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Abstract—In this research work, we try to provides a comprehensive overview of research related to blood flow in the 

circulatory system, with a focus on the application of mathematical models to study arterial blood flow under the influence of a 

magnetic field. It discusses the importance of understanding blood flow for therapeutic interventions, particularly in the context 

of cancer treatment and drug delivery to cancer cell membranes. The impact of cardiovascular diseases on human health is 

highlighted, emphasizing the significance of studying the circulatory system and blood flow for advancing treatments for 

conditions such as hypertension and myocardial infarction. The integration of mathematical models is presented as a valuable 

tool for simulating and understanding the complexities of blood flow, leading to potential advancements in therapeutic 

interventions. The study also addresses the influence of various factors such as thermal radiation, magnetic nanoparticles, 

electric field, and radiation parameter on magneto-hydrodynamic blood flow, particularly in the context of breast cancer 

treatment. Additionally, it discusses the potential applications of mass transfer for drug delivery and clinical administration. The 

research aims to contribute to the diagnosis and treatment of breast cancer and other cardiovascular diseases, aligning with 

broader efforts to understand the behavior of magneto-hydrodynamic blood flow in the cardiovascular system. From the 

findings, it can be concluded by emphasizing the importance of understanding blood flow and its impact on human health, 

particularly in the context of therapeutic development and the treatment of cardiovascular diseases, while also highlighting 

promising avenues for future research and therapeutic advancements. 
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1. Introduction  
 

The human circulatory system relies on the rhythmic 

contractions of the heart, creating a pulsatile pressure gradient 

throughout the system. This physiological blood flow is 

crucial for delivering drugs to tumor cell membranes and 

initiating chemical reactions between tumors and circulating 

fluids. Achieving a biologically compatible reaction rate 

holds promise for therapeutic development. However, despite 

blood's essential roles, significant human losses persist due to 

various cardiovascular diseases, including hypertension, 

cerebral strokes, angina pectoris, myocardial infarction, and 

cancer, occurring at different locations within the 

cardiovascular system under disease conditions. Despite 

available treatments like surgery, radiotherapy, 

chemotherapy, and immune therapy, a substantial gap 

remains in addressing human losses, particularly in cancer 

[1]. 

In the pursuit of understanding blood flow, numerous 

mathematical models have been developed to investigate 

arterial blood flow under the influence of a magnetic field. 

For example, [2,3,4] have contributed to this field. The study 

of magneto-hydrodynamic (MHD) blood flow in arteries has 

gained considerable attention due to its diverse applications in 

medical and physiological fields. Recent mathematical 

models have specifically focused on exploring the flow 

behaviour of blood for various non-Newtonian fluids. [5,6] 

analysed pulsatile blood flow using the Casson non-

Newtonian fluid model. [7] investigated the unsteady and 

incompressible arterial blood flow of non-Newtonian fluid, 

particularly micro-polar fluid, through a composite artery. 

Additionally, [8] researched the influence of the magnetic 

field on non-Newtonian blood flowing through an artery with 

a stenosis, emphasizing wall-slip conditions. The study 

considered the effect of the Lorentz force, revealing its 

considerable opposition to blood motion in electrically 

conducting conditions. Consequently, the application of a 
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magnetic field led to a decrease in velocity and shear stress at 

the wall. [9] conducted an investigation into the influence of 

both heat sources and a magnetic field on blood flow within a 

bifurcated artery. Their study encompassed various flow 

parameters, including temperature distribution, axial and 

normal velocities, and these were systematically examined in 

relation to magnetic field strength, heat source parameter, and 

Prandtl number. The outcomes of their research revealed a 

significant impact of the magnetic field on the flow pattern, 

suggesting potential applications for hypertension treatment. 

Additionally, they observed that the heat source had the effect 

of increasing blood temperature, indicating potential 

applications in thermal therapy for tumor. 

 

In related studies, [10,11] explored the application of heat 

sources and chemical reactions in magneto-hydrodynamic 

blood flow through permeable bifurcated arteries with an 

inclined magnetic field, with a particular focus on tumor 

treatments. They employed analytical methods, utilizing the 

undetermined coefficient technique to solve the governing 

equations. Their results indicated that addressing high blood 

pressure concerns, in conjunction with appropriate clinical 

administration and tumor cell permeability, could be 

effectively achieved. The researchers concluded that mass 

transfer represents a promising approach for drug delivery 

and clinical administration. 

 

Building upon these recent investigations but taking a 

different approach, the current research adopts an electro-

magneto-hydrodynamic approach to blood flow in small slip 

arteries. Inspired by the work of [10,11,12], the studies place 

specific emphasis on comprehending the effects of thermal 

radiation, Magnetic Nanoparticles, and the electric field in 

magneto-hydrodynamic blood flow through small slip arteries 

with an inclined magnetic field, specifically for breast cancer 

treatment. The motivation behind this exploration lies in the 

numerous potential applications for drug delivery to cancer 

cells and mass transfer. This research aligns with broader 

efforts aimed at understanding the behaviour of magneto-

hydrodynamic blood flow in the cardiovascular system, 

undertaken by various researchers using either experimental 

or theoretical approaches, with the overarching goal of 

contributing to the diagnosis and treatment of breast cancer 

and other diverse cardiovascular diseases 

 

2. Related Work 
 

To exemplify, the investigation into the arterial impact of a 

magnetic field by [10,11,12] has conclusively demonstrated 

that the application of a magnetic field holds considerable 

potential for effectively regulating both blood flow and 

pressure. Notably, these studies underscored the magnetic 

field's influence on flow patterns. Through the utilization of 

analytical solutions to the equations of motion, the 

researchers delved into the effects of the Prandtl number and 

magnetic field on the flow. It is imperative to build upon 

these findings, and this study is specifically geared towards 

enhancing the existing model proposed by [12]. This 

enhancement entails incorporating additional factors, namely 

the effects of an electric field, Nanoparticles, and Thermal 

radiation on blood velocity and temperature, aspects that were 

not addressed in the previous work. 

 

Considering the slight electrical conductivity of human blood, 

a critical aspect of this study involves the modification of a 

mathematical model to accurately replicate the influence of 

the electric field in electro-magneto-hydrodynamic blood 

flow through small slip arteries with an inclined magnetic 

field. This modification serves the purpose of facilitating the 

observation of various physiological parameters, some of 

which cannot be directly obtained through experimental 

investigations. In the context of this study, blood is 

conceptualized as a non-Newtonian, compressible, 

heterogeneous, and viscous fluid flowing in a non-conductive 

parallel plate channel. 

 

This research endeavour extends the insights gained from 

[10,11,12], providing a nuanced understanding of the intricate 

interplay between magnetic, electric, and thermal influences 

on blood flow within specific arterial conditions. By 

expanding the existing model, this study aims to contribute 

significantly to the comprehension of electro-magneto-

hydrodynamic blood flow, offering valuable insights that 

could potentially have implications for the diagnosis and 

treatment of cardiovascular diseases, with a particular focus 

on breast cancer. The inclusion of additional factors such as 

Nanoparticles and Thermal radiation represents a novel 

approach, addressing gaps in the previous research and 

paving the way for a more comprehensive understanding of 

the complex dynamics involved in the circulatory system 

under the influence of external fields. 

 

3. Methodology 
 

The equation that dictates the connection between shear stress 

and strain rate in an incompressible flow of a Casson fluid is 

formulated as follows [13,14]: 
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The parameters in this context are defined as follows: 

ijij and ij  represents the the (i,j)-th constituent of 

the deformation rate, B  representing plastic dynamic 

viscosity, while y  signifies fluid yield stress, and π results 

from multiplying the deformation rate by itself. The critical 

value of this product, based on the non-Newtonian model, is 

denoted as c . The primary emphasis is on the Casson fluid 

model rather than the Papanastasiou-Casson regularization 

model, with the former being a more recent approach. The 

validation of current findings is supported by extensive 

research on the Casson fluid model over the past few decades. 

The Casson fluid model is recognized for its simplicity 

compared to the Papanastasiou-Casson regularization model, 
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leading many researchers to choose numerical investigations 

of the latter due to its complexity. Given the analytical 

approach in this study, the Casson fluid model is considered 

imperative. The governing equations for the problem, in line 

with Boussinesq's approximation, the Tiwari and Das 

nanofluid model, and the mentioned assumptions, are 

formulated as presented in references [13 14]. 

 

 
Figure 1: Physical schematic diagram of bifurcation flow channel in 

the presence of Electric Field 
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In the context of the study, various parameters are defined: u  

represents the velocity component along the z-axis,  t  

represents the time parameter, z
p







 signifies a pulsatile 

pressure gradient, ycB  /2
 denotes the non-

Newtonian Casson parameter, 0B  represents the applied 

magnetic field strength, pk  is the permeability constant, g is 

the gravitational acceleration, T represents the fluid 

temperature, and 
T  represents the ambient temperature and 
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Additionally, the thermophysical properties related to Casson 

nanofluids are detailed in [15], with the nanofluid's viscosity 

being roughly equivalent to that of the base fluid containing 

spherical nanoparticles, as emphasized by Brinkman [16]. At 

the initial time (t = 0), both the fluid and the cylinder are at 

rest. As time progresses (t > 0), the fluid starts moving with a 

slip velocity at the boundary. Simultaneously, the cylinder's 

temperature rises from to the boundary temperature and then 

remains constant. The initial and boundary conditions for the 

problem are provided in references [16,17] therein.  
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where ,su s the slip velocity condition.  

With the aid of electrostatics theory, the relationship between 

the net charge density e and the potential distribution  r
is given by the expression; 
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Known as the Boltzmann equation with the boundary 

condition and the net charge density 
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where  is the dielectric constant,
 w is the potential on the 

arterial wall,
 

nTkenz eg ,,,,, 000 and 
n  

are the ion valence, concentration of ions, the electronic 

charge, the Boltzmann constant, the local absolute 

temperature of the fluid, the density number of cations and 

anions respectively. Using Debye-Huckel parameter  
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and linearized the Boltzmann equation we get a potential 

equation as: 
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The relevant dimensionless variables are stated as [18]: 



World Academics Journal of Engineering Sciences                                                                                 Vol.11, Issue.1, Mar. 2024  

© 2024, WAJES All Rights Reserved                                                                                                                                             10 

)11(,,,,

,,,,,

0

0

0

.

0

.

0000

2

0































u

rk
k

u

p
p

r

z
z

u

u
u

u

pu
u

u

u
u

r

r
r

r

vt
t

ww

s

sp

f

f
















 

The governing equations (2)-(4) and (10) along with 

conditions (5) and (7) are transformed into their 

dimensionless forms by utilizing the appropriate 

dimensionless variables in (Eq11), resulting in the following 

expressions. 
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Are Magnetic field parameter, Grashof mass number, Prandtl 

number, Particles mass parameter, Particle Concentration 

Parameter, Casson fluid parameter and Radiation parameter 

respectively.
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indicates the pulsatile 

pressure gradient that imitates the heart’s pumping movement 

[18], where A0 and A1 are the constants of pulsatile 

amplitude, and ω is a pulsatile frequency. It is possible to 

rewrite the dimensionless 

momentum governing equation as: 
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4. Problem Solution 
 

Analyzing the blood flow in the slipping cylinder containing 

AuNPs requires the application of comprehensive techniques 

that integrate both Laplace and finite Hankel transforms. 

Specifically, when dealing with cylindrical domains, the 

finite Hankel transform offers substantial advantages, while 

the Laplace transform proves effective in handling initial-

boundary values and transient issues. The reduction of partial 

differential equations (PDEs) leads to the emergence of 

ordinary differential equations (ODEs). By applying inverse 

transformations for both Laplace and finite Hankel, analytical 

results can be derived. 

The resolution of equation (15) under the conditions specified 

in equation (16) is: 
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where 0I is the modified Bessel function of first kind and 

order zero. Initially, the Laplace transform technique is 

applied to the dimensionless form of the energy governing 

equation (Eq. 14) and the corresponding dimensionless 

conditions (Eq. 16), resulting  in: 
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The Laplace transform of the function  tr, , denoted as

 sr,  , is represented by, with the transformation variable 

being s. Subsequently, Eq. (19) undergoes transformation 

through the application of the zero-order finite Hankel 

transform, in conjunction with the condition (20), resulting in: 
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In the next step, Eq. (15) undergoes the inverse Laplace 

transforms, yielding: 
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Ultimately, the analytical solution for the temperature profiles 

(Eq. 23) is derived by applying the inverse finite Hankel 

transform, resulting in: 
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The dimensionless Nanoparticles concentration and 

momentum equations (13) and (17) and the associated 

conditions (8) are both solved by using the Laplace transform, 

which results in: 
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s

u
su s,1           (27) 

 

Following that, the method of finite Hankel transform of 

zero-order was employed to convert Laplace's partial 

differential equation (25)-(26) with the associated condition 

in (27) into an ordinary differential equation (ODE), denoted 

as: 
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Where 
1

0

0 )(),(),( drrrJsrursru nnnH  is the finite 

Hankel transform of the function  sru , and nr with n = 

0,1… are the positive roots of the equation 0)(0 xJ , 

where 0J is the Bessel function of the first kind and zero-

order, and 
1J  is the Bessel function of the first kind and first-

order. 
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On substituting (Eq,29) into (Eq,28) we the general 

momentum equation as; 
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Similarly, the Nanoparticles concentration equation is 

obtained by integrating equation (30) and (29) as: 
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The inverse Laplace form of equation (23) and (24) with the 

aid of Gerby-Stefan’s Algorithm and the results were 

simulated graphically with the aid of MATCARD software. 

 

5. Results and Discussion 
 

In this section, we showcase and analyze the numerical 

outcomes graphically generated through the utilization of 

Mathcad software. The simulations pertain to the electro-

magneto-hydrodynamic blood flow within a small slip artery 

featuring an inclined magnetic field. The investigation takes 

into account the impacts of both the applied electric field and 

thermal radiation on the momentum and energy equations. To 

enhance our understanding of the physical model, we explore 

the influences of diverse physical parameters on the velocity 

profile, the equation governing Nano particles concentration, 

and the temperature distribution in the electro-magneto-

hydrodynamic blood flow through a small slip artery with an 

inclined magnetic field, specifically in the context of breast 

cancer treatments. 

 

 
Figure 2: Variation of Blood velocity and Nanoparticles equations 

with radiation parameter 

 

 

 
Figure 3: Variation of Blood velocity and Nanoparticles equations 

with an inclined Magnetic field  
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Figure 4: Variation of Blood velocity and Nanoparticles equations 

with electro-kinetic width 

 

 
Figure 5:  Variation of Temperature Profile Radiation Parameter 

and Prandtl Number respectively 

Figures 2a and 2b were generated to depict the influence of 

the radiation parameter on fluid velocity and the equation 

governing Nanoparticles concentration, respectively. Both 

visualizations illustrate that an augmentation in the thermal 

radiation parameter results in a deceleration of blood flow. 

This phenomenon is ascribed to the presence of the applied 

electric field, effectively propelling the blood flow towards 

the cancerous region. Consequently, this mitigates or lessens 

the potential harm inflicted on neighbouring healthy cells by 

the administered radiation dosage. Figure 3 demonstrates that 

an increase in the angle of inclination leads to a reduction in 

both blood velocity and particle concentration. Notably, a 

significant decline in velocity is observed near the wall within 

the angle range of 300 to 450. This occurrence is attributed to 

the influence of the Lorentz force, establishing stability 

between the moving magnetic parameter and the inclined 

magnetic field. As a result, it counteracts the motion of the 

blood flow, causing a decrease in both velocity and particle 

concentration profiles within the affected region during 

cancer treatments. 

 

In Figure 4a, a gradual rise in fluid velocity is observed with 

higher values of electrokinetic width, while Figure 4b 

exhibits the opposite trend. In the former, an increase in 

electrokinetic width may enhance electrokinetic forces, 

facilitating fluid movement. Conversely, in the latter, the rise 

in electrokinetic width leads to stronger interactions between 

particles, resulting in a reduction in fluid velocity during 

breast cancer treatments. Moving on to Figure 5a, higher 

values of the Radiation Parameter may indicate increased 

thermal radiation in the system, contributing to enhanced heat 

dissipation and a gradual decrease in fluid temperature. The 

impact of radiation on heat transfer mechanisms within the 

system plays a crucial role in this observed trend. Meanwhile, 

Figure 5b illustrates that the rise in fluid temperature with an 

increase in Prandtl number suggests more rapid heat diffusion 

in the system. A higher Prandtl number signifies a reduced 

ability of the fluid to conduct heat efficiently, potentially 

leading to elevated temperatures as the generated heat may 

not be efficiently dissipated, contributing to the observed 

trend. 

 

6. Conclusion 
 

In summary, the key findings of this study highlight the 

critical importance of comprehending blood flow dynamics 

for the development of effective therapeutic interventions, 

particularly in the realms of cancer treatment and drug 

delivery to cancer cell membranes. The pervasive impact of 

cardiovascular diseases on human health underscores the 

necessity of studying the circulatory system and blood flow to 

advance treatments for conditions like hypertension and 

myocardial infarction. 

 

The utilization of mathematical models to investigate arterial 

blood flow under the influence of a magnetic field emerges as 

a valuable tool in simulating and understanding the intricate 

complexities of blood circulation. This approach holds 

immense potential for driving advancements in therapeutic 
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interventions, offering a more nuanced understanding of the 

physiological processes involved. 

 

In conclusion, the presented findings emphasize the 

fundamental significance of unravelling the intricacies of 

blood flow and its profound implications for human health, 

particularly within the context of therapeutic development 

and the treatment of cardiovascular diseases. The 

incorporation of mathematical models into these 

investigations not only enhances our current understanding 

but also opens up promising avenues for future research. The 

dynamic simulations facilitated by mathematical models 

provide a robust platform for exploring blood flow under 

diverse conditions, laying the groundwork for innovative 

therapeutic strategies. 

 

Recommendation for Further Studies: 

Building upon the insights gained from this study, there are 

several promising areas for future research. Firstly, further 

investigations could delve into refining and expanding the 

mathematical models to incorporate additional factors that 

may influence blood flow dynamics, such as variations in 

vessel geometry and the impact of different non-Newtonian 

fluid models. 

 

Additionally, exploring the potential applications of the 

developed models in the context of personalized medicine 

and patient-specific treatments could be an intriguing avenue. 

Tailoring therapeutic interventions based on individualized 

blood flow characteristics could lead to more targeted and 

effective treatments for cardiovascular diseases and cancer. 

 

Furthermore, there is a need for experimental validations to 

corroborate the findings derived from mathematical 

simulations. Integrating experimental data with computational 

models would enhance the robustness of the conclusions and 

provide a more comprehensive understanding of blood flow 

phenomena. 

 

In conclusion, future studies that build upon the foundation 

laid by this research should aim to refine models, explore 

personalized medicine applications, and incorporate 

experimental validations. These endeavours will contribute to 

advancing our understanding of blood flow dynamics and, 

consequently, foster innovative approaches to therapeutic 

interventions in the realms of cardiovascular diseases and 

cancer treatment. 
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