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Abstract—In this paper, we discusses the problem of estimating the parameters of normal distribution based on k- 

record values in presence of guessed value (or apriori) of the parameters under investigation. We have suggested 

shrinkage estimators for estimating the parameters   and   based on best linear unbiased estimator (BLUE). The 

expressions of biases and mean squared errors (MSEs) of the suggested estimators are obtained. Under some realistic 

conditions it is shown that the proposed shrinkage estimators are better than [15] estimators.  
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I. INTRODUCTION 

Let ,..., 21 XX  be an infinite sequence of independent 

and identically distributed random variables having the same 
absolutely continuous cumulative distribution function (cdf) 

 xF . An observation jX  will be called an upper record (or 

simply a record) if its value exceeds that of all previous 

observations. Thus jX  is a record if ij XX   for 

every ji  . An analogous definition deals with lower 

record values. For a positive integer k , the upper K- record 

times  knT  and the upper k- record value  knR are 

introduced by [24] as 

  kT k 0 , with probability one 

and, for 1n  

       
 

knkn TkTjknkn XXTjjT
11 :11 ,:min
    ,     (1.1) 

where miX : denote the i-th order statistics of sample size m . 

The sequence of upper k- records are then defined by 

     knkn TkTkn XR
1:1  for .1,,...1,0  kn                (1.2) 

In a similar manner, we can define the kth lower record 

times and the kth lower record values. For 1k , the usual 

records are recovered. The probability density function (pdf) 

of  knR  is given by see [1],  
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 and the joint pdf of mth and nth k- record values for 
nm   is given by,  
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(1.4) 

Let      
**

1

*

0 ,...,, knkk RRR  be the first  1n  upper k-

record values arising from a sequence of iid standard normal 

random variables. If we denote  .  as the cdf and  .  as 

the pdf of a standard normal random variable, then by using 

(1.3), the pdf of nth upper k-record value of  
*

knR  is given 

See, [15] 
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From (1.4), the joint pdf of mth and nth upper k- record 

values,  
*

kmR  and  
*

knR  for nm   is given by 
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We used same notations of [15] as   *

knRE  by  kn , 

  *

knRVar  by  knn, ,     ** , knkm RRE  by  knm,  and 

    ** , knkm RRCov  by  knm, . Then, the single moments of 

the nth upper k-record value for 0n  is given by 

    




 dxxxf knkn

* , 

and the product moments of the mth and nth upper k-
record values for nm   is given by 

     







x

knmknm dydxyxxyf ,*

,, . 

By using above notations [15] obtained BLUEs of 
mean   and standard deviation   respectively as 

    
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and 

    
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Furthermore, the variance and covariance of the above 
estimators are respectively given by (see, [16], pp. 80-81) 

 
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and  
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There are some situations in which only records are 
observed, such as in destructive stress testing, meteorological 
analysis, hydrology, seismology, sporting and athletic events 
and oil and mining surveys. For a more specific example, 
consider the situation of testing the breaking strength of 
wooden beams as described in [17]. Interest in records has 
increased steadily over the years since [13] formulation. 
Useful reviews of literature are given in the books of [1], [18], 
[14] and the references cited therein. For current reference in 
this context the reader is referred to [2]-[9] and [19]-[23].  

 

The prior point information (or guessed values) regarding 
parameters   and   can be obtained from the past data or 

experience gathered in due course of time for instance see, 
[2], [11] and [12]. The principle objective of this paper is to 

use the prior information 0  and 0  of the parameters   

and   respectively in addition to sample observations in 

order to get better estimators than the usual estimators 
available in the literature.   

 

The organization of the remaining part of the paper is as 
follows. In section 2, we have derived some improved 
shrinkage estimators of parameters   of normal distribution 

based on BLUE while in section 3, some improved shrinkage 
estimators of   are obtained based on BLUE using K- 

record values in presence guessed values 0  (for  ) and 

0  (for  ). We have also obtained the biases and mean 

squared errors (MSEs) of the suggested estimators. 
Theoretically, it has been shown that the proposed shrinkage 
estimators are always superior to the one suggested by [15]. 
Section 4, concludes the paper with final remarks.  
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II. SHRINKAGE ESTIMATOR FOR MEAN   

When the prior point estimate 0  of   is available, we 

suggest the following class of estimators for the parameter 

  as  

  *

1011 1ˆ  PP  ,                                           (2.1) 

where 
1P   being a suitably chosen constant. 

The bias and MSE of 1̂  are respectively, given by 

  









C

P
B 1

1
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
 ,                                           (2.2) 

and 

  
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where    sayC 11, 0 

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A. Efficiency Comparison 

It is observed from (1.9) and (2.3) that 
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It is known that the optimum estimator (OE) of   is 

given as  

   
*

2

3**

.1
1

ˆ 
A

A
opt


 ,                                     (2.5) 

in the class of estimators 
***

1
ˆ  P , P   being a 

suitably chosen constant such that mean squared error (MSE) 

of  
*

.1
ˆ

opt  is minimum.  

The bias and MSE of  
*

.1
ˆ

opt  are, respectively given by 

  
 2
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A
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
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From (2.3) and (2.7) it follows that the suggested 

shrinkage estimator 1̂  is more efficient than the OE  
*

.1
ˆ

opt   

if  

     *

.11
ˆ

optMSEMSE       

if  
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.          (2.8) 

The proposed shrinkage estimator 1̂   is better than the 

BLUE 
* and the OE  

*

.1
ˆ

opt  if the conditions (2.4) and (2.8) 

are respectively satisfied. From (2.4) and (2.8) one can also 

calculate the ranges 1P  in which the suggested shrinkage 

estimator 1̂  is more efficient than the [15] BLUE 
*  and 

OE  
*

.1
ˆ

opt .   

III. SUGGESTED ESTIMATORS FOR   

Based on prior estimate 0  of   and the BLUE 
* , we 

define a class of estimators of   as 

 
*

201
ˆ  P ,                                              (3.1) 

where 2P  is a constant to be determined such that the MSE 

of 1̂  is minimum. 

The bias and MSE of 1̂  are respectively given by  

    21
ˆ PB   ,                                        (3.2)  

    22

2

2

22

1 21ˆ PAPMSE   ,          (3.3) 

where 

   say11 *0 







 




 . 

The  1̂MSE  at (3.3) is minimized for 

            
 2

2
1 A

P





.                                            (3.4)  

The value of 2P  at (3.4) depends on the unknown 

parameter  , so an estimate of 2P  based on sample data is 

given by 
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Putting 
*

2P  in (3.1), we get a shrinkage estimator of   as 

    *

0

1

20

*

1 1  


A .                    (3.6) 

 

The bias and MSE of 
*

1  are respectively given by 

  
2

2*

1
1 A

A
B





 ,                                           (3.7) 
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A
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MSE







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It is observed from (1.10) and (3.8) that 

    **

1  VarMSE      

if  

 
  
















 ,

21 2

0

A


 .                               (3.9) 

or 

    20 21,0 A  .                          (3.10) 

It is interesting to note from (3.9) that the proposed 

shrinkage estimator 
*

1   is more efficient than the BLUE  

*  envisaged by [15] for a wider range of  . It also 

suggests that the proposed shrinkage estimator 
*

1   is more 

efficient than the BLUE 
*   due to [15] even if the guessed 

value 0 of   slides far away from the true value  . 

IV. CONCLUSION 

In this paper we have suggested better estimators of 
parameters   and   of normal distribution based on k- 

record values in presence of guessed (or apriori) information 

0 (for  ) and 0  (for  ).  The expressions of biases and 

MSEs of the estimators 1̂ and 
*

1 of the parameters   

and   respectively are obtained. Superiority of the proposed 

shrinkage estimators  *

11,ˆ   of the parameters  ,  

respectively are also comprehensively discussed.  

Thus the use of prior information regarding the parameters 

 ,  under investigation may be highly rewarding in terms 

of precision of the proposed shrinkage estimators  *

11,ˆ   

over the usual estimators  ** ,  envisaged by [15] of the 

parameters  ,   respectively. 
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