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Abstract: In Paper the effects of second order autocorrelation on the determination of the optimum process mean in statistical
process control. It directly affects the process defective rate, production cost, scrap cost, and rework cost. Lee et al.(2000)
presented a filling problem for determining the optimum process mean and screening limits. They considered three grades of
product, assumed a normal quality characteristic, and adopted the piecewise linear profit function for measuring the profit per
item. However, they have not included the scrap cost and the perfect rework process in their model. In this chapter, we further
propose a modified Lee et al.’s model with rework process for determining the optimum process mean under second order
autocorrelation when the roots are (i) real and distinct (ii) real and equal and (iii) complex conjugate. Both perfect rework and
imperfect rework processes for the product are considered in the model. Negative autocorrelation and positive autocorrelation are

seriously affected on optimum mean and expected profit.
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Introduction: The optimum process mean setting has been a
major topic in modern statistical process control. It may not
be equal to the target value because the costs of below and
above the specification limits are different. The
determination of the optimum process mean should achieve
the minimum expected cost per item or the maximum
expected profit per item. There is considerable attention paid
to the study of economic selection of the process mean.
Recently, Li (1997, 2002), Li and Chirng (1999), Li and
Cherng(2000), Li and Chou (2001), Li and Wu (2001, 2002),
Wu and Tang (1998), Maghsoodloo and Li (2000), and
Phillips and Cho (2000), have addressed different problems
of wunbalanced tolerance design with the asymmetric
quadratic and linear quality loss functions. The piecewise
linear profit function of the quality characteristic is usually
applied in the filling/canning problem for determining the
optimum manufacturing target and other important
parameters, see for example, Springer (1951), Hunter and
Kartha (1977), Carlsson (1984, 1989), Bisgaard et al. (1984),
Golhar (1987, 1988), Golhar and Pollock (1988, 1992),
Rahim and Banerjee (1988), Arcelus and Rahim (1990),
Boucher and Jafari (1991), Al-Sultan (1997), Pulak and Al-
Sultan (1996), Al-Sultan and Al-Fawzan (1997), Al-Sultan
and Pulak (1997), Lee and Jang (1997), Misiorek and Barnett
(2000), Lee and Elsayed (2002), Lee et al. (2000, 2001), and
Duffuaa and Siddigi (2002). In Misiorek and Barnett’s
(2000) model, the aim is to fix the filling mean of the process
in order to maximize the expected profit per container. The
profit for a container depends on the filling value of the
material, i.e, whether or not it is over-filled, under-filled, or
rejected. Misiorek and Barnett’s (2000) model considered
that the expense of recapturing over-filled material is a cost
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per unit, the expense of emptying out under-filled containers
and putting the material back into the process is a constant
cost, and that the containers from under-filled items are
discarded. They also considered the expected profit per
container for the following four special cases: (1) the
containers from under-filled items are discarded, (2) the
containers from under-filled items are re-used, (3) the
containers from under-filled items are discarded and there is
no overflow, and (4) all under-filled containers are topped-up
and over-flowed material is captured.Lee et al. (2000, 2001)
presented the problem of a joint determination of optimum
process mean and screening limits. The quality characteristic
of the performance variable or surrogate variable is
considered as the screening variable. Their models involved
selling and discounted prices as well as production,
inspection, rework and penalty costs. The normal and
bivariate normal distributions are assumed and used in Lee et
al.’s (2000, 2001) models. The screening of a product with
three grades, using single stage screening and two stage
screening are considered. The objective of their models is to
maximize the expected profit per item.

For the filling/canning industry, the product needs
to be produced within the specification limits. The
manufacturing cost per unit considers the fixed and variable
production costs and the constant inspection cost. The
variable production cost is proportional to the value of the
quality characteristic. A product usually cannot be sold at a
higher price for the constant label content. If a product is
above the upper specification limit (USL), it will cause an
increment in the manufacturing cost. This is not a desirable
situation for the production department. If a product is
below the lower specification limit (LSL), it will cause a loss
of goodwill for the manufacturer. The company may face
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customers’ claims or penalty due to government’s laws. This
is not a desirable case for the marketing department. Thus,
the canning manufacturing industry needs product
conformance. The penalty cost due to loss of goodwill is
usually higher than the finite manufacturing cost. Hence, a
product is usually put to scrap when it is below LSL and put
to rework when it is above the USL. Taguchi (1986)
proposed the optimum tolerance design with 100%
inspection under the assumptions of no scrap and perfect
rework for product. However, it is hard to get an overall
perfect product in the production process. Hence, in our
paper, we consider the possibility of the filled product having
rework, either perfect or imperfect, and scrap.

Lee et al. (2000) proposed the inspection of three
grades of product and adopted the piecewise linear profit
function for measuring the profit per item. However, they
have not included the scrap cost and perfect reprocessing in
their model. In this paper, we propose a modified Lee et al.’s
(2000) model with rework process for determining the
optimum process mean. The production cost, inspection cost,
rework cost and scrap cost are included in the modified
model. Both perfect rework and imperfect rework process for
the product are considered. A numerical example and
sensitivity analysis of parameters are provided for
illustration. Previous researchers addressed a product scrap
that is sold at a reduced price in the market. Our modified
model addressed the case that a scrapped product cannot be
sold in the market, instead it involves a scrap cost. These are
the main differences between our model and the Lee et al.’s
(2000) model.

In chapter the effects of second order autocorrelation on
the determination of the optimum process mean in statistical
process control. It directly affects the process defective rate,
production cost, scrap cost, and rework cost. Lee et al.(2000)
presented a filling problem for determining the optimum
process mean and screening limits. They considered three
grades of product, assumed a normal quality characteristic,
and adopted the piecewise linear profit function for
measuring the profit per item. However, they have not
included the scrap cost and the perfect rework process in
their model. In this chapter, we further propose a modified
Lee et al.’s model with rework process for determining the
optimum process mean under second order autocorrelation
when the roots are (i) real and distinct (ii) real and equal and
(iii) complex conjugate. Both perfect rework and imperfect
rework processes for the product are considered in the model.
Negative autocorrelation and positive autocorrelation are
seriously affected on optimum mean and expected profit.

Modified Lee et al.’s Model with Scrap Cost

Nomenclature

a the selling price in the modified Lee et al.’s model

a; the selling price for the primary market in the Lee et
al.’s model

a the selling price for the secondary market in the Lee et
al.’s model

b the fixed production cost per item

c the variable production cost per item
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nis the sample size

E(TP,) the expected profit per item for the perfect rework
model

E(TP,) the expected profit per item for the imperfect
rework model

f(y) the normal probability density function

e
f)=——=e> T —w<y<oo
N2mo

i the inspection cost per item

L, the pre-specified specification limit for the

item

with grade A in the Lee et al.”s model

M, the upper specification limit in the modified
Lee et al.’s model

L, the pre-specified specification limit for the
item with grade B in the Lee et al.’s model

M, the lower specification limit in the modified
Lee et al.’s model

P®) the profit per item for the Lee et al.’s model

P@r) the profit for a rework item for the Lee et
al.’s model

r the rework cost for the item with grade C in
the Lee et al.’s model and  the rework cost
in the modified Lee et al.”’s model

s the scrap cost in the modified Lee et al.’s
model

TP, the profit per item for the perfect rework

TP, the profit per item for the imperfect rework
model

y the quality characteristic of the performance
variable

yr the quality characteristic of a reworked item,

Where it is assumed that y and yrare
independent and identically distributed

p the unknown process mean

the known process standard deviation

c
D(z2) The cumulative probability of a standard

normal random variable with a probability
density function

In Lee et al.’s (2000) model, which considers
performance as variable, the objective is to maximize the
expected profit per item and obtain the optimum process
mean. The profit for an item depends on the value of a
normal quality characteristic, Y. Each item is classified into
three grades A, B, and C. Grade A items are sold to primary
market and grade B items are sold to secondary market.
Grade C items are reworked and the rework process is the
same as the original production process. Let L; be the pre-
specified specification limit for grade A and L, be the pre-
specified specification limit for grade B, where L,< L;. If an
item has y > L, it is sold at a fixed price al to the primary
market. If an item has L,< y > L, it is sold at a fixed price a,
(< a;) to the secondary market. If an item has y < L, it is
reworked by the same production process at a rework cost r
(< A< al).
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It is assumed that the quality characteristic y cost per item and yr be the quality characteristic of a
is normally distributed with an unknown process mean p and reworked item. It is assumed that y and y are identically and
a known standard deviation ¢. Let the production cost per independently distributed.
item be b + cy, where b is the fixed production cost and c is From Lee et al. (2000), we have the profit per item as
the variable production cost per item. Let i be the inspection follows:

—-b—cy—i, y>L,
p¥)=<a, —b—cy—i, L,<y<L, (1

Assume that the reworked item has the same profit as the non-reworked item, i.e., P(y) = P(y,). Hence, the expected profit per

item is

— 3 J— p— —q lll
E[p(y)]—flq (@, ~b—cy l)f(y)dhf (as—b—cy—i)f(y)dy

L
+ [, (BLPGYI=r=D)f ()dy

wheref (y) is the normal probability density function of Y.
From Lee et al. The above Eq. (2) can be rewritten as

s ] A

_CG/ICD(G/IJ l}/q{i/}j
3

the first derivative of Eq. (3) with respect to p, set it equal to zero, and adopted the bisection method for finding the optimal p
that maximizes the expected profit per item and multiple in equation (3) we obtain expected profit for n items .

(@)

All items are inspected prior to shipment to the customers. If an item has Y >M|, it is reworked by the same production process
at a rework cost r. Items with Y <M, are scrapped at a scrap cost s. Items with M,<Y > M, are shipped to the market at a price a.
The production cost per item is linear in Y, that is b + cy, where b is the fixed production cost and c is the variable production
cost. Let ibe the inspection cost per item. Assume that the rework process is perfect. The perfect rework model, which include
production, inspection, rework and scrap costs, is as follows:

a-b—-cy—i-r, y>M,
TP =|\a—-b-cy—i, M,<y<M,
0-b—cy—i-s, y<M,

“)
From Eq. (4), the expected profit per item is

E(TP) = j(a b—cy—i=nf(ydy+ j(a b—cy =i f(y)dy+ j(o b—cy—i=9)f(y)dy

] 2

=a—-b- cy—z—r{l ‘ID(G\/—} (a+s)<D(M2_ﬂ

—F) ®)
c/n
multiple in equation (5) we obtain expected profit for n items
To find the optimum process mean p*, Eq. (5) is differentiated with respect to p and set equal to 0, giving:

r M, ,u ats [(M,—u

O'/\/; 0'/\/_ O'/\/; O'/\/; ©

If the second derivative of Eq. (5) is negative, that is,

ETP)=—c+
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e )

Then p* is optimal. We use MSEXCEL for obtaining the optimum process mean.

Consider an imperfect process. The reworked product may be scrapped, perfect, or reworked again. The rework process can be
continued. It is assumed that the quality characteristic of any reworked product is the same as that of the original process. The
imperfect rework model, which include production cost, inspection cost, rework cost, and scrap cost is as follows:

E(TP,)-b-cy—-i-r, y>M,
TP, =|a—-b-cy —1i, M,<ysM, (
O-b—-cy—-i-s, y<M,

From Eq. (7), the expected total cost per item is

E(TR) = [, [ETR)-b-cy=i=rlf )+, (a=b=cy=f()dy+[ O-b-cy=i=9)/(»)

= E(TP,)[1 - q{ﬂi\/_j] b—cu—i—rl- q{ﬂi/\/fj q{]‘;/[J la- S)q{ o/\/_J

Expected total cost for n items is given by
(a+ s)CI)
b+cu+i+r o/ J_ "
CD(Ml_luJ CD(Ml_:uJ
o/\n o/\n

To find the optimum process mean p*, is differentiated with respect to p and set equal to 0, giving:

E(TP,)=r+a-

(- a+s (Mz—,u

0'/\/; 0'/\/;
q{Ml —ﬂj o/ H

,u
b L))
j]_[ +cu+i+r+(a+s) (0' )]¢(O_ \/_

o/ \/_ 9)

E'(TP,) =—

0'/\/;

The second derivative also negative then p* is optimum.

Modified Lee et al.’s Model with Scrap Cost under second order autocorrelation:Consider a manufacturing process where a
quality characteristic is measured at equidistance time points 1, 2, 3, ... n. This situation may occur in a discrete manufacturing
process which produces discrete time 1, 2, 3 ... n, with one quality characteristic of interest. It may also occur in a continuous
manufacturing process where the quality characteristic of interest is measured at discrete equidistant time points. We denote the
behavior of the quality characteristic as X;, X,....X,. It will assumed that on EPC control action can be represented by some
controllable variable or factor x;, such that
xo=p+§, (10)

Where L is a constant, and &, is a stationary time series with zero mean and standard deviationc. A Durbin and Watson
(1950) “d” statistic can be used to detect the presence or absence of serial correlation. The problem, however, is that to do once
the suspicion of dependence via the serial correlation test is confirmed. If serial correlation exists we use identification
techniques to define the nature of &. When identification is complete, the likelihood function can provide maximum likelihood
estimate of the parameters of the identified model.

© 2014, IISRMSS All Rights Reserved 4



ISROSET- Int.J.Sci.Res. in Mathematical & Statistical Sciences Vol-1, Issue-3, PP (1-12) June 2014, E-ISSN: 2348-4519

Suppose that a correlation test revealed the presence of data dependence and identification technique suggested
autoregressive model of order two AR (2) say, then we can express & of equation (10) as
E=a,é +a, ¢, +e,,t=12,...n (11)
Where
o e ~N0 o2

t
2

(ii) cov (e,, € y) = {ge tt:;t}/;/

The Class of stationary models that assume the process to remain in equilibrium about a constant mean level pu. The
variance of AR (2) process is given by:

2 1 B aZ O-e ’ .
o = F > 51 (12) Following Kendall
1+e, ) 1-a,) -a]

and Stuart (1976) it can be shown that for stationary, the roots of the characteristic equation of the process in equation (11)

0 (B) =1-a, B-a,B’ (13) must lies outside
the unit circle, which implies that the parameters o, and o, must satisfy the following conditions :

o, +a <1

o, —a <1

-l<ea, <1 (14)

Now If Glfl and szl are the roots of the characteristic equation of the process given by equation (13) then

G - o, + 1/0(12 + 4a, 15)
=

2

G = o, — 1/0{12 + 4a,
, = (16)

2

For stationary we require that | G, | <1, i =1, 2. Thus, three situations can theoretically arise:

(1) Roots G, and G, are real and distinct (i.e., af —4a, > 0)
(i) Roots G, and G, are real and equal (i.e., 0{12 - 40{2 = 0)

. . 2
(iii) Roots G, and G, are complex conjugate (l.e., o —4a, < O).
When the serial correlation is present in the data, we have for the distribution of the sample mean X, its mean and

variance is given by,

E(x)=u

2
Var(x) = 67 A, e, a,, n), (17

Where ﬂap (a’l , &y, n) depends on the nature of the roots G, and G, , and for different situations is given as follows :

@) If G; and G, are real and distinct,

G, (I_Gzz) GZ(I—GIZ)
G-6,)0+66)" %" G a)iraa) - %"

=, (al’ Q,, n), (18)

/?'ap (al’ a,, ”) =
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Where, A (G, n) = I+6 26 (I_G 2)
1-G n (1-G)

(i) If G and G, are real and equal

A <1—G">{1+ (1+G) (1-G")-n <1_Gz><1+cn>}

1-G) n(1-G) (1+6?) 1-6")
=1, (@, a,,n) (19)
(iii) If G, and G, and complex conjugate

Aoy (0{1, a,, n) = [7/ (d, u)+ 2d W (d,u,n)+ z (d,u,n))}

n (20)
=1, (&, a,, n)

1-d*+2d (1-d?) cos u

(1+d?)(1+d> -2d cosu)

2d(1+d?) sinu— (1+d*) sin 2u —d"* sin((n—2)u)

Where ¥ (d, I/L) =

W (d,u,n) = |
(1+d2)(1+d2—2dcosu)2 sin u
n+3 1 _ _ n+l no.
Z(d,u,n):zd sin (n—1) u—2d s1n(n+1)u;|—d sin ((n+2)u) ,
(1+d2)(1+d2—2d cosu) sin u
d2=-(x27

And  u=cos” | Z|.
2d

The x, denote the change in the level of the compensating variable model at the time t, i.e., the adjustment made at the

time point t. The £, is Gaussian white noise with variance O_". throughout, we suppose that the noise variance is known. In

practice, this is justified if reliable estimates of 0_~ are available from the evaluation of a large number of previous values of

the process, e.g., during the setup phase. The real - valued parameters o, and o, (the autoregressive parameters) determines the
influence of the preceding time point (t - 1) and (t - 2) on the present time point t. We assume an in-control value o; = &, = O for

the auto regression parameters. It is possible that the auto regression parameters may shift to an out-of-control value (a;,0,) # 0.
2

o
Further, the distribution of the sample average will have mean p and standard deviation — A(&. 1,0, 1)

For optimum value of mean and expected profit for n items for perfect rework process under dependency we put the
value of equation (17) in equation (5) and (16) then

M, —u
le(al,az,n)/\/_

M,—-u
oA (0!1,062,11)/\/_ @D

ETP)=a-b-cy—i—r|1-®( —(a+ s)P(

E(TP)=—c+ M4 (z{
= GM%n)/JZ oAa;,05,m)\n aﬂ(oqazn)/\/_ aﬂ(oqoen)/\/_

(22)
For optimum value of mean and expected profit for n items for imperfect rework process under dependency we put the
value of equation (17) in equation (8) and (9) then

© 2014, IJSRMSS All Rights Reserved 6
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E(TP)=r+a b+cu+i+r
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(a+ s)d{

M, -u
aﬂ(al,az,n)/\/z

a+s

q) Ml_ﬂ
aﬂ(al,az,n)/\/;

;

q) Ml _ﬂ
oA, a,,n)/n (23)

M,—u

- a/l(al,az,n)/\/;

aﬂ(al,az,n)/\/_

E'(TP,) =~

M, —u

oMa,,a,, n)/JZ

M, —u

[b+c+i+r+(a+s)d( M,-u

ial,az,n)/\/_)]

6/1(051 , az,n)/«/_

oMay, a,,m)/\n e

M, —p

Numerical Illustration and conclusion:

Consider the packing plant of a tea drink. The plant
consists of two processes: an inspection process and a filling
process. Inspection is performed by measuring the
ingredients of the tea drink. Assume that the ingredients of
the tea drink is above the USL which increases the
manufacturing cost and that the tea drink cannot be sold at a
higher price. Hence, the producer adopts a rework for it. If
the ingredients of the tea drink is below the LSL, a penalty
cost due to government’s law may occur. Hence, the
producer adopts a scrap for it. For the rework of a product,
there exists the perfect and imperfect rework cases.
Conforming ingredients of the tea drink is canned by a filling
machine and moved to the dispatching stages on a conveyor
belt. From theoretical considerations and past experience, it
is known that the ingredients of the tea drink Y is normally

© 2014, IJSRMSS All Rights Reserved

1’0’2”1)/\/_

(24)

distributed with a known standard deviation ¢ = 0.25 and an
unknown mean p. Let the target value of the mean be 40.75.
Assume that the cost components and the specification limits
for Yarea=5,5=03,r=0.1, b =0.1, c = 0.06, i= 0.04,

Ml =41.5 and M2= 40 n = 15, 20. The producer would

like to determine the optimum process mean for maximizing
the expected profit per item and n items under the
dependency.

By solving Eq. (22), the optimum process mean for the
perfect rework and By solving Eq. (23), the optimum process
mean for the imperfect rework are process is obtain for
independent case and different situation of autocorrelation.

Sensitivity Analysis also performed for a, b, ¢, i, r, s under
the independent case and different situation of
autocorrelation. In tables 1.1 to 1.4

7
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Table:1.1 Optimum process mean and expected profit of the perfect and imperfect rework model under independent case with respect to different
values of model parameter

Perfect Imperfect Perfect Imperfect Perfect Imperfect

H Expected U2 Final value U Final U2 Final value I8 Final U2 Final value
0.5 | 40.6186 | -2.0824755 | 40.6189 | -2.082476 0.5 | 40.78999 | 2.008194 | 40.7904 | 2.00819132 | 0.5 | 40.601 | -15.4835 | 40.59464 | -15.48339
40.6399 | -1.5852346 | 40.6666 | -1.585022 1 | 40.78999 | 1.508194 | 40.7904 | 1.50819132 | 1 40.519 | -35.7594 | 40.51661 | -35.7594
1.5 | 40.641 | -1.0878021 | 40.6969 | -1.086659 1.5 | 40.78999 | 1.008194 | 40.7904 | 1.00819132 | 1.5 | 40.461 | -56.0042 | 40.46497 | -56.00415
2 40.6421 | -0.5903055 | 40.719 -0.587861 2 | 40.78999 | 0.508194 | 40.7904 | 0.50819132 | 2 40.43 | -76.2264 | 40.42455 | -76.2262
2.5 | 40.6499 | -0.0920942 | 40.7363 | -0.088809 2.5 | 40.78999 | 0.008194 | 40.7904 | 0.00819132 | 2.5 | 40.395 | -96.4299 | 40.39032 | -96.42971
40.67 0.4076073 40.7503 | 0.4104093 | 3 | 40.78999 | -0.49181 | 40.7904 | -0.4918087 | 3 40.36 | -116.617 | 40.35994 | -116.6171
3.5 | 40.681 | 0.906833 40.7624 | 0.9097435 | 3.5 | 40.78999 | -0.99181 | 40.7904 | -0.9918087 | 3.5 | 40.333 | -136.79 | 40.3321 | -136.7901
40.783 | 1.4090806 40.773 1.4091636 | 4 | 40.78999 | -1.49181 | 40.7904 | -1.4918087 | 4 40.31 | -156.95 40.30593 | -156.9495
4.5 | 40.79 1.908588 40.782 1.9086521 | 4.5 | 40.78999 | -1.99181 | 40.7904 | -1.9918087 | 4.5 | 40.283 | -177.096 | 40.28084 | -177.0962
5 40.831 | 2.407416 40.7903 | 2.4081919 |5 | 40.78999 | -2.49181 | 40.7904 | -2.4918087 | 5 40.26 | -197.231 | 40.25633 | -197.2305
5.5 | 40.89 2.9047902 | 40.7978 | 2.9077746 | 5.5 | 40.78999 | -2.99181 | 40.7904 | -2.9918087 | 5.5 | 40.236 | -217.353 | 40.23193 | -217.3525
6 40.999 | 3.3976036 40.8045 | 3.4073936 | 6 | 40.78999 | -3.49181 | 40.7904 | -3.4918087 | 6 40.21 | -237.462 | 40.20715 | -237.4623
6.5 | 41.11 3.8874314 | 40.8109 | 3.9070408 | 6.5 | 40.78999 | -3.99181 | 40.7904 | -3.9918087 | 6.5 | 40.186 | -257.56 | 40.1814 | -257.5595
7 41.219 | 4.3738054 | 40.8165 | 4.4067158 | 7 | 40.78999 | -4.49181 | 40.7904 | -4.4918087 | 7 40.155 | -277.643 | 40.15377 | -277.6434
7.5 | 41.398 | 4.8419562 | 40.822 | 49064104 | 7.5 | 40.78999 | -4.99181 | 40.7904 | -4.9918087 | 7.5 | 40.124 | -297.713 | 40.12256 | -297.7127
8 41412 | 5.339038 40.827 5.4061253 8 | 40.78999 | -5.49181 | 40.7904 | -5.4918087 | 8 40.09 | -317.765 | 40.08339 | -317.7647
8.5 | 41.459 | 5.8289734 | 40.8316 | 5.9058579 | 8.5 | 40.78999 | -5.99181 | 40.7904 | -5.9918087 | 8.5 | 40.01 | -337.79 | 40 -337.79

9 41.499 | 6.3202196 | 40.836 6.4056047 | 9 | 40.78999 | -6.49181 | 40.7904 | -6.4918087 | 9 39.999 | -357.789 | 40.009 -357.7949
9.5 | 41.501 | 6.8197804 | 40.8404 | 6.9053624 | 9.5 | 40.78999 | -6.99181 | 40.7904 | -6.9918087 | 9.5 | 39.989 | -377.779 | 40.00009 | -377.7901
10 | 41.699 | 7.2793616 40.8442 | 7.4051357 10 | 40.78999 | -7.49181 | 40.7904 | -7.4918087 | 10 | 39.979 | -397.757 | 40.00099 | -397.7915
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Table:1.2 Optimum process mean and expected profit of the perfect and imperfect rework model under independent case with respect to different
values of model parameter

Perfect Imperfect Perfect Imperfect Perfect Imperfect

Final Final Final

M Final value U2 Final value | r Ui value U2 Final value | s i value U2 value
0.5 | 40.7904 1.9481913 | 40.742 | 1.9474153 | 0.5 | 40.816 | 2.408021 | 40.742 | 2.40692943 | 0.5 | 40.7933 | -2.08248 | 40.742 | 2.4071156
1| 40.7904 1.4481913 | 40.741 | 1.4473729 1| 40.819 | 2.407618 | 40.742 | 2.40632208 1] 40.8006 | -1.58523 | 40.741 | 2.4063101
1.5 | 40.7904 0.9481913 | 40.742 | 09474153 | 1.5 | 40.819 | 2.40725| 40.742 | 2.40571473 | 1.5 | 40.807 -1.0878 | 40.742 | 2.4056168
2 | 40.7904 0.4481913 | 40.742 | 0.4474153 2 40.82 | 2.406908 | 40.742 | 2.40510738 | 2 | 40.8132 | -0.59031 | 40.742 | 2.4048675
2.5 | 40.7904 | -0.0518087 | 40.742 | -0.052585 | 2.5 | 40.7852 | 2.406591 | 40.742 | 2.40450004 | 2.5 | 40.8188 | -0.09209 | 40.742 | 2.4041181
31 40.7904 | -0.5518087 | 40.742 | -0.552585 3| 40.783 | 2.406295 | 40.742 | 2.40389269 | 3| 40.8239 | 0.407607 | 40.742 | 2.4033688
3.5 ] 40.7904 | -1.0518087 | 40.742 | -1.052585 | 3.5 | 40.782 | 2.406016 | 40.742 | 2.40328534 | 3.5 | 40.8289 | 0.906833 | 40.746 | 2.4030204
4| 40.7904 | -1.5518087 | 40.742 | -1.552585 | 4| 40.7632 | 2.405755 | 40.742 | 2.40267799 | 4 | 40.8334 | 1.409081 40.79 | 2.4052748
4.5 | 40.7904 | -2.0518087 | 40.742 | -2.052585 | 4.5 | 40.7579 | 2.405505 | 40.742 | 2.40207064 | 4.5 | 40.8379 | 1.908588 40.81 | 2.4054333
5| 40.7904 | -2.5518087 | 40.742 | -2.552585 5| 40.7531 2.40527 | 40.742 | 2.4014633 5| 40.842 | 2.407416 40.83 | 2.405331
5.5 | 40.7904 | -3.0518087 | 40.742 | -3.052585 | 5.5 | 40.748 | 2.405048 | 40.742 | 2.40085595 | 5.5 | 40.8457 | 2.90479 40.84 | 2.4050935
6 | 40.7904 | -3.5518087 | 40.742 | -3.552585 6 | 40.7442 | 2.404834 | 40.742 | 2.4002486 | 6 | 40.8494 | 3.397604 | 40.8494 | 2.4048342
6.5 | 40.7904 | -4.0518087 | 40.742 | -4.052585 | 6.5 40.74 | 2.40463 | 40.742 | 2.39964125 | 6.5 | 40.8529 | 3.887431 | 40.853 | 2.4046293
7| 40.7904 | -4.5518087 | 40.742 | -4.552585 7 40.75 | 2.404433 | 40.742 | 2.3990339 | 7| 40.8564 | 4.373805 | 40.856 | 2.4044378
7.5 | 40.7904 | -5.0518087 | 40.742 | -5.052585 | 7.5 40.73 | 2.404246 | 40.742 | 2.39842656 | 7.5 | 40.8596 | 4.841956 | 40.859 | 2.4042528
8 | 40.7904 | -5.5518087 | 40.742 | -5.552585 8 40.72 | 2.404065 | 40.742 | 2.39781921 8 | 40.8627 | 5.339038 | 40.861 | 2.4040849
8.5 ] 40.7904 | -6.0518087 | 40.742 | -6.052585 | 8.5 | 40.783 | 2.403892 | 40.742 | 2.39721186 | 8.5 | 40.8656 | 5.828973 | 40.863 | 2.4039223
91 40.7904 | -6.5518087 | 40.742 | -6.552585 9| 40.783 | 2.403724 | 40.742 | 2.39660451 91 40.8685 | 6.32022 | 40.865 | 2.4037645
9.5 | 40.7904 | -7.0518087 | 40.742 | -7.052585 | 9.5 | 40.783 | 2.403561 | 40.742 | 2.39599716 | 9.5 | 40.8713 | 6.81978 | 40.866 | 2.4036209
10 | 40.7904 | -7.5518087 | 40.742 | -7.552585 | 10| 40.783 | 2.403404 | 40.742 | 2.39538982 | 10 | 40.874 | 7.279362 40.87 | 2.4034526
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Table:1.3 Optimum process mean and expected profit of the perfect and imperfect rework model under second order autocorrelation respect to
different values of model parameter ‘a’

Roots are real & equal Roots are real & distinct Roots are complex
Ma1=0.8,02=0.16,n=15)=3.544 Ma1=0.3,02=0.6,n=15)=9.91 Ma1=0.8,02=-0.6,n=15)=1.06
Perfect Imperfect Perfect Imperfect Perfect Imperfect
Final
a M Final value | p2 value M Final value | u» Final value | w4 Final value | u. Final value
0.5 ] 42.071 | -2.2460623 | 39.93185 | -2.582551 | 43.469 | -2.491383 33.999 | -2.4775618 39.351 | -2.7953308 | 39.351 | -2.7953308
1]42.198 -1.75886 | 38.1171 | -2.70546 | 44.165 | -1.936076 35| -2.5274567 | 39.3004 | -2.7926351 | 39.3004 | -2.7926351
1.5 | 42.281 | -1.2669922 | 37.9826 | -2.698602 | 44.58 | -1.462169 | 36.00999 | -2.5595591 | 39.2686 | -2.7909139 | 39.2686 | -2.7909139
2 142343 | -0.7729208 37.888 | -2.693681 | 44.87 | -0.980247 36.4 | -2.5477526 | 39.2454 | -2.7896574 | 39.2454 | -2.7896574

2.5 142392 | -0.2775319 | 37.8157 | -2.689864 | 45.095 | -0.493989 36.74 | -2.5209268 | 39.2272 | -2.7886719 | 39.2273 | -2.7886719

3142434 | 0.21863189 37.757 | -2.686755 | 45.278 | -0.004998 35.71 | -2.4994964 | 39.21228 | -2.7878634 | 39.2123 | -2.7878634

3.5142.469 | 0.71544714 | 37.7085 | -2.684139 | 45.43 | 0.4858751 35.344 | -2.4857037 39.2 | -2.7871793 39.2 | -2.7871793

4 42.5 | 1.21268043 | 37.6665 | -2.681885 | 45.56 | 0.978101 35.09 | -2.4750824 | 39.1893 | -2.7865872 | 39.1893 | -2.7865872

4.5 142527 | 1.71027782 | 37.6291 | -2.679908 | 45.675 | 1.4713322 34.895 | -2.4663896 | 39.1796 | -2.786066 | 39.1798 | -2.786066

5| 42.552 | 2.20810798 37.596 | -2.678148 | 45.775 | 1.9653722 34.738 | -2.4590188 | 39.1713 | -2.7856008 | 39.1713 | -2.7856008

5.5 142574 | 2.70618818 37.567 | -2.676565 | 45.865 | 2.4600421 34.6 | -2.4526185 | 39.1637 | -2.7851811 | 39.1637 | -2.7851811

6 | 42.594 | 3.20445159 37.541 | -2.675127 | 45.95 | 2.9552063 3448 | -2.446963 | 39.1568 | -2.784799 | 39.1568 | -2.784799

6.5 | 42.613 | 3.70284006 37.516 | -2.673811 | 46.025 | 3.4508199 34.379 | -2.4418986 | 39.1504 | -2.7844484 | 39.1505 | -2.7844484

7] 42.63 | 420138194 37.494 | -2.672597 | 46.094 | 3.9467958 34.285 | -2.4373151 | 39.1445 | -2.7841247 | 39.1446 | -2.7841247

7.5 | 42.647 | 4.69998675 37473 | -2.671472 | 46.158 | 4.4430804 342 | -2.4331304 39.139 | -2.7838243 | 39.139 | -2.7838243

8 142.662 | 5.19872503 37.454 | -2.670424 | 46.216 | 4.9396403 34.124 | -2.4292821 | 39.1342 | -2.7835439 | 39.134 | -2.7835439

8.5 42.676 | 5.69754976 37.436 | -2.669444 | 46.272 | 5.436423 34.05 | -2.4257213 | 39.1293 | -2.7832813 | 39.1294 | -2.7832813

9| 42.69 | 6.19641819 37.419 | -2.668523 | 46.323 | 5.9334181 33.986 | -2.4224091 39.125 | -2.7830343 | 39.125 | -2.7830343

9.5 | 42.703 | 6.69536279 37.403 | -2.667655 | 46.375 | 6.4305753 33.926 | -2.4193138 | 39.1208 | -2.7828012 | 39.1208 | -2.7828012

10 | 42.715 | 7.19437859 37.388 | -2.666835 | 46.419 | 6.9279187 33.869 | -2.4164096 | 39.1168 | -2.7825807 | 39.1168 | -2.7825807

© 2014, IJSRMSS All Rights Reserved 10




ISROSET- Int.J.Sci.Res. in Mathematical & Statistical Sciences

Vol-1, Issue-3, PP (1-12) June 2014, E-ISSN: 2348-4519

Table:1.4 Optimum process mean and expected profit of the perfect and imperfect rework model under second order autocorrelation respect to
different values of model parameter ‘b’

Roots are real & equal
Ma1=0.8,02=0.16,n=15)=3.544

’

Roots are real & distinct
Mal1=0.3,02=0.6,n=15)=9.91

9

Roots are complex , AM(a1=0.8,02=-
0.6,n=15)=1.06

Perfect Imperfect Perfect Imperfect Perfect Imperfect
Final Final
b M Final value | p2 value M value M2 Final value | Final value | u. Final value
0.5 | 42.552 | 1.80810798 | 37.5969 | -3.078151 | 45.774999 | 1.5653722 | 38.9144 | -2.5585125 | 39.17136 | -3.1856008 | 39.1712 | -3.1856008
1| 42.551 | 1.30815249 | 37.5966 | -3.578153 | 45.774999 | 1.0653722 38.593 | -3.1358066 | 39.17136 | -3.6856008 | 39.1712 | -3.6856008
1.5 | 42.552 | 0.80810798 | 37.5963 | -4.078156 | 45.774999 | 0.5653722 38.295 | -3.6968344 | 39.17136 | -4.1856008 | 39.1712 | -4.1856008
2| 42.552 | 0.30810798 | 37.5962 | -4.578158 | 45.774999 | 0.0653722 | 38.0109 | -4.2453474 | 39.17136 | -4.6856008 | 39.1712 | -4.6856008
2.5 | 42552 | -0.191892 | 37.5971 | -5.078161 | 45.774999 | -0.434628 37.739 | -4.7840211 | 39.17136 | -5.1856008 | 39.1712 | -5.1856008
3] 42,552 | -0.691892 | 37.5966 | -5.578164 | 45.774999 | -0.934628 37.47 -5.314815 | 39.17136 | -5.6856008 | 39.1712 | -5.6856008
35| 42552 | -1.191892 | 37.597 | -6.078166 | 45.774999 | -1.434628 37.2 | -5.8391872 | 39.17136 | -6.1856008 | 39.1712 | -6.1856008
41 42551 | -1.6918475 | 37.597 | -6.578169 | 45.774999 | -1.934628 36.92 | -6.3582202 | 39.17136 | -6.6856008 | 39.1712 | -6.6856008
45| 42552 | -2.191892 | 37.597 | -7.078172 | 45.774999 | -2.434628 36.606 | -6.8726737 | 39.17136 | -7.1856008 | 39.1712 | -7.1856008
5| 42551 | -2.6918475 | 37.597 | -7.578174 | 45.774999 | -2.934628 36.13 | -7.3828404 | 39.17136 | -7.6856008 | 39.1712 | -7.6856008
5.5 | 42,552 | -3.191892 | 37.597 | -8.078177 | 45.774999 | -3.434628 359 | -7.8890121 | 39.17136 | -8.1856008 | 39.1712 | -8.1856008
6| 42.551 | -3.6918475 | 37.597 | -8.57818 | 45.774999 | -3.934628 35.7 | -8.3927512 | 39.17136 | -8.6856008 | 39.1712 | -8.6856008
6.5 | 42552 | -4.191892 | 37.597 | -9.078182 | 45.774999 | -4.434628 35.57 | -8.8955018 | 39.17136 | -9.1856008 | 39.1712 | -9.1856008
7| 42.551 | -4.6918475 | 37.597 | -9.578185 | 45.774999 | -4.934628 38.91 -10.18688 | 39.17136 | -9.6856008 | 39.1712 | -9.6856008
7.5 | 42,552 | -5.191892 | 37.5971 | -10.07819 | 45.774999 | -5.434628 3891 | -10.773677 | 39.17136 | -10.185601 | 39.1712 | -10.185601
8| 42.552 | -5.691892 | 37.5971 | -10.57819 | 45.774999 | -5.934628 3891 | -11.360474 | 39.17136 | -10.685601 | 39.1712 | -10.685601
8.5 | 42.551 | -6.1918475 | 37.5972 | -11.07819 | 45.774999 | -6.434628 3891 | -11.947272 | 39.17136 | -11.185601 | 39.1712 | -11.185601
9| 42552 | -6.691892 | 37.5973 | -11.5782 | 45.774999 | -6.934628 3891 | -12.534069 | 39.17136 | -11.685601 | 39.1712 | -11.685601
9.5 | 42.551 | -7.1918475 | 37.5974 | -12.0782 | 45.774999 | -7.434628 | 34.92768 | -11.895845 | 39.17136 | -12.185601 | 39.1712 | -12.185601
10 | 41.8499 | -7.6429123 | 37.5974 | -12.5782 | 45.774999 | -7.934628 34.8 | -12.392921 | 39.17136 | -12.685601 | 39.1712 | -12.685601
© 2014, IJSRMSS All Rights Reserved 11




ISROSET- Int.J.Sci.Res. in Mathematical & Statistical Sciences

From tables 1.1 to 1.4 autocorrelation affected the optimum
values of mean and expected profit. In several values of
autocorrelation profit is found negative which indicated loss.
Sensitive analysis of parameters there was no change found in
optimum value of mean in case parameter b and i but change
was found their expected profits. Rest of the parameters a, r,

C?

s affected the optimum values of mean and expected profit.
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