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Abstract- In this paper the problem of an unsteady 2-D compressible inviscid flow with heat transfer with slip boundary 

conditions is analyzed. Numerical solutions of the governing equations are obtained by using Mac Cormack technique. The 

numerical computations of u-velocity, v-velocity, pressure and temperature are done at different times for different positions 

along x- axis and y- axis. The numerical solutions of the u-velocity, v-velocity, pressure and temperature obtained in this 

analysis have been ensured to be stable based on stability requirements. The significant findings from the present analysis have 

been given under conclusion. 

Keywords- Inviscid flow, Heat transfers, Euler’s equations, MacCormack technique, slips boundary conditions. 

I. INTRODUCTION 

The study of fluid flow and heat transfer has been receiving 

the attention of many researchers due to its wide 

applications in industry and technological fields such as 

cooling of electronic components, solar collectors, casting 

and welding of manufacturing processes, oil recovery 

process, geothermal extraction etc. MacCormack technique 

is an important tool used in the study of incompressible fluid 

flow with heat transfer. The scheme has been extensively 

used, modified and developed over the years. It was first 

introduced in 1969[1] and became the most popular explicit 

finite-difference method for solving fluid flows. Bernard[2] 

extended Mac Cormack scheme for incompressible flow on 

marker and cell grid. Payri, Torregrosa and Chust[3] used 

MacCormack technique to solve 1-D flow equations in case 

of exhaust system of single cylinder engine. Hixon and 

Turkel [4] derived a new class of high accuracy compact 

MacCormack technique. Later, they extended [5] 

MacCormack technique to implicit differencing scheme and 

developed a new class of high order accurate scheme. Perrin 

and Hu [6] used MacCormack scheme for nearly 

incompressible Newtonian fluid. Guoyuan and Jackson [7] 

revised both MacCormack and Saulyev methods for 

dynamic 1-D advection-dispersion –reaction equation and 

greatly improved the prediction accuracy over the original 

ones. Pochai [8] studied two models both formulated in 1-D 

and proposed a modified MacCormack technique. Das and 

Bagheri [9] used MacCormack technique to solve a 2-D 

shallow water equations. Gallagher et al.  [10] proposed two 

modifications leading to the formation of generalized 

MacCormack scheme within a dual time framework. 

In view of available literature mentioned above, it can be 

seen that MacCormack technique has been used quite often 

to compute unsteady, compressible as well as 

incompressible flows. This technique has been extensively 

used to obtain time accurate solution for fluid flow. This 

technique is a simpler variant of Lax-Wandroff technique 

which is basically a two step technique with second order 

accuracy in both space and time. MacCormack technique is 

computationally efficient, easy to implement and second 

order accurate in both space and time and is appropriate to 

obtain reliable results. However, a disadvantage of the 

MacCormack method is that computations involving the 

compressible N-S equations sometimes become unstable 

because of numerical oscillations, which arises due to 

inadequate mesh refinement in regions of large gradients. 

But, in many cases, it is infeasible to refine the mesh in 
these regions, because of the substantially higher computing 
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needs. So in these cases, errors due to numerical oscillations 

are inevitable 

The calculation of compressible flow models is significantly 

different from incompressible flow models. The most 

important difference is the addition of a time derivative to 

the continuity equation and also the addition of one 

unknown i.e. the density. The compressible flow models has 

not been studied widely by the researchers due to the 

complexity involved in computing four unknown variables 

u, v, p, T simultaneously. In the present study, we adopt 

MacCormack technique to numerically investigate an 

unsteady 2-D compressible inviscid flow with heat transfer 

with slip boundary conditions.  The paper is organized as 

follows: In Section II, we introduce governing equations, 

initial and boundary conditions under mathematical 

formulation.  The computational procedure and algorithm 

has been detailed under Section III. The numerical 

computations of u, v, P, T for various test cases has been 

given under Section IV. Results and discussions have been 

given under Section V. Conclusions of this study have been 

summarized in the final section. 

II. MATHEMATICAL FORMULATION 

We consider an unsteady, 2D inviscid flow with heat 

transfer with slip boundary conditions. Let this flow passes 

through a rectangular cavity as shown in Figure1. All fluid 

properties are assumed to be constant. We assume no body 

forces and no volumetric heat addition. Under these 

assumptions, the 2D compressible, inviscid Euler’s 

equations in dimensionless form are given by: 

Continuity:
u v

u v
t x x y y

  
 
     

     
     

 

   (1) 

X momentum:  

1u u u p
u v

t x y x

    
    

    
     (2) 

Y momentum:  

1v v v p
u v

t x y y

    
    

    
     (3) 

Energy:  

 
T T T p u p v

u v
t x y x y 

     
     

        

(4) 

With the initial and boundary conditions: 

For   t = 0 :  u(x,y,0)=0, v(x,y,0)=0,  T(x,y,0)=0, 

p(x,y,0)=10, ρ(x,y,0)=10 

For  t > 0 :   

At  the wall AB : 

0 ; 0 1; 10; 20; 10; 10x y v T p       At  

the wall BC : 

0 ; 0 1; 10; 10; 10, 10y x u T p        At  

the wall CD : 

1 ; 0 1; 10; 20; 10; 10x y v T p        At  

the wall DA : 

1 ; 0 1; 10; 10; 10; 10y x u T p         

           A             u=10                   D 

 

  v=10                                      v=10 

 

        B     u=10  C            

Fig. 1 Rectangular Cavity 

III. COMPUTATIONAL PROCEDURES AND 

ALGORITHMS 

In order to solve Eqns. (1)-(4) using MacCormack 

technique, we consider a two-dimensional grid as shown in 

Fig. 2.We assume that the flow field at each grid point in 

Fig. 2 is known at time t, and we proceed to calculate the 

flow-field variables at the same grid points at time t t , 

as illustrated in Fig. 3.To start with, we first find predicted 

values of the variables as follows: 

Predictor Step: In the right-hand side of Eqn. (1), we 

replace the spatial derivatives with forward differences. 
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 

  

                                                                   

(5) 

           Fig. 2: Rectangular Grid Segment 

 

All the flow variables on right-hand side of Eqn. (5) are 

known at time t. Now, we obtain the predicted value of 

density  
t t




, from first two terms of a Taylor’s series, as 

follows 

 
,

,

,
i j

t
t t

t

i j

i j

t
t


 

  
   

 
   (6) 

In the same way, we obtain the predicted values for u, v and 

T, i.e. 

 
,

,

,
i j

t
t t

t

i j

i j

u
u u t

t

  
   

 
  (7) 

 

Fig. 3: A schematic for the grid for time marching 

 
,

,

,
i j

t
t t

t

i j

i j

v
v v t

t

  
   

 
  (8)

 
,

,

,
i j

t
t t

t

i j

i j

T
T T t

t

  
   

 
  (9) 

Corrector Step: In this step, we substitute the predicted 

values of , ,u v  (obtained from Eqns. (6)-(8)) in Eqn. (1) 

and obtain the predicted values of the time derivative of   

at time t t , i.e. 

 
   

 
   

 
   

 
   

, 1,

,

, 1,
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,
, , 1

,

, , 1
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t t t t

t t
i j i j

i j

t t t t

t t
i j i j

t t
i j

t t t t

i j t t
i j i j

i j

t t t t

t t
i j i j

i j

u u

x

u
x

t v v
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v
y



 





 

 




 






 




 




 
 

 
 
 
 
   

   
   

  
 

 
  
 
  

 

                                                        (10) 

Here, we are using backward differencing for spatial 

derivatives. Similarly, using predicted values of , ,u v
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and T, we obtain the predicted values of the time derivative 

of ,u v and T at time t t , i.e.

,

t t

i j

u

t



 
 
 

, 

,

t t

i j

v

t



 
 
 

and

,

t t

i j

T

t



 
 
 

.  

It can be seen that forward differences are used for all 

spatial derivatives in the predictor step, while backward 

differences are used in the corrector step. The forward and 

backward differencing can be alternated between predictor 

and corrector steps as well. This provides a higher accuracy 

and stability for non-linear problems including the one at 

hand. 

Next, we obtain the average value of time derivative of   

at time t t  using 

, ,

1

2

t tt

av i j i j
t t t

  
       

       
        

 (11) 

The final corrected value of density at t t is obtained as 

, ,

t t t

i j i j

av

t
t


   

   
 

   (12) 

In the similar fashion, we obtain the corrected values of u, v 

and T, using 

, ,

t t t

i j i j

av

u
u u t

t

  
   

 
  (13) 

, ,

t t t

i j i j

av

v
v v t

t

  
   

 
   (14) 

, ,

t t t

i j i j

av

T
T T t

t

  
   

 
  (15) 

Following these predictor-corrector steps we obtain the 

values of variables , ,u v and T at grid point (i,j) at time

t t .These steps are repeated at all grid points to obtain 

the values of variables at all grid points (i,j) at time t t . 

 

IV. NUMERICAL COMPUTATIONS 

In order to obtain the unknown variables, , ,u v  and T, 

numerical computations are carried out at different time 

intervals and displayed. While doing the computations, we 

have taken 0.1, 0.1,x y    0.0001t  . The 

computations of u-velocity, v-velocity, density and 

temperature are done by following the MacCormack 

technique which has been described under Section 3. The 

same algorithm has been implemented in MATLAB 

programming language. The unknown quantities are 

obtained at different node points and at different time 

intervals. The computed values of unknown quantities u-

velocity, v-velocity, pressure and temperature at different 

nodes and different time intervals are given under Tables 1 

to 4. 

The u-velocity for different times 0.005, 0.010, 0.015 and 

0.020, at different positions along x-axis and y-axis have 

been computed and given under Table 1.  

The numerical values of u-velocity of the fluid at different 

times 0.005, 0.010, 0.015 and 0.020 are illustrated in Figures 

4 to 7.The numerical values of u-velocity at different 

positions 0.3and 0.9 along x-axis but at different times 

0.005, 0.010, 0.015 and 0.020 are illustrated in Figures 8 to 

9. The numerical values of u-velocity at x=0.6 have 

negligible difference from values of u-velocity at x=0.3. 

      Fig 

4:u-velocity at t=0.005 
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Fig. 5: u-velocity at t=0.010 

The numerical values of v-velocity of the fluid at different 

times 0.005, 0.010, 0.015 and 0.020 are illustrated in Figures 

10 to 13. The numerical values of v-velocity at different 

positions 0.3, and 0.9 along y-axis but at different times 

0.005, 0.010, 0.015 

 

        Fig 6: u-velocity at t=0.015 

 

         Fig 7: u-velocity at t=0.020 

 

        Fig. 8: u-velocity at x=0.3  

and 0.020 are illustrated in Figures 14 to 15. The numerical 

values of v-velocity at y=0.6 have negligible difference from 

values of v-velocity at y=0.3 

 

       
 Fig 9 u-velocity at x=0.9  

  

           Fig 10: v-velocity at t=0.005  
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        Fig11: v-velocity at t=0.010 

The numerical solutions for the pressure at different times 

0.005, 0.010, 0.015 and 0.020 for values of x as 0.3, 0.6 and 

0.9 and for values of y as 0.3, 0.6 and 0.9 have been 

computed and given in Table 3. The pressure of the fluid at 

different times 0.005, 0.010, 0.015 and 0.020 is illustrated in 

Figures 16 to 19. 

 

  

Fig. 12: v-velocity at t=0.015  

 

Fig. 13: v-velocity at t=0.020 

 

Fig. 14:v-velocity at y=0.3 

  

    

Fig 15 : v-velocity at y=0.9   

 

Fig. 16: Pressure at t=0.005 
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 Fig. 17: Pressure at t=0.010 

 

        Fig. 18: Pressure at t=0.015 

 

 Fig. 19: Pressure at t=0.020 

The numerical solutions for the temperature a different times 

0.005, 0.010, 0.015 and 0.020 for values of x as 0.3, 0.6 and 

0.9 and for values of y as 

 

         Fig. 20: Temperature at t=0.005 

 Fig. 

21: Temperature at t=0.010.  

0.3, 0.6 and 0.9 have been computed and given in Table 4.  

             
Fig.22: Temperature at t=0.015 
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      Fig. 23: Temperature at t=0.020 

The pressure of the fluid at different times 0.0005, 0.010, 

0.015 and 0.020 is illustrated in Figures 20 to 23. 

V. RESULT AND DISCUSSION 

From the numerical values of u-velocity of the fluid at 

different times 0.005, 0.010, 0.015 and 0.020 given in Table 

1, it is observed that the u-velocity of the fluid along y axis 

increases steadily. But u-velocity at all time instants for 

different positions along x-axis (0.3, 0.6 and 0.9) for which 

the position of y-axis is 0.3, 0.6 and 0.9 decreases steadily. 

Same behavior can be seen in Fig. 4 to 7. The behavior of 

the u-velocity of the fluid at different times and different 

positions along x-axis has been illustrated from Fig. 8 and 

9.It has been observed that u-velocity for y=0.9 increases as 

time passes for x=0.3 and x=0.6. For y=0.9, u-velocity 

decreases as time passes for x=0.9 only. In other words, the 

absolute value of u-velocity increases as time passes for 

different positions on y-axis. 

The numerical values of v-velocity of the fluid at different 

times 0.005, 0.010, 0.015 and 0.020 are given in Table 2 and 

illustrated in Figures 10 to 13. It has been observed that for 

any fix value of y at a particular time, v-velocity increases 

for increase in value of x. This increase in v-velocity is more 

rapid as time progresses from 0.005 to 0.020. 

From the numerical solutions for the pressure at different 

times given in Table 3 and illustrated in Figures 16 to 19, it 

has been observed that for fixed time and fixed values of x, 

pressure increases uniformly with increase in value of y. The 

same behavior is seen for increase in values of x, keeping 

fixed time and fixed value of y. Also, for particular values of 

x and y, it has been observed that the numerical values of 

pressure increases with increase in time from 0.005 to 0.020. 

The numerical solutions for the temperature a different times 

0.005, 0.010, 0.015 and 0.020 are given in Table 4 and 

illustrated in Figures 20 to 23. It has been observed that for 

fixed time and fixed values of x, temperature increases 

uniformly with increase in value of y. The same behavior is 

seen for increase in values of x, keeping fixed time and fixed 

value of y. It has also been observe that for all values of time 

for y=0.9, the temperature at x=0.9 is almost threefold of the 

temperature at x=0.3 or at x=0.6. We have observed that for 

particular values of x and y, it the numerical values of 

temperature increases with increase in time from 0.005 to 

0.020. 

VI. CONCLUDING REMARKS 

The problem of an unsteady 2-D compressible inviscid flow 

with heat transfer with slip boundary conditions was 

investigated. Numerical solutions of governing equations are 

obtained using MacCormack technique. The numerical 

computations for u-velocity, v-velocity, pressure and 

temperature were conducted using a structured grid system. 

These numerical computations were performed using 

MATLAB programming language. Conclusions of this 

study are as follows: 

1. The u-velocity of the fluid along y axis increases steadily. 

But u-velocity at all time instants for different positions 

along x-axis (0.3, 0.6 and 0.9) for which the position of y-

axis is 0.3, 0.6 and 0.9 decreases steadily. Also, the absolute 

value of u-velocity increases as time passes for different 

positions on y-axis. 

2. For any fix value of y at a particular time, v-velocity 

increases for increase in value of x. This increase in v-

velocity is more rapid as time progresses. 

3. For fixed time, both keeping x-fixed and y-varies or 

keeping y-fixed and x-varies, the pressure increases 

uniformly. Also, for particular values of x and y, it has been 

observed that the numerical values of pressure increases 

with increase in time from 0.005 to 0.020. 

4. For fixed time and fixed values of x, temperature 

increases uniformly with increase in value of y. The same 

behavior is seen for increase in values of x, keeping fixed 

time and fixed value of y. Also, for particular values of x and 

y, it the numerical values of temperature increases with 

increase in time from 0.005 to 0.020. 
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Table 1: Numerical solutions for u-velocity 

 

 

 

 

 

 

Table 2: Numerical solutions for v-velocity 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3: Numerical solutions for Pressure 

 

 

 

 

 

 

Table 4: Numerical solutions for Temperature 

 

 

 

 

 

 

 

 

x y 

 

u(t=0.005) u(t=0.010) u(t=0.015) u(t=0.020) 

0.3 0.3 0 0 0 0 

0.6 0.3 0 0 0 0 

0.9 0.3 -0.002500014999 -0.004500049499 -0.006500103997 -0.00850017849 

0.3 0.6 0 0 0 0 

0.6 0.6 0 0 0 0 

0.9 0.6 -0.002500014999 -0.004500049499 -0.006500103996 -0.008500178489 

0.3 0.9 0.0000250001624 0.00009000106497 0.00019500334724 0.000340007648 

0.6 0.9 0.0000250001625 0.00009000106499 0.00019500334744 0.000340007649 

0.9 0.9 -0.002475128177 -0.004411013995 -0.006308389216 -0.008167971198 

x y 

 

v(t=0.006) v(t=0.01) v(t=0.014) v(t=0.018) 

0.3 0.3 0 0 0 0 

0.6 0.3 0 0 0 0 

0.9 0.3 0.0000250001624 0.0001 0.0002 0.0003 

0.3 0.6 0 0 0 0 

0.6 0.6 0 0 0 0 

0.9 0.6 0.0000250001625 0.0001 0.0002 0.0003 

0.3 0.9 -0.002500014999 -0.004500049499 -0.0065001039972 -0.008500178490 

0.6 0.9 -0.002500014999 -0.004500049499 -0.006500103997 -0.008500178489 

0.9 0.9 -0.002475128177 -0.004411013995 -0.0063083892168 -0.008167971198 

x y 

 

p(t=0.005) p(t=0.010) p(t=0.015) p(t=0.020) 

0.3 0.3 0 0 0 0 

0.6 0.3 0 0 0 0 

0.9 0.3 0.0002 0.0007 0.0016 0.0027 

0.3 0.6 0 0 0 0 

0.6 0.6 0.000100001019998 0 0 0 

0.9 0.6 0.0002 0.0007 0.0016 0.0027 

0.3 0.9 0.000100001019997 0.00036000659985 0.0007800206426 0.0013600470493 

0.6 0.9 0.000100001019984 0.00036000659988 0.0007800206429 0.0014000470509 

0.9 0.9 0.0002985 0.0011 0.0023 0.0040 

x y T(t=0.005) T(t=0.010) T(t=0.015) T(t=0.020) 

0.3 0.3 0 0 0 0 

0.6 0.3 0 0 0 0 

0.9 0.3 0.00005 0.00018 0.00039 0.00068 

0.3 0.6 0 0 0 0 

0.6 0.6 0 0 0 0 

0.9 0.6 0.00005 0.00018 0.00039 0.00068 

0.3 0.9 0.00002500019 0.00009000124498908 0.0001950038933965 0.000340008873507 

0.6 0.9 0.00002500019 0.00009000124499134 0.0001950038934151 0.000340008873594 

0.9 0.9 0.00007463 0.0002669 0.0005744 0.0009949 
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