Underwater Routing Protocols: Analysis of Intrepid Link Selection Mechanism, Challenges and Strategies

Authors

  • Shahzad Ashraf College of Internet of Things Engineering, Hohai University, Changzhou, Jiangsu, China
  • Zeeshan Aslam Petroweld Oilfield Services Kurdistan, Iraq
  • Adnan Yahya Dow University of Health Sciences, Karachi Pakistan
  • Adnan Tahir College of Software Engineering, Shenzhen University Shenzhen, China

Keywords:

Packet forwarding, relay node, network throughput, underwater routing

Abstract

The sensor nodes deployed in underwater environment have a different routing mechanism in contrast to the terrestrial network. In order to get underwater information from dynamically deployed senor nodes, a smooth packet transmission must be maintained, which is a crucial challenge, and selecting the best communication link between source and destination node is a key phenomenon. The meticulous research has been conducted to search out the best link selection mythology of bodacious underwater routing protocol EnOR, SURS‐PES and USPF. The performance has been evaluated through NS2 simulation for packet delivery ratio, end-to-end delay, network lifespan and network energy consumption.

 

References

Su, Y., Fan, R., Fu, X., & Jin, Z. (2019). DQELR: An Adaptive Deep Q-Network-Based Energy- and Latency-Aware Routing Protocol Design for Underwater Acoustic Sensor Networks. IEEE Access, 7, 9091–9104. doi:10.1109/access.2019.2891590

S, Ashraf, Gao, M., Chen, Z., Kamran, S., & Raza, Z. (2017). Efficient Node Monitoring Mechanism in WSN using Contikimac Protocol. International Journal of Advanced Computer Science and Applications, 8(11). doi:10.14569/ijacsa.2017.081152

Qu, J., Zhang, Z., Cui, Y., Wang, J., & Mastorakis, G. (2019). Research and Application of Multi-Node Communication and Energy Consumption Prediction Control in Underwater Acoustic Network. IEEE Access, 7, 41220–41229. doi:10.1109/access.2019.2907376

Jin, Z., Zhao, Q., & Luo, Y. (2020). Routing Void Prediction and Repairing in AUV-Assisted Underwater Acoustic Sensor Networks. IEEE Access doi:10.1109/access.2020.2980043

Tilwari, V., Maheswar, R., Jayarajan, P., Sundararajan, T. V. P., Hindia, M. N., Dimyati, K., Amiri, I. S. (2020). MCLMR: A Multicriteria Based Multipath Routing in the Mobile Ad Hoc Networks. Wireless Personal Communications. doi:10.1007/s11277-020-07159-8

Somani, Arun K., et al. Smart Systems and IoT: Innovations in Computing: Proceeding of SSIC 2019. Springer, 2020.

Coutinho, R. W. L., Boukerche, A., Vieira, L. F. M., & Loureiro, A. A. F. (2018). Underwater Wireless Sensor Networks. ACM Computing Surveys, 51(1), 1–36. doi:10.1145/3154834

Dubey, A., & Rajawat, A. (2016). Impulse effect of node mobility on delay sensitive routing algorithm in underwater sensor network. 2016 International Conference on Internet of Things and Applications (IOTA. doi:10.1109/iota.2016.7562768

Qian, L., Zhang, S., Liu, M., & Zhang, Q. (2016). A MACA-based power control MAC protocol for Underwater Wireless Sensor Networks. 2016 IEEE/OES China Ocean Acoustics (COA). doi:10.1109/coa.2016.7535810

Cao, J., Dou, J., & Dong, S. (2015). Balance Transmission Mechanism in Underwater Acoustic Sensor Networks. International Journal of Distributed Sensor Networks, 11(3), 429340. doi:10.1155/2015/429340

Suparti Koul, & Harmanjot Kour. (2016). Power Efficient Routing in Wireless Sensor Networks. Unpublished. doi:10.13140/RG.2.2.13755.67363

Balsamo, S., Marin, A., & Vicario, E. (Eds.). (2018). New Frontiers in Quantitative Methods in Informatics. Communications in Computer and Information Science. Springer International Publishing. doi:10.1007/978-3-319-91632-3

Balas, Valentina Emilia., et al. Data Management, Analytics and Innovation: Proceedings of ICDMAI 2018, Volume 1. Springer Singapore, 2019.

Liu, X., Liu, P., Long, T., Lv, Z., & Tang, R. (2018). An efficient depth-based forwarding protocol for underwater wireless sensor networks. 2018 IEEE 3rd International Conference on Cloud Computing and Big Data Analysis doi:10.1109/icccbda.2018.8386561

Ali, M., Khan, A., Mahmood, H., & Bhatti, N. (2019). Cooperative, reliable, and stability-aware routing for underwater wireless sensor networks. International Journal of Distributed Sensor Networks. doi:10.1177/1550147719854249

Coutinho, R. W. L., Boukerche, A., Vieira, L. F. M., & Loureiro, A. A. F. (2016). Geographic and Opportunistic Routing for Underwater Sensor Networks. IEEE Transactions on Computers, 65(2), 548–561. doi:10.1109/tc.2015.2423677

Ashraf, S., Ahmed, T., Raza, A., & Naeem, H. (2020). Design of Shrewd Underwater Routing Synergy Using Porous Energy Shells. Smart Cities, 3(1), 74–92. doi:10.3390/smartcities3010005

Ashraf, S., Gao, M., Mingchen, Z., Ahmed, T., Raza, A., & Naeem, H. (2020). USPF: Underwater Shrewd Packet Flooding Mechanism through Surrogate Holding Time. Wireless Communications and Mobile Computing, 2020, 1–12.doi:10.1155/2020/9625974

EL-Bakkouchi, A., Bouayad, A., & Bekkali, M. E. (2019). A hop-by-hop Congestion Control Mechanisms in NDN Networks – A Survey. 2019 7th Mediterranean Congress of Telecommunications (CMT). doi:10.1109/cmt.2019.8931405

Kumari, R., & Nand, P. (2018). Performance Analysis for MANETs using certain realistic mobility models NS-2. International Journal of Scientific Research in Computer Science and Engineering, 6(1), 70–77. doi: 10.26438/ijsrcse/v6i1.7077

Downloads

Published

2020-04-30

How to Cite

[1]
Shahzad Ashraf, Z. Aslam, A. Yahya, and A. Tahir, “Underwater Routing Protocols: Analysis of Intrepid Link Selection Mechanism, Challenges and Strategies”, Int. J. Sci. Res. Comp. Sci. Eng., vol. 8, no. 2, pp. 1–9, Apr. 2020.

Issue

Section

Research Article

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.