n+1})}{[1+d(x_{n-1}, x_n)][1+d(x_n, x_{n+1})]}$$

+
$$\gamma \frac{1+d(x_{n-1},x_n)[1+d(x_n,x_{n+1})]}{1+d(x_n,x_{n+1})]}$$

Since
$$1 + d(x_{n-1}, x_n) > d(x_{n-1}, x_n)$$

$$\Rightarrow 1 > \frac{d(x_{n-1}, x_n)}{1 + d(x_{n-1}, x_n)}$$

$$< \alpha \frac{d(x_n, x_{n+1})}{1 + d(x_n, x_{n+1})} + \beta d \frac{d(x_{n-1}, x_n)}{[1 + d(x_n, x_{n+1})]} + \gamma \frac{d(x_n, x_{n+1})}{[1 + d(x_n, x_{n+1})]}$$

This gives

. .

$$d(x_n, x_{n+1}) < \alpha \ d(x_n, x_{n+1}) + \beta \ d(x_{n-1}, x_n)$$
$$+ \gamma \ d(x_n, x_{n+1})$$
$$\Rightarrow d(x_n, x_{n+1}) < \frac{\beta}{1 - \alpha - \gamma} d(x_{n-1}, x_n)$$
$$\Rightarrow \delta = \frac{\beta}{1 - \alpha - \gamma} \text{where} 0 < \delta < 1$$

Therefore we have

$$d(x_n, x_{n+1}) < \delta d(x_{n-1}, x_n) ,$$

Similarly, we have

$$d(x_{n-1}, x_n) < \delta d(x_{n-2}, x_{n-1}),$$

$$d(x_{n-2}, x_{n-1}) < \delta d(x_{n-3}, x_{n-2}),$$

.....,

...,

 $d(x_2, x_1) < \delta d(x_1, x_0),$

Finally, we have

$$d(x_n,x_{n+1}) < \delta^n d(x_1,x_0) ,$$

 $\Rightarrow |d(x_n, x_{n+1})| < \delta^n |d(x_1, x_0)|$

Since $0 < \delta < 1$ and letting $n \to \infty, \Rightarrow \delta^n \to 0$

Implies that

 $|d(x_n, x_{n+1})| \rightarrow 0 \text{ as } n \rightarrow \infty$

Hence, The sequence $\{x_n\}$ is Cauchy sequence in the complete dislocated quasi metric space (X,d).

Thus the sequence $\{x_n\}$ is a convergent sequence in dislocated quasi metric space (X,d) to the point $x \in x$. i.e.lim_{$n\to\infty$} $x_n = x$.

Since $T: X \rightarrow X$ is continuous then we have

$$T(x) = \lim_{n \to \infty} T(x_n) = \lim_{n \to \infty} x_{n+1} = x$$

i.e. T(x) = xThus T has a fixed point.

For uniqueness :

To prove T has unique fixed point we suppose x and y are any two common fixed point of T

i.e.
$$T(x) = x$$
 and $T(y) = y$

Consider

$$\begin{aligned} d(x,y) &= d(Tx,Ty) \\ &\leq \alpha \frac{d(y,Ty)d(x,Tx)}{[1+d(x,Tx)][1+d(y,Ty)]} + \beta \frac{d(x,y)d(x,Tx)}{1+d(x,Tx)[1+d(y,Ty)]} \\ &+ \gamma \frac{d(x,y)d(y,Ty)}{1+d(x,y)[1+d(y,Ty)]} \\ &\leq \alpha \frac{d(y,y)d(x,x)}{[1+d(x,x)][1+d(y,y)]} + \beta \frac{d(x,y)d(x,x)}{1+d(x,x)[1+d(y,y)]} \\ &+ \gamma \frac{d(x,y)d(y,y)}{1+d(x,y)[1+d(y,y)]} \end{aligned}$$

 $d(x,y) \le 0$ [$\because x$ and y are any two common fixed point of T, i.e. T(x) = x and T(y) = y and d(x,x) = 0 & d(y,y) = 0] but $d(x,y) \ge 0$

This implies that

d(x,y) = 0

i.e. x = y, this proves the uniqueness of fixed point of T in X

This completes the proof of theorem 2.1

Corollary 2.1 Let (X, d) be a complete *d*-*q* metric space ant T : $X \rightarrow X$ be a continuous mapping, satisfying the following condition

 $T \to 0 \qquad d(x,y)d(x,Tx) \qquad d(x,y)d(y,Ty)$

$$d(Tx,Ty) \le \beta \frac{d(x,y)d(x,Tx)}{1+d(x,Tx)[1+d(y,Ty)]} + \gamma \frac{d(x,y)d(y,Ty)}{1+d(x,y)[1+d(y,Ty)]}$$

 $\forall x, y \in X$

and $\beta > 0$, $\gamma > 0$, $\beta + \gamma < 1$; Then T has a unique Fixed point.

Proof : The proof of the corollary 2.1 follows immediately by putting $\alpha = 0$ in Theorem 2.1

Corollary2.2 Let(X, d) be a complete d-q metric space and T :X \rightarrow X be a continuous mapping satisfying the following condition

$$d(Tx,Ty) \le \alpha \frac{d(y,Ty)d(x,Tx)}{[1+d(x,Tx)][1+d(y,Ty)]} + \gamma \frac{d(x,y)d(y,Ty)}{1+d(x,y)[1+d(y,Ty)]}$$

 $\forall x, y \in X$

and $\alpha > 0, \gamma > 0$, $\alpha + \gamma < 1$; Then T has a unique fixed point.

Proof :The proof of the corollary 2.2 follows immediately by putting $\beta = 0$ in Theorem 2.1

Corollary2.3 Let(X, d) be a complete d-q metric space and T : X \rightarrow X be a continuous mapping

Satisfying the following condition

$$d(Tx,Ty) \le \alpha \frac{d(y,Ty)d(x,Tx)}{[1+d(x,Tx)][1+d(y,Ty)]} + \beta \frac{d(x,y)d(x,Tx)}{1+d(x,Tx)[1+d(y,Ty)]}$$

 $\forall x, y \in X$

and $\alpha > 0$, $\beta > 0$, $\alpha + \beta < 1$; Then T has a unique fixed point.

Proof :The proof of the corollary 2.3 follows immediately by putting $\gamma = 0$ in Theorem 2.1

Corollary 2.4Let (X, d) be a complete d-q metric space and T : X \rightarrow X be a continuous

mapping also $T^n : X \to X$ is a continuous mapping, satisfying the following condition

$$d(T^{n}x, T^{n}y) \leq \alpha \frac{d(y, T^{n}y)d(x, T^{n}x)}{[1+d(x, T^{n}x)][1+d(y, T^{n}y)]} \\ + \beta \frac{d(x, y)d(x, T^{n}x)}{[1+d(x, T^{n}x)][1+d(y, T^{n}y)]} \\ + \gamma \frac{d(x, y)d(y, T^{n}y)}{[1+d(x, y)][1+d(y, T^{n}y)]} \forall x, y \in \mathbf{X}$$

where n is an integer such that n>0 and $\alpha>0,\,\beta>0$, $\gamma>0$, $\alpha+\beta+\gamma<1$; Then T has a unique fixed point.

Proof :From theorem 2.1, T^n has a unique fixed point *x* in complete *d*-*q* metric space X

Therefore
$$T^n x = x$$

Now consider

© 2017, IJSRMSS All Rights Reserved

 $T^{n}(T\boldsymbol{x}) = T(T^{n}\boldsymbol{x}) = T\boldsymbol{x}$

i.e. Tx is a fixed point of T^n . But x is a unique fixed point of T^n and so Tx = x

Hence x is a fixed point of T.

For uniqueness :For uniqueness of fixed point let $x \neq y$ be an another fixed point of T

Then d(y, x) = d(Ty, Tx)

 $\leq \alpha \frac{d(x,Tx)d(y,Ty)}{[1+d(y,Ty))][1+d(x,Tx)]} + \beta \frac{d(y,x)d(y,Ty)}{[1+d(y,Ty)]][1+d(x,Tx)]}$

+
$$\gamma \frac{d(y,x)d(x,Tx)}{[1+d(y,x)][1+d(x,Tx)]} \quad \forall x,y \in \mathbf{X}$$

$$= \alpha \frac{d(x,x)d(y,y)}{[1+d(y,y)][1+d(x,x)]} + \beta \frac{d(y,x)d(y,y)}{[1+d(y,y)]][1+d(x,x)]}$$
$$+ \gamma \frac{d(y,x)d(x,x)}{[1+d(y,y)][1+d(x,x)]}$$

$$\int I [1+d(y_{,,x})][1+d(x,x)]$$

 $i.e.d(y,x) \le 0$.But $d(y,x) \ge 0$

This gives us

d(y,x) = 0

Which is possible iff x = y and so x is a unique fixed point

III REFERENCES

- C.T. Aage, J.N. Salunke, "The Results on Fixed Point Theoremin Dislocated6 and Quasi-Metric Spaces", Applied Mathematical Science, Vol.2, Issue.59, pp.2941-2948, 2008.
- [2] B. K. Dass and S. Gupta, "An extension of Banach contraction principle through rational expressions", Indian Journal of Pure and Applied Mathematics, vol. 6, Issue.12, pp. 1455–1458, 1975.
- [3] P. Hitzler, A.K. Seda, "Dislocated Topologies", Journal of Electrical Engineering, Vol.51, Issue.12, pp.3-7, 2000.
- [4] A. Isufati, "Fixed Point Theorem in Dislocated Quasi-Metric Space", Applied Mathematical Sciences, Vol.4, Issue.5, pp.217-223, 2010.
- [5] M. Kohli, R. Sriravastava, M. Sharma, "Some Results on Fixed Point Theorem in Dislocated Quasi Metric Space", International Journal of Theoritical&AppliedSciences, Vol.2, Issue.1, pp.27-28, 2010.
- [6] S.S. Pagey, R. Nighojkar, "A Fixed Point Theorem For Expansive Type Mapping in Dislocated Quasi Metric Space", International Journal of Theoretical & Applied Sciences, Vol.3, Issue.1, pp.26-27, 2011.
- [7] B.E. Rhoades, "A Comparison of Various Definition of Contractive Mapping", Transactions of the American Mathematical Society, Vol.226, Issuee.1, pp.257-290, 1977.
- [8]R. Shrivastava, R. Gupta, "A Fixed Point Theorem for Random Operator in Dislocated Quasi Metric Spaces", International Journal of Theoretical & Applied Sciences, Vol.3, Issue., pp.47-48, 2011.

© 2017, IJSRMSS All Rights Reserved

- [9]R. Shrivastava, K. Qureshi, K. Rathore, "A Common Fixed Point Theorem For a Pair of Mapping in Dislocated Metric Space", Advances in Applied Science Research, Vol.5, Issue.3, pp.417-419, 2014.
- [10] F.M. Zeyada, G.H. Hassan, M.A. Ahmed, "A Generalization of a fixed point theorem due to Hitzler and Seda in dislocated quasimetric spaces", The Arabian Journal for Science Engineering., Vol.31, Issue.1, pp.111-114, 2006.
- [11]M.U. Rahman, M. Sarwar, "Fixed Point Results in Dislocated Quasi Metric Spaces", International Mathematical Forum, Vol.9, Issue.14, pp.677-682, 2014.