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Abstract-In this paper, a new model entitled as “Mixture of Exponential and Weighted Exponential Distribution (MEWED): 

Properties and Applications” is obtained. Some statistical properties of the new model are unfolded. The method of maximum 

likelihood is used to estimate the parameters of the proposed model. The usefulness of the proposed model is illustrated by 

using real life data sets. 
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I. INTRODUCTION 

 

Mixture distributions are used to generate the new models which are more flexible in modeling a variety of data sets. Pearson 

[1] developed the idea of mixture distributions by considering two normal distributions and estimates its parameters. Several 

other researchers have studied in detail the properties and characteristics of mixture distributions, such as Jiang et al. [2] 

proposed the Inverse Weibull mixture model while Adnan et al. [3] studied Laplace Mixture distribution. Kamaruzzaman et al. 

[4] fit the two component mixture normal distribution. Mendenhall and Hader [5] estimated the parameters of mixed 

exponentially distributed failure time distributions. Marco et al. [6] obtained the estimates of mixture Pareto distribution using 

MLE technique. Sankaran and Nair [7] studied the finite mixture of Pareto distribution using Bayesian approach. Recently, 

Satsayamon Suksaengrakcharoen and Winai Bodhisuwan [8] studied the mixture Generalized Gamma distribution. Roy et al. 

[9-11] proposed and studied various mixtures of various standard distributions. 

     

II. MATERIALS AND METHODS 

 

The pdf and cdf of exponential distribution is given as 

 0,0;)(1     xexf x
.
                

(1) 

 
xexF 1)(1 .

                
 

Let 0X  be a r.v. having pdf )(xf
 
and 0)( xw  be the weight function. Then the weighted density function )(xfw  is 

given by: 
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(2) 

By choosing 
xxw )(  and using (3), we get the pdf of weighted exponential distribution (WED) given as: 
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While the corresponding cdf is given as: 
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A mixture distribution is obtained by mixing two or more distributions. Since, in this article, we consider the mixture of two 

distributions. Thus, the pdf of mixture distribution is given by: )()1()()( 21 xfpxpfxf 
    

    
 

Where p
 
is the mixing parameter, )(1 xf is the pdf of exponential distribution and )(2 xf  is the pdf of WED.  

The pdf of MEWED is obtained by mixing (1) and (3) given as: 
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Where 0
 
is the rate parameter and 0  is the weight parameter

 
of the distribution. 

The cumulative distribution function corresponding to (4) is given as 

)1(

),1(
)1()1()(




 



 x
pepxF x

             

 

 
 

III. RELATIONSHIP WITH OTHER DISTRIBUTIONS 

 

i. If 0p  in the expression (4), it reduces to the WED with pdf given as: 
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)(

1








  xex
xf . 

ii. If 1and0  p  in the expression (4), we get length biased exponential distribution (LBED) with pdf given below: 

 
xxexf   2)( . 

iii. If 2and0  p  in the expression (4), it reduces to the ABED with pdf as follows: .
2

)(
23 xex

xf
 

  

iv. If 0and1  p  in the expression (4), it reduces to the exponential distribution (ED) with the following pdf: 

xexf  )( . 

v. If 1and1  p  in the expression (4), it reduces to the Standard exponential distribution (SED) with pdf as follows: 

xexf )( . 
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IV. RELIABILITY ANALYSIS 

 

This section is devoted to obtain the expression for reliability function, hazard function, reverse hazard function, cumulative 

hazard function and odds function.  

i. The expression for reliability function of MEWED is given as: 
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ii. The expression for hazard function of MEWED is given by:  
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iii. The expression for reverse hazard function is given by: 
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iv. The expression for cumulative hazard function is given by: 
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v. The expression for odds function is given by:  
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V.  STATISTICAL PROPERTIES 

  

This section is devoted to study some statistical properties of the MEWED.  

5.1. Moments 

The 
thr

 

moment about origin of a random variable X having MEWED is given by: 
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The mean and variance of MEWED is obtained by using (5) given as 
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The co-efficient of variation of MEWED is given by 
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5.2. Moment Generating Function (MGF) 

The mgf of a random variable X denoted by )(tM x  is given by: 
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After solving the above integral, we get 
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5.3. Characteristic Function 

The characteristic function denoted by  )(tx  is given by: 
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VI. INFORMATION MEASURES 

 

This section is devoted to obtain the expression for Renyi entropy and beta entropy.   

6.1. The Renyi entropy [12] of order   is given as 
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 6.2. The beta

 
or q-entropy introduced by Havrda and Charvat [13] as one parameter generalization of Shannon entropy (1948) 

is given by:  
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Where .1and0  qq  
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VII. ORDER STATISTICS 

 

Suppose n samples are taken from the mixture of exponential and weighted exponential distribution and 

)()3()2()1( ,...,,, nXXXX  be the corresponding order statistics. Then the pdf of 
thr order statistics is given as : 
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By using (8), the pdf of first and nth order statistics are given as: 
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VIII. CHARACTERIZATION OF MEWED 

 

Theorem 1: Suppose nXXX ,...,, 21  are n  positive iid random samples taken from the MEWED with sample mean nx and 
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Hence the result.  

 

IX. MAXIMUM LIKELIHOOD ESTIMATION 

 

Suppose nxxx ,...,, 21  be the n sample observations taken from the MEWED, then the log-likelihood function can be 

expressed as 
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The estimates of the unknown parameters are obtained by differentiating partially (13) with respective parameters and equating 

to zero, we get 
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The above system of equations is non-linear and can’t be solved analytically. In order to overcome this hindrance, Newton-

Raphson procedure has been implemented for obtaining the estimate of the parameters.  

X. REAL LIFE APPLICATIONS 

 

In order to check the flexibility of the proposed model, two data sets have been analysed and compared with its sub-models by 

using R software.  
 

The data set I used by Tahir et al. [14] consists of the failure times of 84 aircraft wind shields. The second data set is previously 

used by Ghitnay et al. [15] which comprises the waiting times (in minutes) of 100 bank costumers before service. 

By using the above data sets, we have calculated the estimates of the unknown parameters. We have also obtained -2log-

likelihood, AIC and BIC to compare proposed model with its sub-models and the results are shown in the tables below: 

     

 Table 1: MLEs of the model parameters using data set I, the resulting SEs in braces

 

and criteria for model comparison:

 

 

 

Model 

 

Estimate, standard error in parentheses
  

 

-2logl 

 

 

AIC 

 

 

BIC 
 

̂  

 

̂  

 

̂  
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Table 2: MLEs of the model parameters using data set II, the resulting SEs in braces

 

and criteria for model comparison: 

 

 

 

MEWED 

0.04986912 

(0.02674411) 

2.23821798 

(0.37053845) 

4.98821077 

(0.96720316) 
255.6965 261.6965 268.989 

 

WED 
- 

1.375701 

(0.2169170) 

2.525402 

(0.5172271) 
276.7907 280.7907 285.6523 

 

ED 
- 

0.3902253 

( 0.0423256) 
- 329.9754 331.9754 334.4062 

 

ABED 
- 

1.170675 

(0.07331048) 
- 277.9556 280.9556 282.3864 

 

Model 

 

Estimate, standard error in parentheses
  

 

-2logl 

 

 

AIC 

 

 

BIC 
 

̂  

 

̂  

 

̂  

MEWED 
0.0194790 

(0.005186) 

0.2306874 

(0.0738858) 

 

1.3164784 

(1.0455389) 

 

635.7819 641.7819 649.5974 

WED - 
0.2813555 

(0.04125455) 

 

1.7790716 

(0.3718379) 

 

641.2448 645.2448 650.4551 

ED - 
0.1012468 

(0.01012369) 
- 658.0418 660.0418 662.647 

ABED - 
0.3037361 

(0.01753602) 
- 645.1408 647.1408 649.746 
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XI. CONCLUSION 

 

We introduce a new three-parameter probability distribution known as “Mixture of Exponential and Weighted Exponential 

Distribution: Properties and Applications” and study its various properties. The Renyi and q-entropies are also derived. We 

estimate the parameters of the new model using maximum likelihood method of estimation. To check the superiority of the 

proposed mixture model over some other models, two real life data sets are used and the results are obtained through R-

software. An application of the proposed model to real data sets shows that the fit of the MEWED is superior to the fits using 

WED, ABED and ED.   
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