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Abstract: The structure factor represents the gross part of Energy which is identified with the help of graph theory. The 

total energy determined in the case of benzenoid structures is more than 99.5%. The present study is aimed to use well 

known. Topological index, Padmakar Ivan index for modeling of alternate polycyclic conjugated hydrocarbons. 
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I. INTRODUCTION 

 
The graph energy is a quantity closely related to total π-

electron energy 1-5. As usual, E is expressed in units of the 

carbon-carbon resonance integral β. The question of the 

dependence of E on the structure of the respective 

conjugated molecule was first addressed by Charles A. 

Coulson in 19406 and eventually because the subject of a 

large number of investigations. Although a complete 

solution of the problem is still not in sight, the structure 

factor represent the gross part of E are now identified. 

These are n, the number of vertices, and m, the number of 

edges of the molecular graph. In the case of Benzenoids 

hydrocarbons they determine somewhat more than 99.5% 

of E
7, 8

. The main factor responsible for the energy 

differences between * benzenoid systems is recognized to 

be the number of Kekule structures (K). The seemingly 

simple question of how E depends on K resulted in three 

different and mutually contradicting approaches.  

 

Based on the fact that E (G1 ⊂ G2) = E(G1) + E(G2) and 

K(G1UG2) = K(G1) ·  K(G2), a logarithmic dependence of 

E on K was anticipated8-11. Here G1UG2 denotes the graph 

composed of disconnected components G1 and G2. 

Based on certain assumptions about the distribution of the 

graph Eigen value Cioslowski at the following formula12: 

 

             E= n

2

2

1

K)n/m2(Fmn2

−

    (1) 

 
Where F is a certain function whose actual form could not 

be determined
13-16

. It was shown
17

 that Cioslowski’s 

formula requires that the coefficients of the characteristic 

polynomial are not mutually correlated, a condition that 

seems not to be fulfilled in a series of isomeric benzenoid 

systems.  

 

The observation that in case of benzenoid hydrocarbon E 

is a linear function of K was first made by Hall18 and was 

later put in a following quantitative form: 

 

E = An + Bm + CKD
m-n

    (2) 

where A, B, C and D are empirical parameters, determined 

by least-square fitting.  

 

Irrespective of the form of the function F, equation (1) 

implies a non-linear dependence of E on K. This makes it 

possible to decide which of the approximations equation 

(1) and (2) is more appropriate. Empirical and statistical 

examination of the E values of series of isomeric 

benzenoid hydrocarbon revealed that the linear formula (2) 

is more suitable than any of the Cioslowski’s type 

expressions. In spite of numerous efforts along these lines 

no satisfactory explanation for the success of (2) has been 

offered so far. The present study is aimed at filling this gap 

in that we have used the well-known topological index 

viz., Padmakar-Ivan (PI) index
19

 for modelling * of 

alternate polycyclic conjugated hydrocarbons.  

 

II. METHODOLOGY 
 

Topological indices are numbers associated with 

molecular graphs for the purpose of allowing quantitative 

structure-activity / property / toxicity relationship. The 

first topological index viz., Weiner index, W, was 

introduced by Harold Weiner in 1947. Ivan Gutman 

defined cyclic version of Wiener index W, and assumed it 

Szeged index Sz. For trees W = Sz, but for cyclic graphs 

the two indices are different. Consequently, Padmakar 

Khadikar introduced a new topological index that he called 

the Padmakar-Ivan index, PI. This PI index is different for 

acyclic as well as cyclic graphs. Subsequently, Khadikar 

introduced yet another index called Sadhana index, Sd, 

which is applicable to cyclic graphs only. In addition, there 

are some other types of indices based on the concept of 

connectivity, chief among than being Randic * and * Hall 

valence * indices. However, the methodology used by us is 

chiefly based on Weiner and Weiner type indices: W, Sz, 

PI and Sd. 

 

The above mentioned indices are calculated using the 

following expressions:  

 

(i) Weiner Index (W) 
The Weiner index of a graph G is the half sum of distances 

over all its vertex pairs (i, j): 



  ISROSET- Int. J. Sci. Res. in Physics and Applied Sciences            Vol-3, Issue-2, PP (1-8) Apr 2015, ISSN: 2348–3423 

     © 2015, IJSRPAS All Rights Reserved                                                                                                                          3 

W = W (G) = ∑
)j,i(

)j,i(d
2

1
             (3) 

(ii) Padmakar – Ivan Index (PI) 
The Padmakar – Ivan, PI index of a graph G is 

defined as: 

 

PI = PI(G) = ∑[neu (e|G) + nev (e|G)]              (4) 

 
where neu (e|G) is the number of edges of G lying closer to 

u than v, nev (e|G) is the number of edges of G lying closer 

to v than u and summation goes over all edges of G. The 

edges equidistant from both u and v are not taken into 

account for the calculation of PI index. 

 

(iii)  Sadhana Index (Sd) 
The Sadhana index, Sd, for counting * strips in G was 

defined by Khadikar as 

 

Sd = Sd (G) = ∑ −

C

)c|)G(E|()c,G(m            (5) 

where m(G, c) is the number of strips of length c. 

 

(iv) Szeged Index (Sz) 

The Szeged index, Sz, of a graph G is defined as: 

 

Sz = Sz (G) = ∑
∈

⋅

)G(Ee

21 )G|e(n)G|e(n      (6) 

 

where n1 and n2 are the number of vertices lying closer to 

the ends of an edge e. The vertices equidistant from both 

the ends of an edge are not counted for the calculation of 

Sz. The summation goes over all the edges of a graph G. 

 

III. RESULTS AND DISCUSSIONS 

 
The structural details and the parameters used are given in 

Table 1,while the variable selection for multiple 

regression are shown in Table 2. The Table 3 records 

statistically significant models for modelling the energy. 

Ridge regression data are given in Table 4 and Table 

5.The comparison of calculated and observed energy is 

made in Table 6.The results are discussed below. 

 

One variable modeling of energy 
The details of one-variable 

modeling of E is given below: 

 

Parameter  used R R2 R2A CV           

     

        W 0.9748 0.9430 0.0486 199.673 

        Sz 0.9320 0.9258 0.0554 150.789 

        PI 0.9696 0.9669 0.0370 351.351 

       Sd 0.8331 0.8179 0.0868 54.916 

        K 0.8727 0.8612 0.0758 75.439 

        CSC 0.4700 0.4218 0.1547 9.755 

       HOMO 0.0228 0.0000 0.2101 0.357 

Comment on adjustable R
2
 (R

2
A)  

The adjustable-R2 (R2
A) takes into account of advancement 

of R
2 

and is given by following expression: 

                                      R
2

A=1-(1-R
2
) (n-1 / n-k-1)                               

(18) 
If a variable is added that does not contribute its fair share, 

then R
2

A will actually decline. This parameter R
2

A is 

particularly important when the number of independent 

variables is larger relative to the sample size.  R
2 may 

appear artificially high if the number of variables is high 

compared to the sample size. In fact, R
2 

will always 

increase when an independent variable is added, while R
2

A 

will decrease if the added variable does not reduce the 

unexplained variation enough to affect the loss of degrees 

of freedom. 

Problem of Co-linearity and Randic recommendations 
The problem of co-linearity can be resolved in two 

different ways:  

(i) applying pure statistics and forgetting the possible 

physical significances of the parameter involved in the 

model  

or  

(ii) do not entirely depend on the statistics and use Randic 

recommendations.  

The first approach uses the results obtained from (i) 

correlation matrix; (ii) Ridge statistics, (iii) λ-statistics. 

 

(i) Correlation matrix 
In order to investigate co-linearity problem in the proposed 

models we have to first obtained correlation matrix for the 

best model in modeling energy.Fortunately, we obtain a 

best model (Table 3) which contains PI, HOMO and K as 

the correlating parameters. This situation has an additional 

advantage that using such models containing common 

correlating parameters we can study relative potential of 

these indices in modeling the referred three activities. It is 

worthy to mention that the correlation matrix is very useful 

for determining which independent variables are likely to 

help explain variation in the dependent variables. Here we 

look the correlation close to ±1.0 since that indicates 

changes in the independent variables are linearly related to 

changes in the dependent variables. We can also use 

correlation matrix to determine the extent to which 

independent variables are correlated with one another i.e. 

their inter-correlated ness or auto-correlation. This can be 

useful in determining if certain independent variables are 

redundant and notneeded in the model.  In practice every 

term in the correlation matrix > 0 .4 can be taken as being 

suspicious due to co linearity. 

 

A perusal of Table shows the following: 

(a)  in case of equation (1) W, 
1
χ, and Sz are highly 

correlated. Similarly Jhetm is highly correlated with 

Jhete. Thus, this model expressed by equation (1) 

suffers from co-linearity-defect; 

(b) Correlation matrix involving quantum-theoretical 

descriptors indicates [equation (11)] that none of the 

parameters used exhibit any co- linearity. That is, all 

the models using quantum-theoretical descriptors 
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only will be free from co-linearity defect. Thus, the 

model expressed by equation  again is free from such 

defect; 

(c)   Finally equation  considered the combination of 

topological and quantum-theoretical descriptors its 

correlation matrix shows that topological indices W, 
1
χ and Sz are highly linearly correlated. Same is the 

case with Jhetm and  Jhete. Thus, like equation (1) 

this model also suffers from co-linearity defect. 

Finally, we will use Randic recommendation for making 

finial conclusion. 

 

 (ii) Randic recommendations 
Randic  stated that if a descriptor strongly correlates with 

another descriptor already used in a regression, such a 

descriptor in most studies should be discarded. For 

example 1χ and 2χ , 1χ often strongly correlate and in many 

structure-property-activity studies 2χ has been discarded. 

This is not theoretically justified and despite the 

widespread practice should be stopped. Although two 

highly correlated descriptors overall depict the same 

features of molecular structure, it is important to recognize 

that even highly interrelated descriptors differ in some 

other structural traits. The difference between them may be 

relatively small but nevertheless very important for 

structure-property regression. 

 

The criteria for inclusion or exclusion of descriptors 

should not be based on parallelism between descriptors 

even if overwhelming, but should be based on whether the 

part in which two descriptors disagree is or is not relevant 

for the characterization of the property considered .If the 

part in which the second descriptor differ from the first, 

regardless of how small it is, is relevant for the property 

under consideration, then the descriptor should be 

included. Randic [59,60] further stated  
 
that the selection 

of descriptors to be used in structure-property-activity 

studies should not be delegated solely to computers, 

although statistical criteria will continue to be useful for 

preliminary screening of descriptors taken from a large 

pool. Often in an automated selection of descriptors, a 

descriptor will be discarded because it is highly correlated 

with another descriptor already selected. But what is 

important is not whether two descriptors parallel one 

another; i.e., duplicates much of the same structural 

information, but whether they are complementary in those 

parts that are important for structure-property-activity 

correlations. Hence, the residual of the correlation between 

two descriptors should be examined and kept or discarded 

depending on how well it can improve the correlation 

based on already selected descriptors. 

 
Table 1. Structures and parameters 

 

S. 

No. 

Structure K CSc Eπ HOM

O 

W K0 K1 K2 KV0 KV1 KV2 Sz PI Sd 

1 

 

6 

 

2 21.77

65 

0.209

0 

370 10.53

52 

7.949

5 

6.763

9 

10.53

52 

7.949

5 

6.763

9 

104

4 

306 11

4 

2 

 

6 4 24.78

86 

0.265

7 

501 11.94

94 

8.932

7 

7.918

6 

11.94

94 

8.932

7 

7.918

6 

135

7 

384 14

7 

3 

 

9 1 27.03

68 

0.110

1 

664 13.10

41 

9.932

7 

8.688

4 

13.10

41 

9.932

7 

8.688

4 

206

4 

500 16

8 

4 

 

13 5 30.59

35 

0.271

7 

901 14.25

88 

10.91

58 

9.505

9 

14.25

88 

10.91

58 

9.505

9 

259

7 

646 24

3 

5 

 

11 7 30.44

24 

0.314

2 

919 14.51

83 

10.91

58 

9.443

2 

14.51

83 

10.91

58 

9.443

2 

232

0 

610 26

0 

6 12 4 30.20

12 

0.180

8 

101

5 

14.51

83 

10.89

9 

9.505

9 

14.51

83 

10.89

9 

9.505

9 

251

4 

600 26

0 
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7 

 

17 15 33.54

39 

0.445

0 

108

0 

15.93

25 

11.93

27 

10.44

87 

15.93

25 

11.93

27 

10.44

87 

273

6 

712 30

8 

8 

 

9 9 32.72

23 

0.456

8 

131

4 

16.19

2 

11.84

85 

10.39

23 

16.19

2 

11.84

85 

10.39

23 

387

0 

648 21

6 

9 

 

19 7 36.23

00 

0.228

0 

147

9 

16.82

77 

12.88

21 

11.49

74 

16.82

77 

12.88

21 

11.49

74 

419

4 

922 35

2 

10 

 

21 3 35.82

58 

0.158

6 

141

1 

16.82

77 

12.89

9 

11.43

04 

16.82

77 

12.89

9 

11.43

04 

439

4 

916 32

0 

11 

 

26 24 39.69

16 

0.468

9 

154

4 

18.24

19 

13.89

9 

12.88

35 

18.24

19 

13.89

9 

12.88

35 

472

4 

105

2 

25

2 

12 

 

30 4 41.50

81 

0.136

7 

217

3 

19.39

66 

14.86

53 

13.42

19 

19.39

66 

14.86

53 

13.42

19 

660

7 

124

0 

44

4 

13 

 

45 27 45.59

41 

0.260

7 

253

0 

20.55

13 

15.86

53 

14.93

77 

20.55

13 

15.86

53 

14.93

77 

732

6 

147

2 

48

0 

 
Table 2. Variable selection regression report 

 

Code Variable  Model 

Size 

R
2
 Coded Variables Model 

  

C5 

 

Eπ 

    

 

A 

 

C3 

 

K 

 

1 

 

0.969643 

 

F 
 

C15 

 

B 

 

C4 

 

CSC 

 

2 

 

0.985594 

 

CF 
 

C6, C15 

 

C 

 

C6 

 

HOMO 

 

3 

 

0.993175 

 

ACF 
 

C3, C6, C15 

 

D 

 

C7 

 

W 

 

4 

 

0.995170 

 

ABFG 
 

C3, C4, C15, C16 

 

E 

 

C14 

 

Sz 

 

5 

 

0.995331 

 

ABCFG 
 

C3, C4, C6, C15, C16 

 

 

F 

 

C15 

 

PI 

 

6 

 

0.995391 

 

ABCDFG 
 

C3, C4, C6, C7, C15, C16 

 

G 

 

C16 

 

Sd 

 

7 

 

0.995391 

 

ABCDEFG 
 

C3, C4, C6, C7, C14, C15, C16 

 

 

Table 3.  Multiple regressions: Statistically significant models for modeling Eπ  
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Model 1: C15 

Eπ = 17.9339 + 0.0197 (± 0.0010) PI 

R
2
 = 0.9696, R

2
A = 0.9696, CV = 0.0370, F = 351.351 

Model 2: C6, C15 

Eπ = 16.0908 + 0.0196 (± 0.0008)PI + 7.0149 (± 2.1081)HOMO 

R
2
 = 0.9856, R

2
A = 0.9827, CV = 0.0268, F = 342.078 

Model 3: C3, C6, C15 

Eπ = 14.5133 + 0.0269 (± 0.0024)PI – 0.2274 (± 0.0719) K + 6.4303 (± 1.5406)HOMO 

R2 = 0.9932, R2A = 0.9909, CV = 0.0194, F = 436.571 

Model 4: C3, C4, C15, C16 

Eπ = 14.8737 + 0.0279 (± 0.0025)PI + 0.0096 (± 0.0045) Sd – 0.4250 (± 0.0715) K + 0.1641 (± 0.0327) CSC 

R2 = 0.9952, R2A = 0.9928, CV = 0.0173, F = 416.061 

Model 5: C3, C4, C6, C15, C16 

Eπ = 14.6270 + 0.0269 (± 0.0033)PI + 0.0088 (± 0.0051) Sd – 0.3656 (± 0.1422) K + 0.1187 (± 0.0985) CSC + 

2.1469 (± 4.3648) HOMO 

R
2
 = 0.9953, R

2
A = 0.9920, CV = 0.0182, F = 298.461 

 
Table 4.  Ridge Regression Reports Correlation Matrix 

 

  

C3( E ) 

 

C4( 

CSC ) 

 

C15 ( PI 

) 

 

C16 ( Sd 

)  

 

C5 

 

C3 

 

1.000000 

 

0.712995 

 

0.972673 

 

0.891429 

 

0.934207 

 

C4 

 

0.712995 

 

1.000000 

 

0.653412 

 

0.477148 

 

0.685568 

 

C15 

 

0.972673 

 

0.653412 

 

1.000000 

 

0.924817 

 

0.984704 

 

C16 

 

0.891429 

 

0.477148 

 

0.924817 

 

1.000000 

 

0.912754 

 

C5 

 

0.934207 

 

0.685568 

 

0.984704 

 

0.912754 

 

1.000000 

 

 
Table 5.  Values of VIF, Tolerance, Eigen Values and Condition Number 

 

Independent Variable VIF Tolerance igen Value Condition Number 

 

C3 

 

23.3990 

 

0.0427 

 

3.345782 

 

1.00 

 

C4 

 

2.7109 

 

0.3689 

 

0.564565 

 

5.93 

 

C15 

 

26.5860 

 

0.0376 

 

0.067161 

 

49.82 

 

C16 

 

8.7248 

 

0.1146 

 

0.022492 

 

148.76 

 

 

Since some VIF's are greater than 10, multi-collinearity is a problem. Some Condition Numbers greater than 100. Multi-

collinearity is a MILD problem. 
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Table 6.  Correlation of actual (observed) and predicted  (calculated) Eπ  values. 

      

CN Actual Predicted Residue 

1 21.777 22.283 -0.506 

2 24.789 25.104 -0.315 

3 27.037 26.775 0.262 

4 30.594 30.524 0.070 

5 30.442 30.860 -0.418 

6 30.201 29.664 0.537 

7 33.544 32.929 0.615 

8 32.722 32.677 0.045 

9 36.230 37.048 -0.818 

10 35.826 35.068 0.758 

11 39.692 39.533 0.159 

12 41.508 41.636 -0.128 

13 45.594 45.854 -0.260 

   

IV. CONCLUSION 

 
Padmakar Ivan index shows that linear formula is more seutable. The gaps are filled well the above index. The variation 

inflation facter plot pridects there is decline  in C15, C16 than is C4 & C3 model hence the predicted  & actual values have 

small difference obtained as an residue. Hence shown in the graphs & in the values determined.   
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