

Butterfly-Plant Diversity in Malappuram District Of Kerala, India: A Way of Plant – Pollinator Communications

Binu Thomas¹*, Hima A.², Hariprasad N.³, Mariya Jose⁴

^{1,2,3,4}Department of Botany, Centre for Post Graduate Studies & Research, St. Joseph's College (Autonomous), Devagiri, Kozhikode, Kerala - 673008, India

*Corresponding Author: binuthomasct@gmail.com, Mobile no.: +91 - 8848649762

Available online at: www.isroset.org

Received: 25/Aug/2021, Accepted: 10/Oct/2021, Online: 30/Apr/2022

Abstract- The present study documented that, total of 33 plant species belonging to 18 families and 29 genera were pollinated by various kinds of butterflies (41 butterfly species belongs to 27 genera and 5 families) Among the documented plant familiesAsteraceae is the dominant one with 10 species, followed by Fabaceae with 4 species and Boraginaceae and Verbenaceae with 2 species respectively. The plants which are documented from the study are divided in to two categories such as plants are pollinated by various butterflies (33 species) as well as plants are preferred by different butterflies for their ovi posting and larval development (63 species). The flower colour analysis reveals that maximum number of butterflies which are visited yellow colour (10 species) followed by white colour (8 species), orange colour (7 species), red colour (6 species), violet (3 species), yellowish-orange (2 species), purple (2 species). Cream, rose and blue colour visited by single butterfly species respectively. Present study also concluded that, the plant-insect interaction is an essential factor for pollination process and better yield in both wild as well as crop plants. Hence an adequate care should be taken to conserve both flora and fauna of our surroundings for future generation.

Keywords- Butterfly-plant interaction, Pollinators, Ovi posting, Conservation

I.INTRODUCTION

A significant majority of insects have strong interactions with plants and other biotic components of any ecosystem[1]. Organisms that visit flowers for nectar or pollen may or may not pollinate the plant species [2]. Butterflies are takes part in the key stone ecological process of pollination[3]. The interaction between butterflies and flowers is indeed so strong that the availability of nectar resources invariably appears as one of the main factors explaining the butterfly abundance in semi-natural or natural habitats [4,5].

Butterflies enable sustenance of ecosystem services through their role in pollination and serving as important food chain components[6]. Over the entire period of their active life, the butterflies engage in a spectrum of plant-feeding relationships which are often very complex involving coevolution and obligate mutualism; such interaction can be a major factor in generating patterns of diversity in both the partners [7,8]. Flower-visiting insects play an important role in maintaining biodiversity and ecosystem services such as pollination, which corresponds to a great economic value [9]. Many studies have shown that insect abundances are highly correlated with the abundance of floral nectar sources [10,11]. Butterflies and flowers are in close relation with regard to pollen dispersal for plant propagation; On the other hand Butterflies get proteinacious substances for successful reproduction[12].Majority of insects, especially butterflies has strong ecological relationships with the flowering plants which are available in particular habitats[13,14,15,16]. Mutualistic interactions such as plant-pollinator interactions at a communitylevel are known to provide this structure and stability to biotic communities[17,18].It is very common in nature for interspecific interactions tooccur as complex interaction networks, where a particular flower visitor may visit severalplant species, but with a variable efficiency ranging from nectar robbers to potential pollinators [19,20,21]. Butterfly speciescould also interact with their feeding plants in such a manner those interactions couldbe represented as complex networks. The present study is mainly aims to document the plants which are pollinated by butterflies and also document the butterfly diversity in present study area, it also analyze various threatening factors of the study area and make to the awareness about the role of butterflies in pollination in both wild as well as crop plants among natives.

II.STUDY AREA

Malappuram district is bounded by the Nilgiris hills on the East and the Arabian Sea on the west, Kozhikode and Wayanad Districts in the north and Palakkad and Thrissur District in the south. The district of Malappuram literally the land with hills, is remarkable for its unique natural beauty. Perched among the undulating hills and the meandering rivers that flow to reach the coconut-fringed seacoast, the land conceals a unique and eventful history (Fig. 1).

Fig.1 Map of Kerala state and Malappuram District

The district has a geographical area of 3550 sq. Kms, which is 9.13% of total area of the state and ranks 3rd in the state. The district has dry season from December to February, hot season from March to May and the South west monsoon from October to November. The South west monsoon is usually very heavy and nearly 75 percent of the annual rains are received during this season. The climate is generally hot and humid; the range of temperature varying between 30 0 C and 20 °C. The average annual rainfall is 290 mm. Malappuram consist of 3 natural divisions, lowland, midland and highland. The low land stretches along the sea coast, the midland in the centre and the highland region towards the East and North eastern parts. The topography of the district is highly undulating; starting from the hill tops covered with thick forest on the East along the Nilgiris, it gradually slopes down to the valleys and the small hills, before finally ending on the sandy flat of luxuriant coconut groves in the west. The hill country also contributed much to the cultural artistic traditions of the state[22].

Four important rivers of Kerala flow through Malappuram district. Chaliyar, Kadalundippuzha, They are Bharathapuzha and Tirurpuzha. The district has a total forest area of 758.8684 Square Km,out of which 325.3261 Square Km is reserve forests and 433.5423 Square Km is vested forests. Of the forests 80 percent is deciduous and the rest is evergreen. Forests are the main source of raw materials for a number of wood-based industrial units. Besides timber, firewood and green manure, forest produces like honey, medicinal herbs, spices etc are collected. The tribalsalso collect minor forest products. The forests are protected by two forest divisions-Nilambur north and Nilambur South.

The social forestry division promotes planting of trees outside forestlands, for protecting natural forests.

III. MATERIALS AND METHODS

The present study was based on an extensive field observation during the year November 2019-February 2020. In this study an attempts were made to document the interaction between Plants and Butterflies at Malappuram district. The documentation was mainly based on the field observation, photographs as well as scrutinizing the literature review. During the field visits, observations are made based on butterflies that interact with different plants and photographs are taken (Plate-1&Plate-2). The collected photographs of plants and butterflies were identified taxonomically with the help of available literature and online sources. Mainly the identification of butterflies was done with the help of the photo field guide of The Butterflies of Kerala [23]. Butterflies of Peninsular India [24]. (KrushnameghKunte, 2000) & Butterflies of Western Ghats [25].Plants were identified with help of existing Floras and Literature [26,27,28]. The nomenclature of each species has been brought up to data as per the rules given in the International Code of Nomenclature (ICN). The plant specimens were processed for herbarium preparation [29] and it becomes stored in herbaria of Department of Botany, St. Joseph's College Devagiri (DEV) for future reference.

IV. RESULTS AND DISCUSSION

The present study on harmonization and interactions butterfly-plant diversity in malappuram district of Kerala noticed that, there are about 33 plant species which are

Int. J. Sci. Res. in Biological Sciences

belonging to 18 families and 29 genera were pollinated by various kinds of butterflies (**Table-1**). Among these documented plant families, Asteraceae is the dominant one with 10 species, followed by Fabaceae with 4 species and Boraginaceae and Verbenaceae with 2 species respectively (**Fig.2**).

Fig.2Analysis of dominant plant families in the study area

These plants are may be attracted by various butterflies either to its attractive flower or plant parts for insearch of nectar as well as pollens as a part of their nutrion. During such visits these butterflies may carries some amount pollen grains on their bodies and it may dusted on other individual of a same species which are located near by study area and there by cross pollination may oocur inbetween the individuals of same species. As the pollination occurs between flowers of two different plants, genetics recombination is found in this allogamy with the following advantages such as, It brings about genetic recombination resulting into the origin of new varieties, The offspring produced through crosspollination are healthy and stronger due to hybrid vigour, Numerous crop plants gives higher yields if only crosspollination is allowed to occur in them, Variations are produced due to cross-pollination resulting into the origin of disease resistant plants.

SI No.	Name of a plant sps.	Family	Name of Butterfly
1.	Tiliacoraacuminata(Poir.) Miers	Menispermaceae	Appias indica.
2.	Hibiscus rosa-sinensis L.	Malvaceae	Prioneris sita
3.	Oxalis corniculata L.	Oxalidaceae	Argynnis hyperbius.
4.	Murraya koenigii (L.) Spreng.	Rutaceae	Papilio polytes.
5.	Clitoria ternatea L.	Fabaceae	Hypolimna sbolina
6.	Crotalaria pallid Dryand	Fabaceae	Euploea core
7.	Crotalaria retusa L.	Fabaceae	Parantica aglea
8.	Crotalaria verrucosa L.	Fabaceae	Parantica aglea
9.	Caesalpiniapulcherrima Swartz	Caesalpiniaceae	Papilio anchisiades
10.	Calycopteris floribunda Lam.	Combretaceae	Castalius rosimon
11.	Psidiumguajava L.	Myrtaceae	Papiliolio medon
12.	Ixora coccinea L.	Rubiaceae	Papilio demoleus
13.	Pentas lanceolata Defler.	Rubiaceae	Hebomoia glaucippe
14.	Ageratum conyzoides L.	Asteraceae	Tirumala limniace
15.	Biden spilosa L.	Asteraceae	Tirumala limniace
16.	Bidens sulphurea SchBip.	Asteraceae	Elymnias hypermnestra
17.	Centratherum intermedium Less.	Asteraceae	Danaus chrysippus
18.	Crassocephalum crepidioides Benth.	Asteraceae	Tirumala septentrionis.
19.	Erigeron karvinskianus DC.	Asteraceae	Plabejus argyro gnomon
20.	Mikania micrantha Kunth.	Asteraceae	Parantica aglea
21.	Tagetes erecta L.	Asteraceae	Hypolimnas bolina
22.	Tithonia rotundifolia Blake	Asteraceae	Captopsilia pomona
23.	Tridax procumbens L.	Asteraceae	Hypolimnas misippus
24.	Heliotropium bracteatum R.Br.	Boraginaceae	Danaus genutia
25.	Heliotropium indicum L.	Boraginaceae	Danaus genutia
26.	Chrysothemis pulchella Decne	Gesneriaceae	Papilio budha
27.	Thunbergia grandiflora Roxb.	Acanthaceae	Eurema hecabe
28.	Lantana camara L.	Verbenaceae	Elymnias hypermnestra
29.	Stachytarpheta jamaicensis Vahl.	Verbenaceae	Danaus genutia
30.	Leucas aspera (Willd.) Link.	Lamiaceae	Tirumala septentrionis
31.	Alternanthera sessilis (L.) R.Br. ex.	Amaranthaceae	Castalius rosimon
32.	Pouzolzia zeylanica (L.) Bennett	Urticaceae	Pachliopta aristolochiae
33.	Spathoglottis plicata Blume	Orchidaceae	Elymnias hypermenstra

Table-1 Documentation plant species which are pol	ollinated with different kinds of butterflies
--	---

SI No.	Name of a plant sps.	Family	Name of Butterfly
1.	Dioscorea oppositifolia L.	Dioscoreaceae	Tagiades litigiosa
2.	Ziziphus mauritiana Lam.	Rhamnaceae	Castalius rosimon
3.	Ziziphus rugosa Lam.		
4.	Ziziphus xylopyrus (Retz.) Willd.	Rhamnaceae	Discolampa ethion
5.	Butea monosperma (Lam.) Taub.		Lampides boeticus
6.	Crotalaria pallida Dryand.	Fabaceae	Lump web coencus
7.	Pisum sativum L.		
8.	Trifolium repens L.	Fabaceae	Plebeius argyrognomon
9.	Kalanchoe laciniata (L.) DC.	Crassulaceae	Talicada nyseus
10.	Viola pilosa Blume	Violaceae	Argynnis hyperbius
11.	Ficus religiosa L	Moraceae	Cyrestis maenalis
12.	Asclepias curassavica L		
13.	Calotropis gigantea (L.) R. Br.		Danausc hrysippus
14	Ceropegia intermedia Wight	Asclepiadaceae	
1.11	C C C C C C C C C C C C C C C C C C C	1	Danaus genutia
15.	Areca catechu L.		
16.	Arenga wightii Griff.	Aracaceae	Elymnias hypermnestra
17.	Cocos nucifera L.		5 51
18.	Carissa carandas L.		
19.	Nerium oleander L.	Apocynaceae	Euploea core
20.	Streblus asper Lour.	1 2	1
21.	Hemidesmus indicus (L.) R. Br.	Asclepiadaceae	
22.	Capparis moonii Wight		
23.	Capparis sepiaria L.	Capparaceae	Hypolimnas bolina
24.	Capparis zeylanica L.		~1
25.	Abutilon indicum (L.) Sweet	Malvaceae	Hypolimnas misippus
26.	Portula caoleracea L.	Portulacaceae	
27.	Phyla nodiflora (L.) Greene	Verbenaceae	Junonia almanac
28.	Barleria longiflora L.		
29.	Justicia neesii Ram.	Acanthaceae	Junonia atlites
30.	Cannabis sativa L.	Cannabaceae	
31.	Corchorus capsularis L.	Tiliaceae	Junonia lemonias
32.	Calotropisgigantea(L.) R.Br.	Asclepiadaceae	Parantica aglea
33.	Cryptolepis buchananii Roem.	Periplocaceae	
34.	<i>Tinospora cordifolia</i> (Willd.) Miers	Menispermaceae	Parthenos sylvia
35.	Tylophora indica (Burm. f.) Merr.	Asclepiadaceae	Tirumala limniace
36.	Clerodendrum infortunatum L.	Verbenaceae	
37.	Wattakaka volubilis (L.f.) Stapf.	Asclepiadaceae	Tirumala septentrionis
38.	Annona muricata L.		
39.	Annona reticulate L.	Annoaceae	Graphium agamemnon
40.	Annona squamosa L.		
41.	Cinnamomum camphora (L.) Presl		Graphium sarpedon
42.	Persea macrantha (Nees) Kost.	Lauraceae	
43.	Aristolochia bracteolate Lam.		
		Aristolochiaceae	Pachliopta aristochia
44.	Aristolochia indica L.		
45.	Citrus limon(L.) Burm.f.	Rutaceae	Papilio anchisiades
			_
46.	Clerodendrum paniculatum L.	Verbenaceae	Papilio buddha
	*		-
47.	Cinnamomum malabatrum Burm.f.	Lauraceae	Papilio clytia

Table-2 Documentation Butterfly and Host plant species in the study area

48.	Polyalthia longifolia Thw.	Annonaceae	Papilio demoleus
49.	Artabotrys hexapetalus Bhandar.	Annoaceae	Papilio helenus
50.	Sida rhombifolia L.	Malvaceae	Papilio liomedon
51.	Mimusops elengi L.	Sapotaceae	Papilio polymnestor
52.	Clitoria ternatea L.	Fabaceae	Papilio polytes
53.	Centrosema molle Benth.	Fabaceae	Parnassius apollo
54.	Citrus limon (L.) Burm.f.	Rutaceae	Triodes helana
55.	Aristolochia indica L.	Aristolochiaceae	
56.	Tiliacora acuminate (Poir.) Miers	Menispermaceae	I roides minos
57.	Musax paradisiacal L.	Musaceae	Appias lyncida
58.	Albizia chinensis (Osbeck) Merr.	Fabaceae	Catopsilia pomona
59.	Senna alata (L.) Roxb.		Eurema hecabe
60.	Senna tora (L.) Roxb.	Caesalpiniaceae	
61.	Moullava spicata (Dalz.) Nicolson	Fabaceae	Hebomoia glaucippe
62.	Cassia fistula L.	Caesalpiniaceae	Pareronia valeria
63.	Mimosa diplotricha C. Wight	Mimosaceae	Prioneris sita

There are about 41 butterfly species belongs to 27 genera and 5 families (**Table-2**). Among them *Euploea core* may prefer 4 host plants. The butterflies like *Graphium agamemnon*, *Hypolimnas bolina*, *Elymnias hypermnestra*, *Danaus chrysippus*, *Danaus genutia* and *Lampides boeticus* may have 3 host plants. The butterflies like *Eurema hecabe*, *Triodes minos*, *Pachlio ptaaristochia*, *Graphium sarpedon*, *Tirumala septentrionis*, *Parthenos sylvia*, *Junonia atlites*, *Hypolimnas missipus* and *Castalius rosimon* prefer 2 host plants. The other species prefer single plant species for their ovi posting and larval development.

Among 41 butterfly varieties, maximum number of butterflies which are visited yellow colour (10 species) followed by white colour (8 species), orange colour (7 species), red colour (6 species), violet (3 species), yellowish-orange (2 species), purple (2 species). Cream, rose and blue colour visited by single butterfly species respectively (**Fig. 3**).

Fig.3Analysis of various flower colourwith respect to the number of butterfly spcies

Some of the earlier studies reveal that, thefloral preference in pollinators may vary from species to species. Most of the species are highly generalized while a few of them are

Int. J. Sci. Res. in Biological Sciences

highly specialized feeders[30].Studies onJothimani*et al*,[31]reveals that the colour of the flower is an important factor for plant-butterfly interaction. Among these 27-butterfly varieties, maximum number of butterfly visited on cream colour (14-varieties) followed by White colour (10-varieties) and Bluish-mauve (8-varieties). Orange-red, Whitish pink, Blackish brown, Bluish white, Green, Greenish yellow, Pale-yellow, Pinkish-purple and Purplish white visited by only one or two butterfly varieties only.

Similarly Leppik [32](1953) reported that the foragers should recognize the appearance of the flowers not just by their colours or by odour alone but by all essential characteristics of flowers such as size,colour, number of flower parts,symmetry and odour. The present study also observed that the butterflies are attracted to the flower initially based on their attractive colour. After that only they realized the presence or absence of nectar in their respective flowers. This was supports by some of the earlier workers [33, 34] alsofound that no relationship between size and visitation. A majority of studies have found that insect foragers exhibit higher rates of visitation to longer flowers [35,36,37,38,39,40,41].

Flower size is correlated with production of pollen or nectar [42,43]. It has been shown that butterflies remember and

associate certain stimuli like preferred taste of nectar with the shape and colour of the flowers and then choose flowers of similar features [44,45]. Butterflies have evidential capabilities to recognize the plant source of food.For the reason, it is important to note that each of the vegetation type can make unique contribution to the measured butterfly diversity and the butterflies for the plant diversity [46,47].

The present study mainly focalized on plant-insect interaction and how it affects pollen biology as well as pollination of various plants in the study area. Due to lack of suitable management, unsustainable utilization of natural resources, deforestation and urbanization, uncontrolled use of pesticides and in-organic manures, environmental pollution may adversely affect the existence of both insects and floral diversity of the area. It is concluded that, the plant-insect interaction is an essential factor for pollination process and better yield in both wild and crop plants. More over people should aware about the role of butterflies in pollination process of various plants in and around our habitats. Likewise different plant species are also used by these butterfly species for their ovi posting and larval development. So an adequate care should be taken to conserve both flora and fauna of our surroundings for future generation.

Plate -1

A.Triodes helenacerberus on Hibiscus rosa-sinensis L.

B. Euploea core on Crotalaria retusa L.

C. Papilio anchisiades on **Caesalpinia pulcherrima** (L.) SW.

D.*Triodes helana* on *Ixora javanica* (Blume) DC.

E. Tirumala septentrionis on Ageratum conyzoides L.

F. Hypolimna sbolina on Bidens sulphurea (Cav.) Sch.-

G. Danaus chrysippus on **Centratherum intermedium** Less.

H. Danaus genutia on Tagetes erecta L.

I. Tirumala limniace on Heliotropium indicumL.

J. Papilio Buddha on Chrysothemis pulchella

Int. J. Sci. Res. in Biological Sciences

K. Prionerissita on Lantana camara L.

V. CONCLUSION

The present study on butterfly-plant diversity in Malappuram district of Kerala documented 33 plant species which are belonging to 18 families and 29 genera were pollinated by various kinds of butterflies. Among these documented Asteraceae is the dominant one with 10 species, followed by Fabaceae with 4 species and Boraginaceae and Verbenaceae with 2 species respectively. These plants are may be attracted by various butterflies either to its attractive flower or plant parts for insearch of nectar as well as pollens as a part of their nutrion. Similarly 41 butterfly species belongs to 27 genera and 5 families are also documented from the present study area. These butterfly species plays significant role in the pollination of many plants in the selected area. The plants which are documented from the study are divided in to two categories such as plants are pollinated by various butterflies (33 species) as well as plants are preferred by different butterflies for their ovi posting and larval development (63 species). The flower colour analysis reveals that maximum number of butterflies which are visited yellow colour (10 species) followed by white colour (8 species), orange colour (7 species), red colour (6 species), violet (3 species), yellowish-orange (2 species), purple (2 species). Cream, rose and blue colour visited by single butterfly species respectively. Due to lack of suitable management, unsustainable utilization of natural resources, deforestation and urbanization, uncontrolled use of pesticides and inorganic manures, environmental pollution may adversely affect the existence of both insects and floral diversity of the area. It is concluded that, the plant-insect interaction is an essential factor for pollination process and better yield in both wild as well as crop plants. Hence an adequate care should be taken to conserve both flora and fauna of our surroundings for future generation.

ACKNOWLEDGMENTS

The authors are thankful to the Dr. Satheesh George, Head, Department of Botany, St. Joseph's College (Autonomus), Claicut, Kerala for providing necessary facilities, our sincere thanks also to Dr. Boby Jose and Dr. Akhil S.

Venugopal, Department of Zoology, St. Joseph's College (Autonomus), Claicut, Kerala for their valuable helps from time to time in need.

REFERENCES

- [1] P.R. Ehrlich, P.H. Raven, "Butterflies and plants: A study in coevolution." *Evolution*, **18**, **586-608**, **1965**.
- [2] C.B. Huffaker, G. Gutierrez, "Introduction to Ecological Entomology." John Wiley & Sons. Inc. New York, pp. 53 –65, 1999.
- [3] M. Bhuya, D. Katakideka, M. Bhattacharyya, "Nectar host plant selection and floral probing by the Indian butterfly *Danausgenutia* (Nympahlidae)." *Journal of Research on Lepidoptera*, 38, 79-84, 1999.
- [4] K. Holl, Necter resources and their influence on butterfly communities on reclaimed coal surface mines. *Restoration Ecolology***3**, 76-85, 1995.
- [5] R.F. Pywell, W.R. Meek, L. Hulmes, S. Hulmes, K.L. James, "Management to enhance pollen and nectar resources for bumblebees and butterflies within intensively farmed landscapes." *Journal of Insect Conservation*, 5(6), 853–864, 2011.
- [6] V.N. Aiswarya, M. Pradarsika, "Soma Studies on the diversity and abundance of butterfly (Lepidoptera: Rhopalocera) fauna in and around Sarojini Naiducollegecampus, Kolkata, West Bengal, India." Journal of Environment and Zoology, 2(4), 129-134, 2014.
- [7] L.E. Gilbert, "Pollen feeding and reproductive biology of Heliconius butterflies." *Proceeding of the Natural Academy Sciences*, **69**, **1403-1407**,**1972**.
- [8] L.E. Gilbert, "Ecological consequences of a coevolved mutualism between butterflies and plants; *Coevolution o fanimals and plants*". Gilbert, L.E. & Raven, R.H. (Eds). Austin and London: Univ. Texas Press. pp.210-240, 1975.
- [9] J.E. Losey, M. Vaughan, "The economic value of ecological services provided by Insects." *Biological Sciecs*, 56, 311–323, 2006.
- [10] S. Zschokke, C. Dolt, H.P. "Rusterholz, Short-term responses of plants and invertebrates to experimental small-scale grassland fragmentation". *Oecology* 125, 559–572, 2000.
- [11] L. Fahrig, "Effects of habitat fragmentation on biodiversity." Annals of Review in Ecology and Systematematics, 34, 487–515, 2003.
- [12] S.F. Matter, T. Roslin, J. Roland, "Predicting immigration of two species in contrasting landscapes: effects of scale, patch size and isolation." *Oikos*, **111: 359–367, 2005.**
- [13] M.KuussaariHeliola, J. M. Luoto, J. Poyry, "Determinants of local species richness of diurnal Lepidoptera in boreal agricultural landscapes." *Agriculture Ecosystem and Environment*, **122**, 366– 376, 2007.

- [14] J.W. Dover, N. Sotherton, K. Gobbett, "Reduced pesticide inputs on cereal field margins: The effects on butterfly abundance." *Ecology and Entomology*, 15, 17–24, 1990.
- [15] G.R. De Snoo, R.J. van der Poll, J. "Bartels Butterflies in sprayed and unsprayed field margins". *Journal of Applied Entomology*, 122: 157–161, 1998.
- [16] S. Aviron, F. Herzog, I. Klaus, B. Schüpbach, P. Jeanneret, "Effects of wildflower strip quality, quantity, and connectivity on butterfly diversity in a Swiss arable landscape." *Restoration Ecology*, 22, 500–508, 2010.
- [17] E. Thebault, C. Fontaine, "Stability of ecological communities and the architecture of mutualistic and trophic networks." *Sciences*, 329:853–856. 2010.
- [18] G. Benadi, N. Blüthgen, T. Hovestadt, H.J. Poethke, "When can plant–pollinator interactions promote plant diversity." *The American Naturalist* 182: 131–146, 2013.
- [19] G.L. Stebbins, "Adaptive radiation of reproductive characteristics in angiosperms, pollination mechanisms." *Annals of Review in Ecology and Systematics*, 1, 307–326, 1970.
- [20] M. Fishbein, D.L. Venable, "Diversity and temporal change in the effective pollinators of Asclepiastuberosa." Ecology, 77, 1061– 1073, 1996.
- [21] N.M. Waser, L. Chittka, M.V. Price, J. Williams, "Ollerton Generalization in pollination systems, and why it matters." *Ecology*, 77, 1043–1060, 1996.
- [22] Binu Thomas, S.P. Manju, "Ethnobotanical documentation of traditional knowledge about medicinal plants used by *Paniyans* of Vaniyampuzha, NilamburTaluk, Malappuram, Kerala". In: M.V. Sudhakaran (Ed.), *Perspectives in Life Siences*.Sahithya Pravarthaka Co-operative Society Ltd., Kottayam, Kerala pp. 77 – 109, 2019.
- [23] M. JaferPalot, Balakrishnan, K. Babu, "The Butterflies of Kerala, A photo field guide" Malabar Natural History Society Calicut, 2013.
- [24] K. Krushnamegh, "Butterflies of Peninsular India. "University Press (India) Private Ltd. Hyderabad, India, 2000.
- [25] K. Raju, "Butterflies of Western Ghats." Second Edition. Bombay Natural History Society, Mumbai, 2018.
- [26] J.D. Hooker, "The Flora of British India," Vol. I-VII. Reeve & Co., London, 1872-1897.
- [27] J.S. Gamble, C.E.C. Fischer, "The Flora of the Presidency of Madras." Adlard& Son Ltd., London, 1915-1936.
- [28] N. Sasidharan, "Biodiversity documentation for Kerala.Part-6: Flowering Plants." Kerala Forest Research Institute, Peechi, Thrissur, 2004.
- [29] H. Santapau, A.N. Hentry, "A Dictionary of the flowering plants in India."Council of Scientific & Industrial Research, New Delhi, 1973.
- [30] K. Faegri, P.L.Vander, "The principles of pollination ecology". Pergamon Press. London, 1996.
- [31] K. Jothimani, V.S. Ramachandran, A. Rajendran, "Butterflies as Pollinators in Maruthumalai hills of Southern Western Ghats." *Academci Journal of Entomology*,7(1), 07-16, 2014.
- [32] E.E. Leppik, "The ability of insects to distinguish numbers." American Naturalist, 87, 29-36, 1953.
- [33] D. Goulson, J.S. Cory, "Flower constancy and learning in foraging preferences of the green-veined white butterfly *Pieris napi*." *Ecological Entomology*, **18**, **315-320**, **1993**.
- [34] K. Dave Goulson, "Bumblebees behavior and ecology." Oxford University Press.pp.108-120, 2003.
- [35]C. Galen, "Measuring pollinator-mediated selection on morphometric traits: bumblebees and the alphine sky pilot, *Polemoniumviscosum.*" Evolution, 43, 882-890, 1989.
- [36] D.R. Cambel, "Measurements of selection in a hermaphroditic plant.variation in male and female pollination success." *Evolution*, **43**, **318-334**, **1989**.
- [37] V.M. Eckhart, "The effect of floral display on pollinator visitation vary among populations of *Phacelialinearis*(Hydrophyllaceae)." *Evolution and Ecology*,5, 370-384,1991.

- [38] J.E. Cresswall, C. Galen, "Frequency-dependent selection and adaptive surface for floral character combinations: the pollination of *Polemonium viscosum.*"*Naturalist*, **138**, **1342-1353**, **1991**.
- [39] M. Ohara, S. Higashi, "Effects of inflorescence size on visits from pollinators and seed set of *Corydalis ambigua* (Papaveraceae)."*Oecology*, 98, 25-30, 1994.
- [40] J.K. Conner Rush, S. Kercher, P. Jennettan, "Measurements of natural-selection on floral traits in wild radish (*Raphanus raphanistrum*).Selection through lifetime male and total fitness." *Evolution*, 50, 1137-1146, 1996.
- [41] J.A. Shykoff, E. Bucheli, O. Kaltz, "Anther smut disease in *Dianthus silvester* (Caryophyllaceae): natural selection on floral traits." *Evolution*, **51**, 383-392, 1997.
- [42] L.R. Teuber, D.K. Barnes, "Breeding alfalfa for increased nectar production. Proceedings of the Vth International symposium on pollination Maryland." 1979.
- [43] D. Brin, J.J. De Wet, "Interpopulation variation in nectar production in Aconitum columbianum (Ranunculaceae)." Oecology, 47, 160-163, 1980.
- [44] M.R. Weiss, "Innate colour preferences and flexible colour learning in the pipevine swallowtail." *Animal Behaviour*, 53, 1043-1052, 1997.
- [45] M.R. Weiss, D. Papaj, "Colour learning in two behavioural contexts: How much can a butterfly keep in mind?" *Animal Behaviour*, 65, 425-434, 2003.
- [46] N. Suzuki, K. Yamashita, A. Niizuma, K. Kiritani, "Studies on ecology and behaviour of Japanese black swallowtail butterflies. F. nectar feeding of Papilio helenusnicconicolens butler and P. protenordemetriuscramer as main pollinators of glory bower, *Clerodendron trichotomum.*" *Ecology and Research*, 2, 41-52, 1987.
- [47] T.J. Stohlgren, R.R. Bachand, "Lodgepole pine (Pinuscontorta) ecotones in rocky Mountain National Park, Colorado, USA." *Ecological Applications*,7(3), 1064-1074, 1997.

AUTHOR'S PROFILE

Dr. Binu Thomas, Assistant Professor in Department of Botany, St. Joseph's College(Autonomous), Devagiri, Calicut, Kerala. He took his B.Sc. & MSc. degrees in Botany from Calicut University, Kerala. M.Phil & Ph.D. degrees in Botany from Bharathiar University, Coimbatore,

Tamil Nadu. He has authored 3 books and 6 articles in edited books and more than 100 research articles to his credit in various National and International Scientific Journals. He is an active reviewer in many National and International Journals. His research intrests are including Plant Systematics, Ecology, Ethnobotany and Biodiersity Conservtaion.