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Abstract— The present study outlines a procedure to evaluate flutter characteristics of a Bisplinghoff Ashley and Halfman 

(BAH) wing. The flexibility matrix has been derived using bending, torsion and shear stiffness distribution along the span of 

the wing. The procedural aspect of deriving the dynamically coupled energy equivalent mass matrix is outlined. The 

aerodynamic matrix used can be derived using the doublet methods. Nastran package has been used to develop the 

aerodynamic influence coefficient matrices using the doublet in strips. The final flutter analysis has been computed to verify 

the procedural aspects of the calculations. 
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I. INTRODUCTION 

Dynamic aero-elastic stability problems can be solved in any 

speed regime by selecting the appropriate aerodynamic 

theory. The solution involves a series of complex eigen value 

solutions, the eigen value problem to be solved depends on 

the way in which the aerodynamic loads are taken into 

consideration in the equations of motion or whether certain 

damping terms are included. Theodorsen in 1935 first 

developed the K-Method of flutter analysis, he introduced 

aerodynamics into a vibration analysis as complex inertial 

terms and the flutter analysis became a vibration analysis 

requiring complex arithmetic [1]. At the same time he 

introduced an artificial complex structural damping, 

proportional to the stiffness to sustain the assumed harmonic 

motion. Frazer in England was attempting to solve the flutter 

problem using aerodynamic stability derivatives [2]. This 

approach introduced the aerodynamic loads into equations of 

motion as frequency dependent stiffness and damping terms. 

In this representation it should be noted that the aerodynamic 

terms are slowly varying functions of the reduced frequency 

in contrast to the K method. Lawrence and Jackson gave a 

comparison of the British Method and the American Method 

[3]. Hassig introduced an alternate variation of the British 

method in which the aerodynamic loads are considered as 

complex springs; Hassig called this method the P-K method 

[4]. 

 

II. INFLUENCE COEFFICIENT MATRIX 

The wing structure can be considered as made up of number 

of strips. The BAH wing is made into five strips. each strip 

will have a tapering section along the span and in the chord 

wise direction only inter torque box is considered to be 

effective in carrying the load. The chord section properties 

are expressed along the elastic point of the mid-section of the 

strip. It is necessary to know the location of the elastic point. 

The elastic axis is the locus of all the elastic points along the 

span of the wing. The elastic axis used for the computing 

bending and torsional stiffness is 35% of the chord. 

 

A. Matrix – Bending Influence Coefficients 

The bending influence coefficients are obtained numerically 

by evaluating following equations: 
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Expanding equation 1 and 2 and inserting y = yi and η = yj 

we obtain the expression for the bending influence 

coefficient Cij. The bending stiffness matrix evaluated using 
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the bending stiffness EI at the chosen stations which lie at the 

midpoint of the strips. Putting yj =90 we can compute the 

first column of the bending influence coefficients where yi is 

90, 186, 268, 368 and 458 [5]. 

 

B. Matrix - Torsional Influence Coefficient 

The torsional influence coefficients are obtained from the 

equation 
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From equation 4 and 3 the torsional influence coefficient is 

calculated taking values of GJ from [5]. The required Cθz 

matrix can be obtained by utilizing the following equation 

(5). 

    (   )    ∫
 

    
   

  

      

 
       (5)

   

The Czz and Cθθ matrix refers to the mid points which lie on 

the intersection of the strip and elastic axis. These are the 

span wise stations at which we introduce two control points. 

Then the required Chh matrix will be of the order of 10 × 10 

for 5 stations, we can get the Chh matrix by working with Czz 

Cθθ and Cθz. 

III. THE MATRIX EQUATION 

The deflection integral equation in terms of surface pressure 

for a cantilevered beam can be written as h=[a]f, where the 

force matrix must include both the integral and aerodynamic 

forces. A suitable division of the surface plan form must be 

made that is amenable to analysis of both mass and 

aerodynamic distribution. Such a division is a series of chord 

wise strip parallel to the free stream direction. The mass 

distribution of each strip may be replaced by forward and aft 

concentrated masses and the aerodynamic lift and pitching 

moment may be replaced by forward and aft concentrated 

forces at the same point. If we define a complex matrix of 

oscillatory aerodynamic influence coefficient such as 

 

Fa = ω
2
(M + ρbr

2
s[Ch])h                                              (6) 

If we substitute h=[a]f into equation 6 and divide the 

flexibility coefficient by (1+ig) to account for the structural 

damping necessary to sustain the assumed harmonic motion, 

we obtain the matrix equation for flutter. 

 

h = ω
2
 /1 + ig([a]([M] + ρbr

2
s[Ch]h)                            (7) 

 

Figure 1: Surface Geometry and Mass Distribution 

Equation 7 can be solved for the complex mode shape (h) 

and complex eigen value (1 + ig)/ω
2 

by complex matrix 

iteration from the eigen value. 

λ = λr + iλI = (1 + ig) / ω
2
                   (8) 

and we obtain the flutter frequency as 

ω = i / √ λr                  (9) 

and structural damping is given as, 

g = λI / λr                                                     (10) 

from a series of solutions for different reduced frequencies a 

damping velocity curve can be constructed for a specific 

altitude. 

A. Mass Matrix 

Here the number of degree of freedom remains the same as 

the number if control points. Figure 1 shows the 

configuration with degrees of freedom (an illustration). We 

now derive the inertia force at first control points from 

Lagrange’s equation as an example to derive the mass 

matrix. To simplify kinetic energy expressions we place the 

intermediate masses at the mid-point. 

2T = M1h1
2
 +…+ M4h4

2
 + M12  

(      )

 
]

2
 + M13 [(

      

 
)]

2 +
 

M24 [(
      

 
)]

2
 + M34 [(

      

 
)]

2  
           (11) 

From the kinetic energy equation given in [11] we find 

equation [12] 

F1 =  
 

  
(

  

   
)   = -( M1 + 0.25M12 + 0.25M13)h1 – 0.25M12h2 

-    0.25M13h3                                                                                                        (12) 

In the same manner the resultant inertia force can be derived 

at each control point yielding the dynamically coupled mass 

matrix for two strip surface. In a similar manner the mass 

matrix for the entire wing can be derived. 
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M11 0.25M12 0.25M13 0 

0.25M12 M22 0 0.25M24 

0.25M13 0 M33 0.25M34 

0 0.25M24 0.25M34 M44 

 

Figure 2: The lift and moment at quarter chord point 

B. Aerodynamic Matrix 

The aerodynamic matrix is a set of influence co-efficients by 

which the aerodynamic force at any control points as defined 

in the equations. We begin with a consideration of strip 

theory because of its traditional use in flutter analysis. This 

covers high aspect ratio low mach and low aspect ratio high 

mach surfaces. The two dimensional oscillatory aerodynamic 

co-efficient are generally tabulated as lift and moment co-

efficient referred to the airfoil quarter chord. Since the 

problem at hand is to replace this co-efficient by force co-

efficient at the section of forward and aft control points 

which lie on the surface of the quarter chord line. Hence it 

becomes convenient if the forward control point lies on the 

surface quarter chord point line. The positions of the aft 

control point can be arbitrary of the rear spar. Figure 2 shows 

the lift and moment at quarter chord the oscillatory lift on the 

inboard strip of the shown figure is given by equation [13] 

L = πcosΛρω
2
 b1

2
Δy1(Lh (h/b1) + Lαα)      (13) 

 L = F1 +F2                           (14) 

 And the moment 

 M = πcosΛρω
2
 b1

4
Δy1(Mh(h/b1) + Mαα)                   (15) 

 We know that α= (h2 – h1)/c1   hence 

F1 = πcosΛρω
2
 b1

2
Δy1[[(Lh/b1)- (Lα/b1)-(b1/c1)((Mr/b1)-

(Mα/c1))]h1 + ((Lα/c1) – (b1/c1
2
)Mα)h2]                          (16) 

F2 = πcosΛρω
2
 b1

4
(Δy1/c1)[(( Mh/b1) – (Mα/c1))h1 + 

(Mα/c1h2)]                                                                  (17) 

The above equations 16 and 17 can also be written in matrix 

form. In the above equations the subscript on the oscillatory 

coefficients indicates the dependent on the inboard strip 

reduced frequency. By applying the same developed 

equations to the outboard forces which can be combined with 

the inboard forces into the partitioned matrix equation. The 

matrix aerodynamic influence coefficients at control points 

for the BAH wing for k=0.8 can be computed for 10 control 

points, which will be a 10×10.  

IV. RESULTS 

Solving the developed matrices gives us results for structural 

damping and velocity for 2 mode shapes and we can compare 

this with the structural damping and velocity from the 

assume mode method described by Robert et al[5]. 

 

Figure 3: Graph of Damping vs Velocity using the developed matrix methodology 



  Int. J. Sci. Res. in Physics and Applied Sciences                                                         Vol-5(3), Jun 2017, E-ISSN: 2348-3423 

  © 2017, IJSRPAS All Rights Reserved                                                                                                                                    15 

 

Figure 3: Graph of Damping vs Velocity from the bending torsion analysis from the assumed mode method as directed in [5] 

 

 

Figure 3 shows the graph of Damping vs Velocity developed 

from the present derived methodology and figure 4 shows the 

graph of Damping vs Velocity from the bending torsion 

analysis from the methodology given in [5], where the green 

dot indicates the change of sign of damping indicating the 

critical flutter speed. The mode shapes of the standard BAH 

wing is as shown in Ref [5]. The critical speed of which is 

865MPH obtained by applying the assumed mode method of 

flutter analysis. Thus by comparing the results of flutter 

analysis we can say that the results to calculate the critical 

speed are very close. The result by the matrix method is 

868MPH and the result from the method described in [5] is 

865MPH. 

V. CONCLUSION 

This method offers advantages over the other used methods. 

This type of formulation gives a three dimensional solution 

applicable to low and high aspect ratio surfaces. Other 

advantage is that large number of degrees of freedom can be 

handled using high speed computing, and also that the 

flexibility, mass and aerodynamic data are kept separate, we 

can then change the one by keeping the other two the same. 

The present analysis can be easily extended to box type of 

structure. The accuracy between experimental and theoretical 

flexibility matrix would enable the present work to be 

extended to dynamic response and stability analysis. 
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