# A Comprehensive study of Various Queue Characteristics using Tri-Cum Biserial Queuing Model 

Sachin Kumar Agrawal ${ }^{1 *}$, B.K. Singh ${ }^{2}$<br>${ }^{1 *}$ Department of Mathematics, IFTM University, Moradabad, India<br>${ }^{2}$ Department of Mathematics, IFTM University, Moradabad, India<br>*Corresponding Author: sachin269mit@gmail.com

## Available online at: www.isroset.org

Received 16/Mar/2018, Revised 25/Mar/2018, Accepted 10/Apr/2018, Online 30/Apr/2018


#### Abstract

In the present article, a queuing model having three servers connected in parallel in a tri-cum biserial way has been presented. Statistical tools, generating function technique and the law of calculus have been implemented to compute the various queuing characteristics such as Queue length, variance, average waiting time and probabilities. The arrival and service pattern is supposed to follow the Poisson law. Generic mathematical formulation of queuing model has been presented to ensure the implementation of the presented model in various problems occurred in real-time domain. The presented model is easy to understand and also deliver an important tool for the decision makers dealing with multi-tasking problems.


Keywords- Queue length, variance, average waiting time, probabilities.

## I. INTRODUCTION

Operational research exemplifies a wide range of techniques that can improve the way we plan and organize the complex problems encountered in the daily life. Implementation of these techniques (i.e. Queuing theory) facilitates the person to become a better decision-maker. Queuing theory deals with the study of queues which occur in real-world situations and arise so long as arrival rate of any system is faster than the system can manage [1]. Queuing theory is applicable to any situation in daily life, for example, vehicle arriving at the petrol pump, a patient arriving at a doctor's clinic, customers arriving at the bank etc.

Numerous studies have been carried out in the past which dealt with the investigations of queuing model characteristics. Maggu [2] investigated the various attributes of phase type service queues with two servers in bi-series to study the queue model. Maggu \& Das [3] presented an equivalent job-block theorem to deal the queuing problems in the production line. Singh, Man [4] examined the Steady-state behavior of serial queuing processes with impatient customers. Gupta et al [5] emphasized on the study of bi-serial and parallel channels associated with a common server to study the queuing model. Agrawal \& Singh [7] investigated the various queue characteristics in which they considered tri-cum biserial queue model connected with a common server.

## II. PRACTICAL ENACTMENT OF THE MODEL

Several situations can arise in which queuing theory will be helpful to take the best decision. For example, in a mall, several department/sections are there such as food corner, drinks and ice-cream corner and multiplex. Every department has it's own billing facility. The customers taking food may also have some ice-cream or drinks. Further, he/she may proceed to watch a movie. It is also possible that the customer entered in the mall to watch only movie or to have some food only. These activities may occur one by one or any two of them or even only one may also be possible. In such cases, the present queuing model can be effectively implemented to take the decision for hassle-free trip.

## III. MATHEMATICAL DESCRIPTION OF THE MODEL

In the present work, a queue model consist of three servers $\left(\mathrm{Sr}_{\mathrm{a}}, \mathrm{Sr}_{\mathrm{b}}\right.$ and $\left.\mathrm{Sr}_{\mathrm{c}}\right)$ are connected in parallel in tri cum biserial way. Let $Q_{a}, Q_{b}$ and $Q_{c}$ are the queue lengths associated with servers $\operatorname{Sr}_{\mathrm{a}}, \mathrm{Sr}_{\mathrm{b}}$ and $\mathrm{Sr}_{\mathrm{c}}$ respectively. The number of customers $\left(n_{a}\right)$ coming at mean arrival rate $\lambda_{a}$, after completion of service at server $\mathrm{Sr}_{\mathrm{a}}$, can avail the facility at server $\mathrm{Sr}_{\mathrm{b}}$ or $\mathrm{Sr}_{\mathrm{c}}$ (either of two or both) with the probabilities $p_{a b}, p_{a c}$ and $p_{a}$ such that $p_{a b}+p_{a c}+p_{a}=1$. The same criterion will be applicable
to those customers who entered in servers $\mathrm{Sr}_{\mathrm{b}}$ and $\mathrm{Sr}_{\mathrm{c}}$. The pictorial representation of the considered problem is demonstrated in Fig 1.


$$
\begin{aligned}
& p_{a b}+p_{a c}+p_{a}=1 \\
& p_{b a}+p_{b c}+p_{b}=1 \\
& p_{c a}+p_{c b}+p_{c}=1
\end{aligned}
$$

Fig 1: Tri-cum Biserial queuing network
Differential difference equation in steady (transient) state of the model is

$$
\begin{align*}
\left(\lambda_{a}+\lambda_{b}+\lambda_{c}+\mu_{a}+\mu_{b}+\mu_{c}\right) P_{n_{a}, n_{b}, n_{c}}= & \lambda_{a} P_{n_{a}-1, n_{b}, n_{c}}+\lambda_{b} P_{n_{a}, n_{b}-1, n_{c}}+\lambda_{c} P_{n_{a}, n_{b}, n_{c}-1} \\
& +\mu_{a} p_{a b} P_{n_{a}+1, n_{b}-1, n_{c}}+\mu_{a} p_{a c} P_{n_{a}+1, n_{b}, n_{c}-1}+\mu_{a} p_{a} P_{n_{a}+1, n_{b}, n_{c}}  \tag{1}\\
& +\mu_{b} p_{b a} P_{n_{a}-1, n_{b}+1, n_{c}}+\mu_{b} p_{b c} P_{n_{a}, n_{b}+1, n_{c}-1}+\mu_{b} p_{b} P_{n_{a}, n_{b}+1, n_{c}} \\
& +\mu_{c} p_{c b} P_{n_{a}, n_{b}-1, n_{c}+1}+\mu_{c} p_{c a} P_{n_{a}-1, n_{b}, n_{c}+1}+\mu_{c} p_{c} P_{n_{a}, n_{b}, n_{c}+1}
\end{align*}
$$

Considering $n_{a}=0$; the Eq (1) can be given as

$$
\begin{align*}
\left(\lambda_{a}+\lambda_{b}+\lambda_{c}+\mu_{b}+\mu_{c}\right) P_{0, n_{b}, n_{c}}= & \lambda_{b} P_{0, n_{b}-1, n_{c}}+\lambda_{c} P_{0, n_{b}, n_{c}-1} \\
& +\mu_{a} p_{a b} P_{1, n_{b}-1, n_{c}}+\mu_{a} p_{a c} P_{1, n_{b}, n_{c}-1}+\mu_{a} p_{a} P_{1, n_{b}, n_{c}} \\
& +\mu_{b} p_{b c} P_{0, n_{b}+1, n_{c}-1}+\mu_{b} p_{b} P_{0, n_{b}+1, n_{c}}  \tag{2}\\
& +\mu_{c} p_{c b} P_{0, n_{b}-1, n_{c}+1}+\mu_{c} p_{c} P_{0, n_{b}, n_{c}+1}
\end{align*}
$$

Considering $n_{b}=0$; the Eq (1) can be given as

$$
\begin{align*}
\left(\lambda_{a}+\lambda_{b}+\lambda_{c}+\mu_{a}+\mu_{c}\right) P_{n_{a}, 0, n_{c}}= & \lambda_{a} P_{n_{a}-1,0, n_{c}}+\lambda_{c} P_{n_{a}, 0, n_{c}-1} \\
& +\mu_{a} p_{a c} P_{n_{a}+1,0, n_{c}-1}+\mu_{a} p_{a} P_{n_{a}+1,0, n_{c}} \\
& +\mu_{b} p_{b a} P_{n_{a}-1,1, n_{c}}+\mu_{b} p_{b c} P_{n_{a}, 1, n_{c}-1}+\mu_{b} p_{b} P_{n_{a}, 1, n_{c}}  \tag{3}\\
& +\mu_{c} p_{c a} P_{n_{a}-1,0, n_{c}+1}+\mu_{c} p_{c} P_{n_{a}, 0, n_{c}+1}
\end{align*}
$$

Considering $n_{c}=0$; the Eq (1) can be given as

$$
\begin{align*}
\left(\lambda_{a}+\lambda_{b}+\lambda_{c}+\mu_{a}+\mu_{b}\right) P_{n_{a}, n_{b}, 0}= & \lambda_{a} P_{n_{a}-1, n_{b}, 0}+\lambda_{b} P_{n_{a}, n_{b}-1,0} \\
& +\mu_{a} p_{a b} P_{n_{a}+1, n_{b}-1,0}+\mu_{a} p_{a} P_{n_{a}+1, n_{b}, 0}  \tag{4}\\
& +\mu_{b} p_{b a} P_{n_{a}-1, n_{b}+1,0}+\mu_{b} p_{b} P_{n_{a}, n_{b}+1,0} \\
& +\mu_{c} p_{c b} P_{n_{a}, n_{b}-1,1}+\mu_{c} p_{c a} P_{n_{a}-1, n_{b}, 1}+\mu_{c} p_{c} P_{n_{a}, n_{b}, 1}
\end{align*}
$$

Considering $n_{a}=0 \& n_{b}=0$; the Eq (1) can be given as

$$
\begin{align*}
\left(\lambda_{a}+\lambda_{b}+\lambda_{c}+\mu_{c}\right) P_{0,0, n_{c}}= & \lambda_{c} P_{0,0, n_{c}-1}+\mu_{a} p_{a c} P_{1,0, n_{c}-1}+\mu_{a} p_{a} P_{1,0, n_{c}} \\
& +\mu_{b} p_{b c} P_{0,1, n_{c}-1}+\mu_{b} p_{b} P_{0,1, n_{c}}  \tag{5}\\
& +\mu_{c} p_{c} P_{0,0, n_{c}+1}
\end{align*}
$$

Considering $n_{a}=0 \& n_{c}=0$; the Eq (1) can be given as

$$
\begin{align*}
\left(\lambda_{a}+\lambda_{b}+\lambda_{c}+\mu_{b}\right) P_{0, n_{b}, 0}= & \lambda_{b} P_{0, n_{b}-1,0}+\mu_{a} p_{a b} P_{1, n_{b}-1,0}+\mu_{a} p_{a} P_{1, n_{b}, 0} \\
& +\mu_{b} p_{b} P_{0, n_{b}+1,0}  \tag{6}\\
& +\mu_{c} p_{c b} P_{0, n_{b}-1,1}+\mu_{c} p_{c} P_{0, n_{b}, 1}
\end{align*}
$$

Considering $n_{b}=0 \& n_{c}=0$; the Eq (1) can be given as

$$
\begin{align*}
\left(\lambda_{a}+\lambda_{b}+\lambda_{c}+\mu_{a}\right) P_{n_{a}, 0,0}= & \lambda_{a} P_{n_{a}-1,0,0}+\mu_{a} p_{a} P_{n_{a}+1,0,0} \\
& +\mu_{b} p_{b a} P_{n_{a}-1,1,0, n_{d}}+\mu_{b} p_{b} P_{n_{a}, 1,0}  \tag{7}\\
& +\mu_{c} p_{c a} P_{n_{a}-1,0,1}+\mu_{c} p_{c} P_{n_{a}, 0,1}
\end{align*}
$$

Considering $n_{a}=0, n_{b}=0 \& n_{c}=0$; the Eq (1) can be given as
$\left(\lambda_{a}+\lambda_{b}+\lambda_{c}\right) P_{0,0,0}=\mu_{a} p_{a} P_{1,0,0}+\mu_{b} p_{b} P_{0,1,0}+\mu_{c} p_{c} P_{0,0,1}$
using preliminary condition

$$
P_{n_{a}, n_{b}, n_{c}}(0)=\left\{\begin{array}{cc}
1, & \text { for } n_{a}, n_{b}, n_{c} \neq 0  \tag{9}\\
0, & \text { else }
\end{array}\right\}
$$

## IV: GOVERNING EQUATIONS AND SOLUTION METHODOLOGY

To solve the governing Equations, Generating function is assumed as
$F\left(X_{1}, X_{2}, X_{3}\right)=\sum_{n_{a}=0}^{\infty} \sum_{n_{b}=0}^{\infty} \sum_{n_{c}=0}^{\infty} X_{1}^{n_{a}} X_{2}^{n_{b}} X_{3}^{n_{c}}$
such that $\left|X_{1}\right|=\left|X_{2}\right|=\left|X_{3}\right|=1$
Also, taking partial generating function as
$F_{n_{b}, n_{c}}\left(X_{1}\right)=\sum_{n_{a}=0}^{\infty} P_{n_{a}, n_{b}, n_{c}} X_{1}^{n_{a}}$

$$
\begin{align*}
& F_{n_{c}}\left(X_{1}, X_{2}\right)=\sum_{n_{b}=0}^{\infty} F_{n_{b}, n_{c}}\left(X_{1}\right) \cdot X_{2}^{n_{b}}  \tag{12}\\
& F\left(X_{1}, X_{2}, X_{3}\right)=\sum_{n_{c}=0}^{\infty} F_{n_{c}}\left(X_{1}, X_{2}\right) \cdot X_{3}^{n_{c}} \tag{13}
\end{align*}
$$

On solving equations from (1) to (8) with the assistance of (10), (11), (12),(13), we get [2]

Multiplying (1) by $X_{1}^{n_{a}}$ and summing over $n_{a}$ from 0 to $\infty$ using (2) with the assistance of (11), we get

$$
\begin{align*}
\left(\lambda_{a}+\lambda_{b}+\lambda_{c}+\mu_{a}+\mu_{b}+\mu_{c}\right) & F_{n_{b}, n_{c}}\left(X_{1}\right)-\mu_{a} P_{0, n_{b}, n_{c}}=\lambda_{a} X_{1} F_{n_{b}, n_{c}}\left(X_{1}\right) \\
& +\lambda_{b} F_{n_{b}-1, n_{c}}\left(X_{1}\right)+\lambda_{c} F_{n_{b}, n_{c}-1}\left(X_{1}\right)+\frac{\mu_{a} p_{a b}}{X_{1}}\left[F_{n_{b}-1, n_{c}}\left(X_{1}\right)-P_{0, n_{b}-1, n_{c}}\right] \\
& +\frac{\mu_{a} p_{a c}}{X_{1}}\left[F_{n_{b}, n_{c}-1}\left(X_{1}\right)-P_{0, n_{b}, n_{c}-1}\right]+\frac{\mu_{a} p_{a}}{X_{1}}\left[F_{n_{b}, n_{c}}\left(X_{1}\right)-P_{0, n_{b}, n_{c}}\right]  \tag{14}\\
& +\mu_{b} p_{b a} X_{1} F_{n_{b}+1, n_{c}}\left(X_{1}\right)+\mu_{b} p_{b c} F_{n_{b}+1, n_{c}-1}\left(X_{1}\right)+\mu_{b} p_{b} F_{n_{b}+1, n_{c}}\left(X_{1}\right) \\
& +\mu_{c} p_{c a} X_{1} F_{n_{b}, n_{c}+1}\left(X_{1}\right)+\mu_{c} p_{c b} F_{n_{b}-1, n_{c}+1}\left(X_{1}\right)+\mu_{c} p_{c} F_{n_{b}, n_{c}+1}\left(X_{1}\right)
\end{align*}
$$

Multiplying (3) by $X_{1}{ }^{n_{a}}$ and summing over $n_{a}$ from 0 to $\infty$ using (5) with the assistance of (11), we get

$$
\begin{align*}
\left(\lambda_{a}+\lambda_{b}+\lambda_{c}+\mu_{a}+\mu_{b}+\mu_{c}\right) F_{0, n_{c}}( & \left.X_{1}\right)-\mu_{a} P_{0,0, n_{c}}=\lambda_{a} X_{1} F_{0, n_{c}}\left(X_{1}\right)+\lambda_{c} F_{0, n_{c}-1}\left(X_{1}\right) \\
& +\frac{\mu_{a} p_{a c}}{X_{1}}\left[F_{0, n_{c}-1}\left(X_{1}\right)-P_{0,0, n_{c}-1}\right]+\frac{\mu_{a} p_{a}}{X_{1}}\left[F_{0, n_{c}}\left(X_{1}\right)-P_{0,0, n_{c}}\right]  \tag{15}\\
& +\mu_{b} p_{b a} X_{1} F_{1, n_{c}}\left(X_{1}\right)+\mu_{b} p_{b c} F_{1, n_{c}-1}\left(X_{1}\right)+\mu_{b} p_{b} F_{1, n_{c}}\left(X_{1}\right) \\
& +\mu_{c} p_{c a} X_{1} F_{0, n_{c}+1}\left(X_{1}\right)+\mu_{c} p_{c} F_{0, n_{c}+1}\left(X_{1}\right)
\end{align*}
$$

Multiplying (4) by $X_{1}^{n_{a}}$ and summing over $n_{a}$ from 0 to $\infty$ using (6) with the assistance of (11), we get

$$
\begin{align*}
\left(\lambda_{a}+\lambda_{b}+\lambda_{c}+\mu_{a}+\mu_{b}+\mu_{c}\right) F_{n_{b}, 0}( & \left.X_{1}\right)-\mu_{a} P_{0, n_{b}, 0}=\lambda_{a} X_{1} F_{n_{b}, 0}\left(X_{1}\right)+\lambda_{b} F_{n_{b}-1,0}\left(X_{1}\right) \\
& +\frac{\mu_{a} p_{a b}}{X_{1}}\left[F_{n_{b}-1,0}\left(X_{1}\right)-P_{0, n_{b}-1,0}\right]+\frac{\mu_{a} p_{a}}{X_{1}}\left[F_{n_{b}, 0}\left(X_{1}\right)-P_{0, n_{b}, 0}\right]  \tag{16}\\
& +\mu_{b} p_{b a} X_{1} F_{n_{b}+1,0}\left(X_{1}\right)+\mu_{b} p_{b} F_{n_{b}+1,0}\left(X_{1}\right) \\
& +\mu_{c} p_{c a} X_{1} F_{n_{b}, 1}\left(X_{1}\right)+\mu_{c} p_{c b} F_{n_{b}-1,1}\left(X_{1}\right)+\mu_{c} p_{c} F_{n_{b}, 1}\left(X_{1}\right)
\end{align*}
$$

Multiplying (7) by $X_{1}{ }^{n_{a}}$ and summing over $n_{a}$ from 0 to $\infty$ using (8) with the assistance of (11), we get $\left(\lambda_{a}+\lambda_{b}+\lambda_{c}+\mu_{a}+\mu_{b}+\mu_{c}\right) F_{0,0}\left(X_{1}\right)-\mu_{a} P_{0,0,0}=\lambda_{a} X_{1} F_{0,0}\left(X_{1}\right)$

$$
\begin{align*}
& +\frac{\mu_{a} p_{a}}{X_{1}}\left[F_{0,0}\left(X_{1}\right)-P_{0,0,0}\right]  \tag{17}\\
& +\mu_{b} p_{b a} X_{1} F_{1,0}\left(X_{1}\right)+\mu_{b} p_{b} F_{1,0}\left(X_{1}\right) \\
& +\mu_{c} p_{c a} X_{1} F_{0,1}\left(X_{1}\right)+\mu_{c} p_{c} F_{0,1}\left(X_{1}\right)
\end{align*}
$$

Multiplying (14) by $X_{2}^{n_{b}}$ and summing over $n_{b}$ from 0 to $\infty$ using (15) with the assistance of (12), we get

$$
\begin{align*}
\left(\lambda_{a}+\lambda_{b}+\lambda_{c}+\mu_{a}+\right. & \left.\mu_{b}+\mu_{c}\right) F_{n_{c}}\left(X_{1}, X_{2}\right)-\mu_{b} F_{0, n_{c}}\left(X_{1}\right)-\mu_{a} F_{n_{c}}\left(X_{2}\right)=\lambda_{a} X_{1} F_{n_{c}}\left(X_{1}, X_{2}\right) \\
& +\lambda_{b} X_{2} F_{n_{c}}\left(X_{1}, X_{2}\right)+\lambda_{c} F_{n_{c}-1}\left(X_{1}, X_{2}\right) \\
& +\frac{\mu_{a} p_{a b}}{X_{1}} X_{2}\left[F_{n_{c}}\left(X_{1}, X_{2}\right)-F_{n_{c}}\left(X_{2}\right)\right]+\frac{\mu_{a} p_{a c}}{X_{1}}\left[F_{n_{c}-1}\left(X_{1}, X_{2}\right)-F_{n_{c}-1}\left(X_{2}\right)\right] \\
& +\frac{\mu_{a} p_{a}}{X_{1}}\left[F_{n_{c}}\left(X_{1}, X_{2}\right)-F_{n_{c}}\left(X_{2}\right)\right]+\frac{\mu_{b} p_{b a}}{X_{2}} X_{1}\left[F_{n_{c}}\left(X_{1}, X_{2}\right)-F_{0, n_{c}}\left(X_{1}\right)\right]  \tag{18}\\
& +\frac{\mu_{b} p_{b c}}{X_{2}}\left[F_{n_{c}-1}\left(X_{1}, X_{2}\right)-F_{0, n_{c}-1}\left(X_{1}\right)\right]+\frac{\mu_{b} p_{b}}{X_{2}}\left[F_{n_{c}}\left(X_{1}, X_{2}\right)-F_{0, n_{c}}\left(X_{1}\right)\right] \\
& +\mu_{c} p_{c a} X_{1} F_{n_{c}+1}\left(X_{1}, X_{2}\right)+\mu_{c} p_{c b} X_{2} F_{n_{c}+1}\left(X_{1}, X_{2}\right)+\mu_{c} p_{c} F_{n_{c}+1}\left(X_{1}, X_{2}\right)
\end{align*}
$$

Multiplying (16) by $X_{2}^{n_{b}}$ and summing over $n_{b}$ from 0 to $\infty$ using (17) with the assistance of (12), we get

$$
\begin{align*}
\left(\lambda_{a}+\lambda_{b}+\lambda_{c}+\mu_{a}+\mu_{b}+\right. & \left.\mu_{c}\right) F_{0}\left(X_{1}, X_{2}\right)-\mu_{b} F_{0,0}\left(X_{1}\right)-\mu_{a} F_{0}\left(X_{2}\right)=\lambda_{a} X_{1} F_{0}\left(X_{1}, X_{2}\right) \\
& +\lambda_{b} X_{2} F_{0}\left(X_{1}, X_{2}\right)+\frac{\mu_{a} p_{a b}}{X_{1}} X_{2}\left[F_{0}\left(X_{1}, X_{2}\right)-F_{0}\left(X_{2}\right)\right] \\
& +\frac{\mu_{a} p_{a}}{X_{1}}\left[F_{0}\left(X_{1}, X_{2}\right)-F_{0}\left(X_{2}\right)\right]+\frac{\mu_{b} p_{b a}}{X_{2}} X_{1}\left[F_{0}\left(X_{1}, X_{2}\right)-F_{0,0}\left(X_{1}\right)\right]  \tag{19}\\
& +\frac{\mu_{b} p_{b}}{X_{2}}\left[F_{0}\left(X_{1}, X_{2}\right)-F_{0,0}\left(X_{1}\right)\right]+\mu_{c} p_{c a} X_{1} F_{1}\left(X_{1}, X_{2}\right) \\
& +\mu_{c} p_{c b} X_{2} F_{1}\left(X_{1}, X_{2}\right)+\mu_{c} p_{c} F_{1}\left(X_{1}, X_{2}\right)
\end{align*}
$$

Multiplying (18) by $X_{3}{ }^{n_{c}}$ and summing over $n_{c}$ from 0 to $\infty$ using (19) with the assistance of (13), we get

$$
\begin{align*}
\left(\lambda_{a}+\lambda_{b}+\right. & \left.\lambda_{c}+\mu_{a}+\mu_{b}+\mu_{c}\right) F\left(X_{1}, X_{2}, X_{3}\right)-\mu_{c} F\left(X_{1}, X_{2}\right)-\mu_{b} F\left(X_{1}, X_{3}\right)-\mu_{a} F\left(X_{2}, X_{3}\right)= \\
& \lambda_{a} X_{1} F\left(X_{1}, X_{2}, X_{3}\right)+\lambda_{b} X_{2} F\left(X_{1}, X_{2}, X_{3}\right)+\lambda_{c} X_{3} F\left(X_{1}, X_{2}, X_{3}\right) \\
& +\frac{\mu_{a} p_{a b}}{X_{1}} X_{2}\left[F\left(X_{1}, X_{2}, X_{3}\right)-F\left(X_{2}, X_{3}\right)\right]+\frac{\mu_{a} p_{a c}}{X_{1}} X_{3}\left[F\left(X_{1}, X_{2}, X_{3}\right)-F\left(X_{2}, X_{3}\right)\right] \\
& +\frac{\mu_{a} p_{a}}{X_{1}}\left[F\left(X_{1}, X_{2}, X_{3}\right)-F\left(X_{2}, X_{3}\right)\right]+\frac{\mu_{b} p_{b a}}{X_{2}} X_{1}\left[F\left(X_{1}, X_{2}, X_{3}\right)-F\left(X_{1}, X_{3}\right)\right]  \tag{20}\\
& +\frac{\mu_{b} p_{b c}}{X_{2}} X_{3}\left[F\left(X_{1}, X_{2}, X_{3}\right)-F\left(X_{1}, X_{3}\right)\right]+\frac{\mu_{b} p_{b}}{X_{2}}\left[F\left(X_{1}, X_{2}, X_{3}\right)-F\left(X_{1}, X_{3}\right)\right] \\
& +\frac{\mu_{c} p_{c a}}{X_{3}} X_{1}\left[F\left(X_{1}, X_{2}, X_{3}\right)-F\left(X_{1}, X_{2}\right)\right]+\frac{\mu_{c} p_{c b}}{X_{3}} X_{2}\left[F\left(X_{1}, X_{2}, X_{3}\right)-F\left(X_{1}, X_{2}\right)\right] \\
& +\frac{\mu_{c} p_{c}}{X_{3}}\left[F\left(X_{1}, X_{2}, X_{3}\right)-F\left(X_{1}, X_{2}\right)\right]
\end{align*}
$$

on simplify (20), we get

$$
\begin{gathered}
\left.\mu_{a}\left\{1-\frac{p_{a b} X_{2}}{X_{1}}-\frac{p_{a c} X_{3}}{X_{1}}-\frac{p_{a}}{X_{1}}\right\} F\left(X_{2}, X_{3}\right)+\mu_{b}, X_{3}\right)=\frac{\left.+1-\frac{p_{b a} X_{1}}{X_{2}}-\frac{p_{b c} X_{3}}{X_{2}}-\frac{p_{b}}{X_{2}}\right\} F\left(X_{1}, X_{3}\right)}{} \begin{array}{c}
\mu_{a}\left(1-\frac{p_{c a} X_{1}}{X_{3}}-\frac{p_{c b} X_{2}}{X_{3}}-\frac{p_{c}}{X_{3}}\right\} F\left(X_{1}, X_{2}\right) \\
+\mu_{b}\left\{1-\frac{p_{b a} X_{1}}{X_{2}}-\frac{p_{b c} X_{3}}{X_{2}}-\frac{p_{b}}{X_{2}}\right\}+\mu_{c}\left\{1-\frac{\left.X_{3}\right)+\mu_{a}\left\{1-\frac{p_{a b} X_{2}}{X_{1}}-\frac{p_{a c} X_{3}}{X_{1}}-\frac{p_{a}}{X_{1}}\right\}}{X_{3}}-\frac{p_{c b} X_{2}}{X_{3}}-\frac{p_{c}}{X_{3}}\right\}
\end{array}
\end{gathered}
$$

Assuming $F\left(X_{2}, X_{3}\right)=F_{a}, \quad F\left(X_{1}, X_{3}\right)=F_{b}, \quad F\left(X_{1}, X_{2}\right)=F_{c}$

$$
\begin{align*}
& \mu_{a}\left\{1-\frac{p_{a b} X_{2}}{X_{1}}-\frac{p_{a c} X_{3}}{X_{1}}-\frac{p_{a}}{X_{1}}\right\} F_{a}+\mu_{b}\left\{1-\frac{p_{b a} X_{1}}{X_{2}}-\frac{p_{b c} X_{3}}{X_{2}}-\frac{p_{b}}{X_{2}}\right\} F_{b} \\
F\left(X_{1}, X_{2}, X_{3}\right)= & +\mu_{c}\left\{1-\frac{p_{c a} X_{1}}{X_{3}}-\frac{p_{c b} X_{2}}{X_{3}}-\frac{p_{c}}{X_{3}}\right\} F_{c} \\
& \lambda_{a}\left(1-X_{1}\right)+\lambda_{b}\left(1-X_{2}\right)+\lambda_{c}\left(1-X_{3}\right)+\mu_{a}\left\{1-\frac{p_{a b} X_{2}}{X_{1}}-\frac{p_{a c} X_{3}}{X_{1}}-\frac{p_{a}}{X_{1}}\right\}  \tag{21}\\
& +\mu_{b}\left\{1-\frac{p_{b a} X_{1}}{X_{2}}-\frac{p_{b c} X_{3}}{X_{2}}-\frac{p_{b}}{X_{2}}\right\}+\mu_{c}\left\{1-\frac{p_{c a} X_{1}}{X_{3}}-\frac{p_{c b} X_{2}}{X_{3}}-\frac{p_{c}}{X_{3}}\right\}
\end{align*}
$$

Since $F(1,1,1)=1$, the total probability. Considering $X_{1}=1$ as $X_{2} \rightarrow 1, X_{3} \rightarrow 1$,
$F\left(X_{1}, X_{2}, X_{3}\right)$ is of (0/0) indeterminate form. Therefore, using L-Hospital rule,
differentiating numerator and denominator separately w.r.t. $X_{1}$, we get
$1=\frac{\mu_{a}\left(p_{a b}+p_{a c}+p_{a}\right) F_{a}+\mu_{b}\left(-p_{b a}\right) F_{b}+\mu_{c}\left(-p_{c a}\right) F_{c}}{-\lambda_{a}+\mu_{a}\left(p_{a b}+p_{a c}+p_{a}\right)+\mu_{b}\left(-p_{b a}\right)+\mu_{c}\left(-p_{c a}\right)}$
where $\quad p_{a b}+p_{a c}+p_{a}=1$
$\mu_{a} F_{a}-\mu_{b} p_{b a} F_{b}-\mu_{c} p_{c a} F_{c}=-\lambda_{a}+\mu_{a}-\mu_{b} p_{b a}-\mu_{c} p_{c a}$
Again differentiating numerator and denominator separately w.r.t. $X_{2}$ by taking $X_{2}=1$
as $X_{1} \rightarrow 1, X_{3} \rightarrow 1$, we get

$$
1=\frac{\mu_{a}\left(-p_{a b}\right) F_{a}+\mu_{b}\left(p_{b a}+p_{b c}+p_{b}\right) F_{b}+\mu_{c}\left(-p_{c b}\right) F_{c}}{-\lambda_{b}+\mu_{a}\left(-p_{a b}\right)+\mu_{b}\left(p_{b a}+p_{b c}+p_{b}\right)+\mu_{c}\left(-p_{c b}\right)}
$$

where $\quad p_{b a}+p_{b c}+p_{b}=1$

$$
\begin{equation*}
-\mu_{a} p_{a b} F_{a}+\mu_{b} F_{b}-\mu_{c} p_{c b} F_{c}=-\lambda_{b}-\mu_{a} p_{a b}+\mu_{b}-\mu_{c} p_{c b} \tag{23}
\end{equation*}
$$

Again differentiating numerator and denominator separately w.r.t. $X_{3}$ by taking $X_{3}=1$
as $X_{1} \rightarrow 1, X_{2} \rightarrow 1$, we get
$1=\frac{\mu_{a}\left(-p_{a c}\right) F_{a}+\mu_{b}\left(-p_{b c}\right) F_{b}+\mu_{c}\left(p_{c a}+p_{c b}+p_{c}\right) F_{c}}{-\lambda_{c}+\mu_{a}\left(-p_{a c}\right)+\mu_{b}\left(-p_{b c}\right)+\mu_{c}\left(p_{c a}+p_{c b}+p_{c}\right)}$
where $p_{c a}+p_{c b}+p_{c}=1$
$-\mu_{a} p_{a c} F_{a}-\mu_{b} p_{b c} F_{b}+\mu_{c} F_{c}=-\lambda_{c}-\mu_{a} p_{a c}-\mu_{b} p_{b c}+\mu_{c}$
on solving (22), (23), (24), we get

$$
\begin{aligned}
& F_{a}=1-\frac{\lambda_{a}\left(1-p_{c b} p_{b c}\right)+\lambda_{b}\left\{p_{b a}\left(1-p_{c b} p_{b c}\right)+p_{b c}\left(p_{c a}+p_{c b} p_{b a}\right)\right\}+\lambda_{c}\left(p_{c a}+p_{c b} p_{b a}\right)}{\mu_{a}\left\{\left(1-p_{a b} p_{b a}\right)\left(1-p_{c b} p_{b c}\right)-\left(p_{a c}+p_{a b} p_{b c}\right)\left(p_{c a}+p_{c b} p_{b a}\right)\right\}} \\
& F_{b}=1-\frac{\lambda_{a}\left(p_{a b}+p_{a c} p_{c b}\right)+\lambda_{b}\left(1-p_{a c} p_{c a}\right)+\lambda_{c}\left\{p_{c a}\left(p_{a b}+p_{a c} p_{c b}\right)+p_{c b}\left(1-p_{a c} p_{c a}\right)\right\}}{\mu_{b}\left\{\left(1-p_{b c} p_{c b}\right)\left(1-p_{a c} p_{c a}\right)-\left(p_{b a}+p_{b c} p_{c a}\right)\left(p_{a b}+p_{a c} p_{c b}\right)\right\}} \\
& F_{c}=1-\frac{\lambda_{a}\left\{p_{a b}\left(p_{b c}+p_{b a} p_{a c}\right)+p_{a c}\left(1-p_{a b} p_{b a}\right)\right\}+\lambda_{b}\left(p_{b c}+p_{b a} p_{a c}\right)+\lambda_{c}\left(1-p_{a b} p_{b a}\right)}{\mu_{c}\left\{\left(1-p_{a c} p_{c a}\right)\left(1-p_{a b} p_{b a}\right)-\left(p_{c b}+p_{a b} p_{c a}\right)\left(p_{b c}+p_{b a} p_{a c}\right)\right\}}
\end{aligned}
$$

The solution (Joint Probability) of the model is written as
$P_{n_{a}, n_{b}, n_{c}}=\left(1-F_{a}\right)^{n_{a}}\left(1-F_{b}\right)^{n_{b}}\left(1-F_{c}\right)^{n_{c}} F_{a} F_{b} F_{c}$
$P_{n_{a}, n_{b}, n_{c}}=\rho_{a}{ }^{n_{a}} \rho_{b}{ }^{n_{b}} \rho_{c}^{n_{c}}\left(1-\rho_{a}\right)\left(1-\rho_{b}\right)\left(1-\rho_{c}\right)$
where $\rho_{a}=1-F_{a}, \rho_{b}=1-F_{b}, \rho_{c}=1-F_{c}$
$\rho_{a}=\frac{\lambda_{a}\left(1-p_{c b} p_{b c}\right)+\lambda_{b}\left\{p_{b a}\left(1-p_{c b} p_{b c}\right)+p_{b c}\left(p_{c a}+p_{c b} p_{b a}\right)\right\}+\lambda_{c}\left(p_{c a}+p_{c b} p_{b a}\right)}{\mu_{a}\left\{\left(1-p_{a b} p_{b a}\right)\left(1-p_{c b} p_{b c}\right)-\left(p_{a c}+p_{a b} p_{b c}\right)\left(p_{c a}+p_{c b} p_{b a}\right)\right\}}$
$\rho_{b}=\frac{\lambda_{a}\left(p_{a b}+p_{a c} p_{c b}\right)+\lambda_{b}\left(1-p_{a c} p_{c a}\right)+\lambda_{c}\left\{p_{c a}\left(p_{a b}+p_{a c} p_{c b}\right)+p_{c b}\left(1-p_{a c} p_{c a}\right)\right\}}{\mu_{b}\left\{\left(1-p_{b c} p_{c b}\right)\left(1-p_{a c} p_{c a}\right)-\left(p_{b a}+p_{b c} p_{c a}\right)\left(p_{a b}+p_{a c} p_{c b}\right)\right\}}$
$\rho_{c}=\frac{\lambda_{a}\left\{p_{a b}\left(p_{b c}+p_{b a} p_{a c}\right)+p_{a c}\left(1-p_{a b} p_{b a}\right)\right\}+\lambda_{b}\left(p_{b c}+p_{b a} p_{a c}\right)+\lambda_{c}\left(1-p_{a b} p_{b a}\right)}{\mu_{c}\left\{\left(1-p_{a c} p_{c a}\right)\left(1-p_{a b} p_{b a}\right)-\left(p_{c b}+p_{a b} p_{c a}\right)\left(p_{b c}+p_{b a} p_{a c}\right)\right\}}$
The solution of this model exists if $\rho_{a}, \rho_{b}, \rho_{c}<1$

## V. COMPUTATION OF VARIOUS QUEUING MODEL CHARACTERISTICS

(1) Mean queue length (average number of customers)
$L_{Q}=L_{a}+L_{b}+L_{c}$
$L_{Q}=\frac{\rho_{a}}{1-\rho_{a}}+\frac{\rho_{b}}{1-\rho_{b}}+\frac{\rho_{c}}{1-\rho_{c}}$
Where $L_{a}=\frac{\rho_{a}}{1-\rho_{a}}, \quad L_{b}=\frac{\rho_{b}}{1-\rho_{b}}, \quad L_{c}=\frac{\rho_{c}}{1-\rho_{c}}$
(2) Fluctuation (Variance) in queue length

$$
\begin{aligned}
& V_{a r}=V_{a}+V_{b}+V_{c} \\
& V_{a r}=\frac{\rho_{a}}{\left(1-\rho_{a}\right)^{2}}+\frac{\rho_{b}}{\left(1-\rho_{b}\right)^{2}}+\frac{\rho_{c}}{\left(1-\rho_{c}\right)^{2}}
\end{aligned}
$$

Where $V_{a}=\frac{\rho_{a}}{\left(1-\rho_{a}\right)^{2}}, \quad V_{b}=\frac{\rho_{b}}{\left(1-\rho_{b}\right)^{2}}, \quad V_{c}=\frac{\rho_{c}}{\left(1-\rho_{c}\right)^{2}}$

## (3) Average waiting time for customer

$$
E_{w t}=\frac{L_{Q}}{\lambda}, \text { where } \lambda=\lambda_{a}+\lambda_{b}+\lambda_{c}
$$

## VI. RESULTS AND DISCUSSION

In section 2 and 3, description of the mathematical model and associated governing equations have been presented. In the present example, ten customers have been considered to be processed through the network of three queues $\mathrm{Q}_{\mathrm{a}}, \mathrm{Q}_{\mathrm{b}}$ and $\mathrm{Q}_{\mathrm{c}}$ associated with servers $\mathrm{Sr}_{\mathrm{a}}, \mathrm{Sr}_{\mathrm{b}}$ and $\mathrm{Sr}_{\mathrm{c}}$ respectively. The details of various input parameters used in the computation of various characteristics have been presented in Table 1.

Table 2 demonstrates the joint probability and utilization of servers for various mean arrival rates ( $\lambda_{a}, \lambda_{b}$ and $\lambda_{c}$ ) and various probabilities $\left(p_{a b}, p_{a c}, p_{a}, p_{b a}, p_{b c}, p_{b}, p_{c a}, p_{c b}, p_{c}\right)$. It is manifest from the calculated results that the values utilization of servers is less than 1 which also confirms the basic conditions given in Eq. (26). In Table 3 and Table 4, the average waiting time, queue lengths and variances have been deliberated considering different mean arrival rate ( $\lambda_{a}, \lambda_{b}$ and $\lambda_{c}$ ) and various probabilities ( $p_{a b}, p_{a c}, p_{a}, p_{b a}, p_{b c}, p_{b}, p_{c a}, p_{c b}, p_{c}$ ) same as considered in the case of Table 2.

Table 1: Various input parameters considered in computation of results

| $\mu_{a}$ | $\mu_{b}$ | $\mu_{c}$ | $n_{a}$ | $n_{b}$ | $n_{c}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 14 | 15 | 16 | 3 | 4 | 3 |

Table 2: Joint Probability and utilization of servers for various mean arrival rates and probabilities

| $\lambda_{a}$ | $\lambda_{b}$ | $\lambda_{c}$ | $p_{a b}$ | $p_{a c}$ | $p_{a}$ | $p_{b a}$ | $p_{b c}$ | $p_{b}$ | $p_{c a}$ | $p_{c b}$ | $p_{c}$ | $\rho_{a}$ | $\rho_{b}$ | $\rho_{c}$ | $P$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | 5 | 6 | 0.2 | 0.3 | 0.5 | 0.2 | 0.3 | 0.5 | 0.2 | 0.3 | 0.5 | 0.43 | 0.63 | 0.66 | $2.5 \mathrm{E}-04$ |
| 3 |  |  |  |  |  |  |  |  |  |  |  | 0.51 | 0.65 | 0.69 | 4.2E-04 |
| 4 |  |  |  |  |  |  |  |  |  |  |  | 0.60 | 0.68 | 0.72 | $6.0 \mathrm{E}-04$ |
| 5 |  |  |  |  |  |  |  |  |  |  |  | 0.68 | 0.70 | 0.75 | 7.6E-04 |
| 6 |  |  |  |  |  |  |  |  |  |  |  | 0.76 | 0.72 | 0.78 | 8.4E-04 |
| $\lambda_{a}$ | $\lambda_{b}$ | $\lambda_{c}$ | $p_{a b}$ | $p_{a c}$ | $p_{a}$ | $p_{b a}$ | $p_{b c}$ | $p_{b}$ | $p_{c a}$ | $p_{c b}$ | $p_{c}$ | $\rho_{a}$ | $\rho_{b}$ | $\rho_{c}$ | $P$ |
| 4 | 2 | 6 | 0.2 | 0.3 | 0.5 | 0.2 | 0.3 | 0.5 | 0.2 | 0.3 | 0.5 | 0.52 | 0.43 | 0.63 | 1.3E-04 |
|  | 3 |  |  |  |  |  |  |  |  |  |  | 0.55 | 0.51 | 0.66 | $2.5 \mathrm{E}-04$ |
|  | 4 |  |  |  |  |  |  |  |  |  |  | 0.57 | 0.59 | 0.69 | 4.1E-04 |
|  | 5 |  |  |  |  |  |  |  |  |  |  | 0.60 | 0.68 | 0.72 | 6.0E-04 |
|  | 6 |  |  |  |  |  |  |  |  |  |  | 0.62 | 0.76 | 0.75 | 7.6E-04 |
| $\lambda_{a}$ | $\lambda_{b}$ | $\lambda_{c}$ | $p_{a b}$ | $p_{a c}$ | $p_{a}$ | $p_{b a}$ | $p_{b c}$ | $p_{b}$ | $p_{c a}$ | $p_{c b}$ | $p_{c}$ | $\rho_{a}$ | $\rho_{b}$ | $\rho_{c}$ | $P$ |
| 4 | 5 | 2 | 0.2 | 0.3 | 0.5 | 0.2 | 0.3 | 0.5 | 0.2 | 0.3 | 0.5 | 0.50 | 0.56 | 0.41 | 1.1E-04 |
|  |  | 3 |  |  |  |  |  |  |  |  |  | 0.52 | 0.59 | 0.49 | $2.0 \mathrm{E}-04$ |
|  |  | 4 |  |  |  |  |  |  |  |  |  | 0.55 | 0.62 | 0.57 | $3.3 \mathrm{E}-04$ |
|  |  | 5 |  |  |  |  |  |  |  |  |  | 0.57 | 0.65 | 0.64 | 4.7E-04 |
|  |  | 6 |  |  |  |  |  |  |  |  |  | 0.60 | 0.68 | 0.72 | $6.0 \mathrm{E}-04$ |
| $\lambda_{a}$ | $\lambda_{b}$ | $\lambda_{c}$ | $p_{a b}$ | $p_{a c}$ | $p_{a}$ | $p_{b a}$ | $p_{b c}$ | $p_{b}$ | $p_{c a}$ | $p_{c b}$ | $p_{c}$ | $\rho_{a}$ | $\rho_{b}$ | $\rho_{c}$ | $P$ |
| 4 | 5 | 6 | 0.1 | 0.45 | 0.45 | 0.2 | 0.3 | 0.5 | 0.2 | 0.3 | 0.5 | 0.61 | 0.64 | 0.79 | 5.5E-04 |
|  |  |  | 0.2 | 0.4 | 0.4 |  |  |  |  |  |  | 0.62 | 0.70 | 0.79 | $6.7 \mathrm{E}-04$ |
|  |  |  | 0.3 | 0.35 | 0.35 |  |  |  |  |  |  | 0.63 | 0.76 | 0.78 | 7.7E-04 |
|  |  |  | 0.4 | 0.3 | 0.3 |  |  |  |  |  |  | 0.64 | 0.82 | 0.77 | 8.0E-04 |
|  |  |  | 0.5 | 0.25 | 0.25 |  |  |  |  |  |  | 0.65 | 0.88 | 0.76 | 7.2E-04 |


| $\lambda_{a}$ | $\lambda_{b}$ | $\lambda_{c}$ | $p_{a b}$ | $p_{a c}$ | $p_{a}$ | $p_{b a}$ | $p_{b c}$ | $p_{b}$ | $p_{c a}$ | $p_{c b}$ | $p_{c}$ | $\rho_{a}$ | $\rho_{b}$ | $\rho_{c}$ | $P$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 4 | 5 | 6 | 0.2 | 0.3 | 0.5 | 0.1 | 0.45 | 0.45 | 0.2 | 0.3 | 0.5 | 0.55 | 0.69 | 0.81 | $5.3 \mathrm{E}-04$ |
|  |  |  |  |  |  | 0.2 | 0.4 | 0.4 |  |  |  | 0.62 | 0.71 | 0.80 | $6.8 \mathrm{E}-04$ |
|  |  |  |  |  |  | 0.3 | 0.35 | 0.35 |  |  |  | 0.70 | 0.72 | 0.79 | $7.9 \mathrm{E}-04$ |
|  |  |  |  |  | 0.4 | 0.3 | 0.3 |  |  |  | 0.78 | 0.73 | 0.78 | $8.3 \mathrm{E}-04$ |  |
| $\lambda_{a}$ | $\lambda_{b}$ | $\lambda_{c}$ | $p_{a b}$ | $p_{a c}$ | $p_{a}$ | $p_{b a}$ | $p_{b c}$ | $p_{b}$ | $p_{c a}$ | $p_{c b}$ | $p_{c}$ | $\rho_{a}$ | $\rho_{b}$ | $\rho_{c}$ | $P$ |
| 4 | 5 | 6 | 0.2 | 0.3 | 0.5 | 0.2 | 0.3 | 0.5 | 0.1 | 0.45 | 0.45 | 0.54 | 0.79 | 0.74 | $6.2 \mathrm{E}-04$ |
|  |  |  |  |  |  |  |  |  | 0.2 | 0.4 | 0.4 | 0.62 | 0.77 | 0.76 | $7.8 \mathrm{E}-04$ |
|  |  |  |  |  |  |  |  |  | 0.3 | 0.35 | 0.35 | 0.71 | 0.76 | 0.77 | $8.7 \mathrm{E}-04$ |
|  |  |  |  |  |  |  |  |  | 0.4 | 0.3 | 0.3 | 0.81 | 0.74 | 0.79 | $8.1 \mathrm{E}-04$ |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

Table 3: Average waiting time and queue lengths for various mean arrival rates and probabilities


Table 4: Variances for various mean arrival rates and probabilities


## VII. CONCLUSION

In the present study, an attempt has been made to investigate a queueing network modeled using three servers connected in parallel in tri-cum bi-series way. Detailed mathematical description of the presented model has been given which can be implemented in multi-tasking problems. Various queuing characteristics such as queue length, variance, joint probabilities and average waiting time for customers have been computed using proposed mathematical model.

## REFERENCES

[1] I. Adan, J. Resing, "Queuing theory department of mathematics and computing science", Eindhoren University of Technology Eindhoren, 1-123, 2002.
[2] P.L. Maggu, "Phase type service queues with two servers in biseries", Journal of Operational Research Society of Japan, 13(1), 1-6, 1970.
[3] P.L. Maggu and G. Das, "Equivalent jobs for job block in job sequencing", Opsearch, 14(4), 277-281, 1977.
[4] Singh, Man, "Steady state behaviour of serial queuing processes with impatient customers", Math, Operations forsch. U. statist. Ser. 15(2),289298, 1984.
[5] D. Gupta, S. Sharma, and S. Sharma, "On linkage of a flowshop scheduling model including job block criteria with a parallel biserial queue network", Computer Engineering and Intelligent System, 3(2), 17-28, 2012.
[6] R.R.P. Jackson, "Queuing systems with phase-type service", Operational Research Quarterly, 5, 109-120, 1954.
[7] S.K. Agrawal, and B.K. Singh, "Computation of various queue characteristics using tri-cum biserial queuing model connected with a common server", International Journal of Mathematics Trends and Technology (IJMTT) - Volume 56 Number 1, 81-90, 2018. doi: 10.14445/22315373/IJMTT-V56P510.

Appendix

| symbol | notations |
| :---: | :---: |
| Servers | $S r_{a}, S r_{b}, S r_{c}$ |
| Joint Probability | $P_{n_{a}, n_{b}, n_{c}}$ |
| Mean arrival rates | $\lambda_{a}, \lambda_{b}, \lambda_{c}$ |
| Mean Service Rates | $\mu_{a}, \mu_{b}, \mu_{c}$ |
| probabilities | $p_{a b}, p_{a c}, p_{a}, p_{b a}, p_{b c}, p_{b}, p_{c a}, p_{c b}, p_{c}$ |
| No. of Customers | $n_{a}, n_{b}, n_{c}$ |
| Traffic intensity or utilization of <br> servers | $\rho_{a}, \rho_{b}, \rho_{c}$ |
| Length of queues | $L_{a}, L_{b}, L_{c}, L_{Q}$ |
| Variances | $V_{a}, V_{b}, V_{c}, V_{a r}$ |
| Average waiting time for customer | $E_{w t}$ |

