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Abstract—A recursion model is developed to describe the growth of Covid-19 cases in the USA. An essential requirement 

of any model is confidence in its predictive capability. Published growth rates for Covid-19 in the USA are shown to 

correlate well with recursive time-delay simulations.  Data for six months after March 2020 is compared to predictions 

from known logistic equations and modified time-delay relations.  Simple logistic equations do not show a correlated 

trajectory with case numbers, whereas a time-delay recurrence equation can be calibrated to follow actual data. Modelling 

predicts over 10 million infections by January 2021.  Growth curves projected to mid-2022 are examined and discussed.  

Infection totals in the USA is predicted to approach 35 million cases by the end of 2021 without human control. 
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I.  INTRODUCTION  

 

Population modelling attempts to predict the outcome of 

competition between species. A study of natural laws of 

growth and decay applies to numerous scientific 

disciplines including ecology, environment, physics, 

engineering, chaos and biology. A virus in the community 

is considered a predator and so lends itself to predictive 

growth analysis.   

 

Many researchers have postulated mathematical 

descriptions of the growth and decay of organisms.    

Ordinary differential equations (ODE) describe the way a 

virus population might change over time. The first known 

use of an ODE equation to describe population growth was 

published in 1845 by Verhulst [1]. Verhulst’s equation 

dN/dt = β.N(t) [ (P - N(t))/P] describes a logistic equation 

where N(t) is the population at time t, P is the maximum 

population, and β is a rate constant.   

 

In 1926, Volterra further developed growth equations with 

two variables to describe prey-predator in an ecosystem 

[2]. Volterra’s model assumes a maximum possible 

population P that can be infected by a predator such as a 

virus. A more general growth model was proposed by 

Richards in 1959, allowing population growth to be broken 

into three phases, i.e., the initial, middle and final stages. 

Richard’s model resulted in solutions similar to the logistic 

model [3]. 

 

Substantial literature exists on Covid-19 virus pandemic.  

A recent paper by Wu et.al. describes the use of the logistic 

equation to model growth rates in China and other parts of 

the world [4]. More recently a paper by Mathews describes 

the rate of transmission of the virus by proximity to 

infected persons [5]. Use of the logistic model alone does 

not explain the trajectory of virus growth in the USA.  

Fundamentals of Covid-19 growth are examined in this 

paper using recurrence relations. Calibration of the model 

uses published virus growth figures to predict trajectories 

of growth into the future.  

 

Section I has introduced he problem of finding a 

mathematical method that most accurately describes 

Covid-19 growth paths. Section II contain related work, 

Section III contains the methodology adopted for this   

research, including development of recursion models for 

geometric and arithmetic growth with modulated recursion, 

Section IV describes results and discussion and Section V 

concludes research work with future directions.  

 

II. RELATED WORK  

 

Known research related to the propagation of Covid-19 

has, in general, relied on traditional methods to investigate 

the problem. Methods used to simulate Covid-19 growth 

have manly examined various logistic-type equations to 

predict growth. As with all predictive methods, the aim in 

this case is to determine the duration and the final levels of 

infection in the community. Data available for USA Covid-

19 case numbers have shown poor correlation with simple 

logistic or statistical analyses.  

 

Research was required to develop a method of analysis that 

provides a closer correlation between virus transmission 

trajectory and actual data. To my knowledge, no one has 

investigated the use of time-delay modulated recursion 

methods to describe the trajectory of coronavirus spread in 

the United States. 

http://www.isroset.org/
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III. METHODOLOGY 

 

Logistic and time-delay difference equations applied to 

predator-prey and population growth is used in many fields 

of modelling [6] [7]. In this paper, notation (N(T) and 

N(T+1) define the number of Covid-19 cases at discrete 

time interval T and the next interval (T+1), respectively. 

The time step interval is T=1 week, and N(T) is the 

summed 7-day average in the discrete interval T. 

Numerical analysis by recursion is considered applicable to 

the analysis of Covid-19 infection rates in the USA.  

 

Curves and recorded data for US virus growth over time 

can be obtained from the internet site Worldometer. 

Countries including USA, Canada, Germany, UK, Russia, 

Australia and South Africa all show a “general” growth 

trajectory of the type presented in Figure 1.   

 

 
Figure 1: General curve of Covid-19 growth trajectories, 

compared to logistic models 

 

A typical curve of Verhulst’s logistic model in Figure 1 

shows delayed initial growth, followed by a trajectory to 

an asymptotic value, the maximum infectable population.  

 

Pandemic growth such as the 1918 flu (a H1N1 swine flu 

virus) resulted in a 33% infection rate, while the same 

virus in 2009 infected between 11-21% of the population. 

Previously, the Hong Kong flu (H3N2) of 1968 infected 

>14% of the population while the Asian flu (H2N2) of 

1957 infected 14% of the population. Based on historical 

data, SARS-CoV-2 (Covid-19) may infect up to 12% of 

the US population (β = 1.12), without a greater level of 

research to control virus spread. 

 

Figure 2 shows a graph of total reported US Covid-19 

cases to mid-August 2020. Virus growth clearly does not 

conform to that expected for the logistic equation [4]. The 

initial 4 weeks of virus spread shows an exponential 

increase in cases (geometric growth), followed by a linear 

rise for 6 weeks (arithmetic growth). After 10 weeks of 

growth, a slowdown followed by a rise in cases occur, a 

variance that requires further analysis. Note that by late 

August 2020, countries such as India, Mexico and Brazil 

are still in a general geometric growth phase, showing 

classic exponential trajectories.  

 
Figure 2: Graph of US cumulative cases and discrete weekly 

numbers 

 

A general ODE that describes the rate of change of a 

population N(t) at time t as being proportional to N(t) is 

dN(t)/dt = βN(t), where “β” is a constant or a growth rate 

coefficient. In discrete time T, the growth can be 

represented by a difference equation N(T+1) = βN(T), 

which exhibits geometric or exponential growth. An initial 

condition at T = 0 would be N = N(0). 

 

Discrete time equations lend themselves to iterative or 

numerical simulation by recursion, because the next value 

N(T+1) at time step (T+1) is related to the previous value 

N(T) at time T by the difference equation. Logistic model 

growth (Verhulst) is written as by the recursion equation:  

 

   (1) 

 

where P = 330 million and β =1.12. In the simulations that 

follow, T = 0 begins on 29-February-2020. Application of 

the logistic equation to US data predicts that N(T+1) 

exceeds 30 million all-time cases, occurring at T = 90 

which equating to the end of October 2021. The curve of 

equation (1) is discussed further in relation to Figure 5.  

 

Numerous difference equations exist to describe physical 

growth or decay [6]. For analysis of US Covid-19 infection 

growth rate, a general time-delay recurrence relation is 

formulated with the form: 

 

 (2) 

 

where m(T) is a new modulating function introduced to 

accommodate case number control, such as lockdown and 

un-lockdown. In the case where both m(T) = 0 and α = 0, 

equation (1) reverts to N(T+1) = β (N(T), i.e. geometric 

growth.  In the recursive process, N(1) = β N(0), N(2) = β 

N(1) or N(2) = β
2
N(0), and so on. A solution to the 

recursive analysis of a geometric series is N(n) = β
 n
 N(0). 
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IV. RESULTS AND DISCUSSION 

 

Figure 1 describes general types of mathematical growth 

model curves along with a typical Covid-19 growth curve.  

Application of equation (2) in recursive calculations show 

that trajectories of actual case numbers for US Covid-19 

correlate under the following constraints: 

Geometric growth 

 

    (3-a) 

Conditions: 0 < T < 5, m(T) = 0, α = 0 

(T = 0 at 1-March-2020)   

 

Arithmetic growth  

   

    (3-b) 

Conditions: 4 < T < 14, β = 2, D = 30,000/day, δ = 7  

 

Modulated growth 

 

  (3-c) 

 

Equations (3-a) and (3-b) are first-order linear difference 

equations, whereas equation (3-c) is a second-order time-

delay difference equation.  Equation (3-b) has a basis in the 

Taylor series expansion of N(T+δ) = N(T) + (dN/dt).δ 

where δ is a discrete interval. Equation (3-c) equates to the 

homogeneous part of an ODE yʺ - r yʹ + y = ƒ(t), where r = 

2(1+k λ/P), k is typically a modulation multiplier with 

values near +/- 1, D is the daily case number averaged over 

1 week, and λ ≈ D/4.   

 

Modulating functions m(T) provide a method of 

controlling variations to the model at any time step. 

Variations include effects of lockdown on growth, 

transmission issues in crowds, general opening-up activity 

and vaccine application [5].   

 

Graphing the trajectories of Covid-19 cases uses calculated 

recursive values from the above equations.  For example, 

equation (3-b) contains the term D = dN/dt which is 

calculable from Worldometer data. If the daily infection 

value of Covid-19 in the US on day-1 was 27,000/day, a 

daily increase by 1,000 for 7 days yields D = 30,000 

cases/day on average for that week. 

          

Initial Virus Growth Trajectories 

Equations (3-a) and (3-b) are now applied to US Covid-19 

data analysis. Figure 3 shows US Covid-19 growth curves 

for reported total cases, compared to simulated values 

using the geometric recursion of equation (3-a). The 

simulation closely follows actual growth up to T = 8 

(March-24-2020). Beyond this time, progression predicted 

by equation (3-a) begins to rise faster than reported figures. 

Linear growth after T = 8 suggests the arithmetic model of 

equation (3-b) would be more applicable at larger case 

numbers. Figure 4 shows that Covid-19 growth is 

relatively linear between March-24 to May-19-2020.   

 

Using the gradient D = dN/dt =30,000/day defined above, 

case numbers at week T = 8 sets the initial conditions of 

the model for equation (3-b), i.e., the value at 31-March-

2020 is N(4) = 194,114 cases and the next value N(5) = 

444,000 cases. Predicted trajectory of growth by Equation 

(3-b) is in good agreement with the recorded data in the 

range 4 < T <14.   

 

Change in the trajectory of US Covid-19 total cases from 

geometric to arithmetic growth after T = 8 is generally 

mirrored in data from other countries. A more complex 

model is therefore required to simulate observed growth, 

rather than considering zonal growth patterns suggested by 

Richards [3]. 

 

 
Figure 3: Initial total case curves of US Covid-19 

According to equation (3-a) 

 

 
Figure 4: US Covid-19 growth curves from March to May 2020 

as defined by equation (3-b) 

 

Time-delay Recurrence Model 

Recorded actual case numbers between May-31-2020 and 

August-30-2020 show a modulation or variation in the 
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trajectory of total cases, as seen in Figure 5. Applying the 

time-delay recurrence equation (3-c) to simulate Covid-19 

growth in the US produces a graph that more closely 

follows actual case numbers. 

 

No Modulation Delay Model 

A limiting growth function m(T) is defined and applied to 

equation (3-c) as follows: 

 

    (4) 

 

where λ = 7200, k = 1 and P =330 million, the population 

that could be 100% infected. The value of D used for the 

start of simulation is 28,800 cases/day. 

 

A graph for T < 32 is shown by the “dashed line” in Figure 

5. During the early phase of the pandemic, N(T) is small 

and m(T) is very small by comparison to P. For N(T) large, 

m(T) = 0, and the population growth plateaus.   

 

Figure 5 shows the graphs of actual US case data plotted 

from 5 February 2020 to mid-October 2020. A simulation 

curve for the delay model (no modulation) uses a unity λ 

value is used in equation (4). Included is an expanded view 

of the modulated curve, discussed in the next section.  

 

 
Figure 5: Recursive model projections for US Covid-19 to 

October 2020 per equation (3-c) 

 

Examination of the simulation graph in Figure 5 shows a 

gradual rise to about 6.5 million cases by September-5-

2020, which compares reasonably to the actual case 

numbers shown by “circles” in the figure. However, a 

Verhulst logistic graph shows the population slowly rising 

to 1.5 million cases by the beginning of September 2020, 

well below the expected 6.5 million cases. 

 

Model Graph - Modulated Recursion 

Equation (4) applies a λ value to simulate known growth 

behaviour in equation (3-c), from which future trajectories 

may be speculated in relation to social conditions. Table 1 

lists λ values for equation (4) that produce a correlation 

between case numbers and the modulated recursion model 

solution, shown in expanded form in Figure 5.. 

 
Table 1: Variables for the general model in equation (4) 

T < 6 < 12 < 18 < 24 < 32 < 40 > 40 

λ 0 2.8 -1.4 5.6 -1.4 0 1 

 

Projection to 2022 

Growth of Covid-19 in the US in the future can be broadly 

inferred from known data, and from asymptotic limits of 

the above logistic models. By the end of August 2020 over 

6 million infections have been recorded (in 7 months).  

Infection rate averages 250,000 cases per week or 30,000 

cases per day. At present an average value of 29,815/cases 

day has not changed significantly since early March 2020.  

 

Figure 6 shows a graph of the time-delay recurrence 

equation (3-c) projected to May 2022. Both modulation 

and no modulation curves are based on amplitude and 

frequency set according to Table 1. Beyond 30 million 

infections after August 2021 (T > 84), time-delay solutions 

begin to “flatten” due to action of the terms in equation (4). 

 

 
Figure 6: Recursion model solutions projected until natural  

saturation in March 2022 

 

Discussion 

 

A hypothesis of the research was that a predictive method 

could be developed to simulate Covid-19 growth curves. To 

develop the hypothesis, research on recurrence relations 

appear applicable due to their known ability to model 

predator-prey relationships in large population studies. 

Nevertheless, equations did not exist to describe or predict 

trajectories of US Covid-19.  

 

Given that the US case numbers continue to grow, any 

research on projection of case numbers is worthwhile. At 

present, the US is about one-quarter the way through the 

pandemic trajectory. A vaccine or major social isolation 

could logically reduce prediction of final case numbers. 
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Based on the current research, further investigations are 

required to understand the dynamics of long-term 

transmission, for T > 100 weeks. Simulation using the 

derived time-delay equation (3-c) suggests that larger 

modulation amplitudes are possible for T > 40 weeks in 

Table 1. Any increase in λ values will cause larger swings 

and surges in infection rates. 

 

The US has experienced widespread virus growth without 

real control. From simulations, an average 14-week cycle 

in peaks and troughs occur, indicating a surge, lull and 

surge cycle that may be linked to how the virus transmits 

in the community.  Clearly, the entire US count case is 

investigated, which does not take into account localised 

variations in high density regions. One surmises that 

infected case numbers for the entire 50 US states is the 

simple summation of each state’s infected cases.   

 

Four main points are noteworthy from the research, a) 

infections should average 30,000/day until an external 

influence forces its reduction, b) lockdown activity 

typically reduces growth by 15,000/day, c), economic 

opening raises cases 40,000/day, d) peak-to-peak wave 

cycles of 28 weeks exist in the data. 

 

V. CONCLUSION AND FUTURE SCOPE  

 

The paper provides a new understanding of the dynamics 

of Covid-19 growth rates in the USA. A mathematical 

description of the growth in total cases examines 

geometric, arithmetic and time-delay recursion methods.  

Models are calibrated to published case numbers and used 

to forward-predict trajectories of the virus spread in the 

community until mid-2022.  

 

Solutions presented in graphical form compare well with 

reported case numbers to date. US data to mid-August 

2020 shows the growth trajectory contains a modulation, 

simulated by including loss or gain in the modulated 

recursion model. A modulated recursion method results in 

a good correlation with actual case numbers up to late 

August 2020. Correlation enables a projection towards 

2022 with some confidence.   

 

Recursion models have not included external human 

influence on virus transmission. A time-delay recursion 

model predicts total infection levels exceeding 30 million 

cases by early 2022. Projections for Covid-19 case number 

in the US is necessary to allow proper planning and 

allocation of economic resources. Development of a 

modulated recursion model that inherently generates 

natural cyclical functions may provide a new insight into 

the way pandemics and epidemics propagate in the US 

population.   
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