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Abstract— Grapevine Leafroll desease (GLD) is among the most important diseases that affect the vine, which cause significant 

economic losses in cultivars of these plant species, since they cause low-quality berries, in terms of their size and grade. sugar. 

The changes suffered by plants at the metabolic level were studied in the present work. Four plants of V. vinifera L. cv. 

Thompson Seedless, one infected only with GLRaV-3, another infected with GLRaV-3 coinfected with and GLRaV-2, a third 

plant infected with GLRaV-2 coinfected with GLRaV-3 and GVA, and finally a plant that did not show viral titer (used as 

negative control), all from the 2018-2019 harvest, from a commercial cultivar located in the province of San Juan, Argentina. 

Changes in α-tocopherol contents, antioxidant capacity, total polyphenols, soluble sugars, soluble proteins, proline and glycine 

betaine were analyzed, in addition to studying the increase in resveratrol as induced phytoalexin. This can be considered as a 

plant adaptation mechanism to live with a viral pathogen. 
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1. Introduction  
 

Vitis vinifera L. is affected by various pathogenic 

microorganisms that cause damage to foliage, roots, and 

wood. Among the causative agents, fungi, bacteria, viruses 

and nematodes can be mentioned, which can cause significant 

losses in yield, as well as in the commercial quality of table 

grapes [38], [70]. These pathogenic agents can affect plants in 

different phenological stages and reduce their useful life, as 

well as reduce the postharvest quality of their fruits [13]. 

Depending on the incidence and severity of the 

phytopathological problems, these can become limiting 

factors for production, causing economic losses to producers 

and difficulties in marketing and export [47], [49]. The 

incidence and severity of each disease will vary according to 

the climatic characteristics that occur in each region. In 

localities that present conditions of high humidity or free 

water during the growing season, diseases can be the main 

limitation of the crop in economic terms [53], [55]. 

 

Among the viral diseases are the Grapevine Leafroll Disease 

(GLD), caused mainly by the Grapevine leafroll-associated 

virus-3 (GLRaV-3), this disease is mainly characterized by 

having a negative impact on the quality of the fruit, reducing 

its size and sugar grade, considerably decreasing its quality 

[2]. 

Vine roll is the most widespread viral disease in the world 

that affects the vine, causing great economic losses, as a 

consequence of the drop in yield, which is due to the drop in 

the weight of the berries and the sugar content of the fruit 

[48], [54].This disease is estimated to cause a loss of between 

25,000 and 40,000 dollars per hectare of 25-year-old 

vineyards [3]. The symptoms vary according to the type of 

cultivar and the different viral combinations that affect them 

[50], [51] This disease can be caused by a simple or mixed 

virus infection [48], the predominant virus being Grapevine 

leafroll-associated virus -3 (GLRaV-3) [50], the viruses with 

which it is associated in mixed infection can be Grapevine 

fanleaf virus (GFLV), Grapevine leafroll associated virus-1 

and 2 (GLRaV-1 and GRAV-2), Grapevine virus A (GVA), 

Grapevine virus B (GVB), Grapevine rupestris stem pitting 

associated virus (GRPSaV) and Grapevine fleck virus 

(GFkV) [24], [40]. 

 

The biochemical differentiation that exists between an 

infected and a healthy vine plant occurs at different levels of 

their metabolic processes [4]. The biosynthetic pathway of 

phenylpropanoids in grapevine is one of the most studied and 

related to plant defense mechanisms against a wide range of 

stress factors (biotic and abiotic), and is responsible for the 

synthesis of a large number of phenolic compounds [19],[35]. 
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2. Related Work  
 

A large amount of previous research has demonstrated the 

negative effect of viral infections on the metabolism of the 

host plant. For example, in an investigation carried out on 

potato plants (Solanum tuberosum L.) infected with Potato 

leafroll virus and Potato virus Y, it was observed that the 

sprouts increased the levels of chlorophyll, soluble proteins 

and total sugars as consequence of the physiological changes 

caused by the viral load in the different organs of the plant 

[43], [17]. 

 

In the same way, changes at the metabolic level have been 

reported in plants infected with ZYMV (Zuccini yellow 

mosaic virus) [61]. 

 

Another clear example is the research on the effects on the 

expression in the secondary metabolisms of Nicotiana 

bentamiana when it is attacked by Potato virus X, where it is 

shown that it expresses genes belonging to this secondary 

metabolism, resulting in the synthesis and accumulation of a 

terpenoid phytoalexin [44]. 

 

3. Experimental Method 
 

2.1) CHEMICAL REAGENTS AND SOLVENTS 
The pure grade solvents were distilled before their use, those 

of analytical grade and High Performance Liquid 

Chromatography (HPLC) grade were used as they were 

provided by the supplier SALPER S.A, Mendoza 

headquarters. The standard reagents and compounds used are 

mentioned below: β-carotene (Supelco, China), α-tocopherol 

(Supelco, USA), 2,2-diphenyl-1-picrylhydrazyl (DPPH, 

Sigma, China), gallic acid (Sigma, USA), citric acid 

(Supelco, USA), D-(-)-fructose (Sigma aldrich, USA), 

Coomassie brilliant G-250 (Biopack, Argentina), Bovine 

serum albumin (Roth, Germany), Ninhydrin (Merck, USA) , 

sulfosalicylic acid (Biopack, Argentina), L-proline (Biopack, 

Argentina), glycine betaine (Sigma, USA), 1,2-

dichloroethane (PHYW, Germany), o-phenanthroline 

(Anhedra, USA), Folin-Reagent Ciocalteu (Biopack, 

Germany), anhydrous sodium carbonate (Biopack, 

Argentina), Phenol (Biopack, Argentina), phosphoric acid 

85% (Tetrahedron, Argentina), potassium iodide (Anhedra, 

Argentina), resublimated iodine (BIOPACK, Argentina) . 

TROLOX (Calbiochem, Germany). 

 

2.2) PLANT MATERIAL AND VIRAL IDENTIFICATION. 

Leaf samples were taken from four Vitis vinifera L. cv 

Thompson Seedless plants during the prevalence of the viral 

infection, in the month of January 2019. The commercial 

cultivation of the variety is located in the Albardón 

department, in the province of San Juan, Argentina. During 

harvest, leaves were selected from plants that showed 

characteristic symptoms of leaf roll disease, such as leaf 

chlorosis, inward rolling, and low-quality berries. Leaves, 

nodes, tendrils and petioles were collected and transported to 

the laboratory on ice at a temperature of 5 
0
C and stored until 

processing. Viral detection in the selected plants was carried 

out at the National Institute of Agricultural Technology, 

Experimental Station located in the province of Mendoza. 

They were carried out by means of RT-PCR analysis 

containing specific primers for the GVA, GLRaV-1, 2 and 3, 

and GFkV viruses. 
 

2.3) EXTRACTION AND QUANTIFICATION OF 

METABOLITES INVOLVED IN THE INFECTIOUS 

PROCESS 

 

2.3.1) EXTRACTION AND ESTIMATION OF Α-

TOCOPHEROL 

The extraction and determination process was carried out 

using the method described by Martinek, 1968. 5 g of fresh 

leaf were chopped, and proceeded to extract with 30 ml of 

xylene in a sonicator for 15 minutes at room temperature, 

then filtered, in order to separate the leaves from the solution, 

through Whatman N
o
 40 filter paper, permanently protecting 

from light and proceeding to the determination immediately 

to avoid oxidation of the extracted analyte. We proceeded to 

work with 1 ml of filtrate, whose absorbance is read at 460 

nm (Abs sample 460 nm). Then, 1 ml of 0.12% FeCl3 

solution in absolute ethanol and 0.5 ml of 0.1% O-

phenanthroline in absolute ethanol were added, vortexed for 

30 seconds, then centrifuged for 5 minutes at 350 rpm and 

finally the absorbance at 600 nm of the upper layer was read 

(Abs sample at 600 nm). A solution of standard α-tocopherol 

in xylene at a concentration of 0.5 mg/ml is used for the 

procedure, treating it in the same manner mentioned above, in 

order to read the absorbance at 600 nm (Abs. Standard Sol 

600 nm). The concentration of α-tocopherol in each sample is 

calculated using the following formula: 

 

 
 

 

2.3.2) ESTIMATION OF ANTIOXIDANT COMPOUNDS 

The total antioxidant activity of the methanolic fraction 

obtained was studied using the DPPH method proposed by 

Bakhta et al (2016) and Prior et al (2005). Briefly, 250 μl 

aliquots of each extract were brought to 0.5 ml with methanol 

and then 1 ml of the 6 x 10
-6 

M concentration DPPH solution. 

After 20 minutes, at a temperature of 25 ºC, the decrease in 

absorbance at 517 nm was determined, in the dark. As a 

positive control, 1% ascorbic acid in methanol was used. The 

percentage inhibition of the DPPH radical was calculated 

using the following formula: 

 

% inhibición = (A0  ̶  A1 / A0) × 100 

 

Using a calibration curve made with TROLOX as a base, the 

result of the antioxidant capacity is expressed as micrograms 

of TROLOX per milliliter of extract from each plant, thus 

expressing the amount of antioxidant necessary to reduce the 

initial concentration of antioxidants by 50%. DPPH (EC50). 

 

    Abs sample 600 nm  -  (0,373 x Abs sample 
460 nm) 

 

Conc. of α-tocoferol (µg/mg
 

PF) =
 

 
Abs.  standar 600 

nm 
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2.3.3) ESTIMATION OF SOLUBLE SUGARS 

To extract the soluble sugars, the method proposed by Martin 

et al, 2000, with some modifications, was followed. 1 g of dry 

and chopped leaf was macerated with a mortar in 10 ml of 

96% ethanol, then it was vacuum filtered through Whatman 

N
o
 40 paper, washing the solid once more with ethanol, 

obtaining 20 ml of final solution. We proceeded to evaluate 1 

ml of the solution obtained, proceeding in the same way as 

the standard, described below. For the calculations, a 

calibration curve (0 - 13 µg/ml) was made using a 1 mg/ml 

stock solution of D-fructose as standard, from which seven 

aliquots were taken, transferred to seven test tubes and mixed. 

with 1 mL of 5% phenol in water, prepared immediately, and 

5 mL of concentrated sulfuric acid, then vortex vigorously for 

one minute. Once the mixture has cooled to room temperature 

and in the dark, its absorbance is read at 490 nm to plot µl/ml 

D-fructose vs. Abs. 490nm. Each sample was tested in 

triplicate and the results are expressed as milligrams of 

fructose per gram of leaf dry weight. 

 

2.3.4) SOLUBLE PROTEIN ESTIMATION  

 

• Preparation of necessary reagents: 

Potassium phosphate-EDTA buffer for protein extraction: 

2.3135 g of KH2PO4 (MW 136.09 g/mol), 7.53 g of 

K2HPO4.3H2O (MW 228.23 g/mol), 0.1861g were weighed. 

of EDTA-Na2 (MW 372.23 g/mol), then the set of reagents 

was deposited in a beaker and dissolved with 350 ml of cold 

distilled water. It was stirred until complete dissolution and 

adjusted to pH 7.5 with 0.1 M HCl, finally making up to 500 

ml with cold distilled water. The solution was stored at 4 °C 

until use. 

 

Sodium phosphate buffer for calibration curve: 1.244g of 

NaH2PO4.3H2O (MW 173.98 g/mol) and 0.4042 g of 

Na2HPO4 (MW 141.96 g/mol) were weighed, the set of 

reagents were deposited in a beaker and dissolved in 80 mL 

of cold distilled water, stirring until complete dissolution. It 

was then adjusted to pH 6.8 with 0.1 M HCl and made up to 

100 ml with cold distilled water. The solution was stored at 4 

°C until use. 

 

Bradford's reagent: 100 mg of Coomassie Brilliant Blue G-

250 were weighed, dissolved in 50 ml of 96% ethanol, 

shaking vigorously and in the dark, then 100 ml of 

phosphoric acid 85% were added, also shaking vigorously 

and in the dark. Subsequently, it was made up to 1.0 l with 

cold distilled water and stirred for one hour, filtered twice 

under reduced pressure through Whatman N
o
 40 filter paper 

and stored in an amber bottle at 4 ºC. 

 

 Calibration curve: 

It was carried out with six different concentration levels with 

a bovine serum albumin (BSA) standard of concentration 

1,45 mg/ml, preparing the reaction mixtures and the 

procedure presented below: they were placed in six test tubes 

0, 20, 40, 60, 80 and 100 μl of stock solution, then 2 ml of 

sodium phosphate buffer was added, it was homogenized 

with a vortex for 10 seconds, 800 μL of Bradford's reagent 

were added and finally each one was covered. The tube and 

gently homogenized five times to avoid the formation of 

foam, leaving it to rest for 15 minutes and finally reading the 

absorbance at 590 nm and 450 nm. Using the sodium 

phosphate buffer as blank, the graph was constructed: μg/μl 

protein (X) vs. Abs. 590 nm /Abs. 450 nm (Y). 

 

 Extraction and determination of the content of 

soluble proteins in the samples: 

The extraction was carried out following the method of 

Deutscher, 1990, with 10 ml of potassium phosphate buffer 

on 1 g of finely chopped fresh leaf, and homogenizing for two 

minutes in a vortex. It was incubated for 1 hour in an ice bath 

on a horizontal shaker and then centrifuged for 30 minutes at 

6000 rpm and 4 ºC and the supernatant (protein extract) was 

separated for immediate determination of protein content. 200 

μl of the extract were taken and treated in the same way as the 

standard in the calibration curve. The results are expressed as 

milligrams of protein per gram of fresh leaf weight. 

 

2.3.5) PROLINE ESTIMATION 

The determination of the amino acid is carried out following 

the method of Bates et al, 1973. 

 

 Solutions to use: 

0.1 M ninhydrin: 156,1 mg of ninhydrin were weighed and 

dissolved in 3,75 ml of glacial acetic acid at 40 
0
C, after 

complete dissolution, 2.5 ml of 3 M phosphoric acid were 

added. 

 

Sulfosalicylic acid 3%: 1,5 g of sulfosalicylic acid were 

weighed and dissolved in 50 ml of distilled water, stored at 40 

°C. 

 

40 µM proline standard: 2.3 mg of L-proline was weighed 

and dissolved to 500 ml with the sulfosalicylic acid solution. 

 

 Calibration curve: 

It is performed using a previously prepared L-proline 

standard and evaluating each concentration level in triplicate. 

The procedure consisted of placing in a test tube with a screw 

cap covered with aluminum foil, adding the respective 

volume of 3% sulfosalicylic acid and the different amounts of 

the standard for each desired point on the curve, then 1 ml of 

acetic acid was added and 1 ml of the ninhydrin solution, 

shake vigorously for 10 seconds in a vortex, protecting from 

light at all times. The test tubes were placed in a rack and 

brought to a boil in a water bath for one hour, then they were 

suddenly cooled on an ice-water bath and once they were at 

room temperature, 3 ml were added to each tube of toluene, 

shaken vigorously once more and then the organic phase 

(upper phase) was collected and its absorbance read at 520 

nm, using toluene as blank. The graph Proline (µg/ml) vs. 

Abs 520 nm. 

 

 Extraction and determination of the proline content 

in the samples: 

1 g of fresh chopped leaf from each sample was weighed in 

20 ml of 3% sulfosalicylic acid and sonicated for one hour, 

then centrifuged at 6000 rpm for thirty minutes at 10 °C. 1 ml 

of the supernatant was taken, then treated in the same way as 
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described in the calibration curve. Analyte content was 

expressed as micrograms proline per gram of fresh leaf. 

 

2.3.6) GLYCINE BETAINE ESTIMATE 

 

 Calibration curve: 

To extract and quantify glycine betaine, the method described 

by Ma et al (2007). It is performed using a glycine-betaine 

standard dissolved in 2N H2SO4 at concentrations ranging 

from 50 to 200 µg/ml, evaluating each one in triplicate. Each 

concentration was diluted 1:1 with 2N H2SO4, then 0,5 mL of 

this solution was taken, mixed with 0,2 mL of a KI-I2 solution 

in water, and gently vortexed store at 0 °C for 16 h. Once the 

16 h had elapsed, maintaining at 0 
0
C, we proceeded to 

centrifuge at 10.000 rpm for 15 minutes and remove the 

supernatant. The crystals that settled at the bottom of the tube 

were diluted with 9 ml of 1,2-dichloroethane, mixing 

vigorously and leaving to settle for 2,5 h to finally read their 

absorbance at 365 nm. The linear regression line that relates 

glycine-betaine concentration (µg/ml) vs. Abs. at 365 nm 

 

 Extraction and determination of glycine betaine in 

the samples: 

Both the extraction and the quantification were carried out 

following the method described by Grieven and Grattan, 

1983: 5 g of dry leaf from each sample, from each one of the 

plants, were placed to macerate in 10 ml of 2N H2SO4 for 48 

h in the dark. . We proceed to evaluate 1 ml of the 

supernatant, in the same way that was done for the standard. 

The result are expressed as micrograms of glycine-betaine per 

gram of leaf dry weight. 

 

2.4) STATISTICAL ANALYSIS 

ANOVA comparisons were made using the statistical 

program STATGRAPHICS 2.0, to evaluate the existence of 

significant differences both between the healthy plant and the 

diseased plants, as well as between the diseased plants. Data 

with P ≤ 0.05 were considered statistically significant. All 

assays were performed in triplicate for each plant. 

 

4. Results and Discussion 
 

The abbreviations used are clarified below: 
PS: plant that did not show viral titer (used as negative 

control) 

PE1V: plant infected only with GLRaV-3 (one viruse) 

PE2V: plant infected with GLRaV-3 coinfected with and 

GLRaV-2 (two viruses) 

PE3V: plant infected with GLRaV-2 coinfected with 

GLRaV-3 and GVA (three viruses) 

 

3.1)  VIRAL DETECTION AND IDENTIFICATION 

One plant was reported without identifiable virus, so it was 

taken as a control plant (negative control), another three 

plants were identified as plants infected with viral pathogens, 

one with GLRaV-3, another coinfected with GLRaV-3 and 

GVA, and one third infected with GLRaV-2, GLRaV-3 and 

GVA (positive controls, one virus, two viruses and three 

viruses respectively) 

3.2) ESTIMATION OF α-TOCOPHEROL AND 

ANTIOXIDANT COMPOUNDS. 

 

It was observed that the plants infected with one, two and 

three viruses (PE1V, PE2V and PE3V) presented, with 

respect to the healthy plant (PS), an average increase in α-

tocopherol of 50, 53.57 and 89.28 % respectively (Table I), 

representing, in global terms, the infected plants an average 

increase of 64.28% with respect to the control plant. The EC50 

was decreased with respect to the healthy plant by 24.03 % 

for PE1V, by 22.92 % for PE2V and by 26.74 % for PE3V, 

thus demonstrating that the amount of antioxidant compounds 

present in the samples of diseased plants was greater than in 

the healthy plant, in global terms this increase represented 

24.56 % (Table I). 

 

Tocopherol plays an important role as an [23]. Tocopherol is 

located in some biological membranes, especially in 

chloroplasts and thylakoids, where its main, and sometimes 

only, function is to actively regulate lipid radicals and 

reactive oxygen species. Of the four isomers present in nature 

(α, β, γ and δ), α-tocopherol is the one with the highest 

antioxidant activity, due to the three methyl groups present in 

its structure. α-tocopherol has an important role in the 

protection of cell membranes against ROS [22]. So far, 

numerous investigations have shown that the amount of α-

tocopherol increases during stress [33]. This compound and 

its isomers readily react with free lipid radicals and protect 

against ROS formed during stress. When plants are exposed 

to a pathogen, the formation of ROS occurs mainly in the 

leaves, causing an accumulation of antioxidant compounds in 

them. α-Tocopherol, it cooperates to maintain the structure of 

cell membranes, in order to avoid the oxidation of unsaturated 

fatty acids, caused by these chemical compounds [24]. The 

increase in α-tocopherol in tissues of plants infected with the 

viruses under study suggests that it can improve resistance to 

them, protecting cell membranes from oxidative damage 

caused by stress, and also indicates a greater ability to adapt 

on the part of plants to viral infection. The increase in the 

synthesis of α-tocopherol and its subsequent accumulation in 

cells is consistent with previous research, stating that this 

metabolite is generated in response to the biotic stress that 

plants are suffering [58], [60]. 

 

Phenolic compounds, classified as antioxidant compounds, 

are secondary metabolites capable of reacting against ROS, 

thanks to the ability of the phenolic hydroxyl(s) to donate 

hydrogen [37]. The production of these by the cell is affected 

by different types of stress: biotic stress such as attack by 

pathogens [28], or abiotic (hydric stress, saline stress, etc.), 

which can increase while the stress lasts [5][7]. Phenolic 

compounds may or may not accumulate, depending on 

whether the interaction between silver and the pathogen is 

compatible or not, which will develop or not the 

Hypersensitive Response, increasing both the amount of these 

substances and the enzymes involved in their biosynthetic 

pathways [69]. From the point of view of plant defenses 

against different pathogens, the detoxification of ROS and its 

generating enzymes must be maintained at a threshold that is 

compatible with the cellular metabolism itself, and does not 
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negatively affect it when reaching a point of apoptosis 

[56][12]. 

 

Under optimal conditions, ROS are produced by many 

metabolic reactions and are efficiently eliminated by 

detoxification processes. Under stress conditions there is an 

increase in ROS, and as a consequence an increase in 

detoxifying enzymes and compounds with the ability to 

neutralize them, as a mechanism of "acclimatization" 

(upregulation of ROS and detoxification capacity) or 

induction of death cell phone [34], [39]. The decisive factors 

that determine either acclimatization or cell death are not yet 

known. It has been shown that plant cellular metabolism is 

capable of forming ROS and increasing the activity of 

enzymes involved in its metabolic pathways in response to 

both compatible and incompatible infections following 

pathogen attack. [16]. Investigations have reported the 

increase of phenolic compounds against plant pathogenic 

fungal, bacterial and viral interactions, such as in Solanum 

lycospersicum plants infected with Ralstonia solanacearum 

[74] and Musa paradisica L. plants infected with 

Colletotrichum musae [20]. The results of the present 

investigation are consistent with what was reported by Zaho 

et al (2008), where an increase in antioxidant activity is 

demonstrated, and consecutively, an increase in the amount of 

phenolic compounds, in plants infected with GLRaV-2, 

GLRaV -3 and GVA, which suggests the ability of the plant 

to defend itself from the pathogen, once the interaction has 

been compatible. 

 

3.3) ESTIMATION OF SOLUBLE SUGARS AND 

SOLUBLE PROTEINS. 

The soluble sugar content of diseased plants (PE1V, PE2V 

and PE3V) was increased by 23,33, 23,34 and 24,22 % for 

diseased plants with one, two and three viruses respectively 

compared to healthy plant (Table I). The average increase of 

sugars for the diseased plants with respect to the healthy plant 

represented 23,59 %. It was observed that the plants infected 

with one (PE1V), two (PE2V) and three (PE3V) viruses 

presented an increase in soluble proteins, expressed as mg of 

BSA per fresh leaf weight, of 24,55 %, 15,29 % and 19,53 % 

with respect to the healthy plant (Table II). This in global 

terms represents that the diseased plants present an average 

increase of 19,79 % with respect to the control plant (PS). An 

increase in the soluble sugar content could be attributed to the 

denaturing effect against the lipoprotein complexes that 

degrade during biotic stress [36]. The results of this study are 

consistent with others that showed, for example, that infection 

with Sugarcane yellow leaf virus (ScYLV) resulted in a 

notable increase in the amount of soluble carbohydrates and 

starch in the leaves of sugarcane plants [45], [27], [41]. 

Carbohydrate accumulation has also been demonstrated in 

potato plants (Solanum tuberosum) infected with Potato 

leafroll virus [68]. The increase in soluble sugars in 

symptomatic and asymptomatic leaves of plants with viral 

infection could be a product of virus assembly in the phloem, 

and as a consequence of a violation of the virus function per 

se, altering the origin/destination relationship of sugars 

synthesized, since these could not be correctly transported to 

the fruits [42]. 

Some investigations have shown that plants infected with 

GLV have high levels of osmotic stress, And this 

significantly influences the amount of soluble proteins 

synthesized and accumulated in the different parts of the 

plant. [14], [17]. For example, a study on plants infected with 

GFLV and GLRaV-3 indicated an increase in total protein 

content in grapevine plants infected with GLV [66], [9], [14]. 

Increased soluble protein content has also been reported in 

BBTV-infected banana plants [31] and in PLRV or PVY-

infected potato plants [43]. According to Bertamini et al 

(2009), a pronounced reduction in the amount of soluble 

proteins in grapevine A decrease in the production of 

ribulose-1,5-bisphosphate carboxylase is assumed. It is then 

understood that an increase in protein synthesis, whether 

soluble or non-soluble, is due to an increase in general protein 

synthesis in response to oxidative stress that is caused by viral 

infection [61]. The results of the present investigation are 

consistent with previous investigations, demonstrating that 

infection with GVA and with GLARaV It triggers an 

increase in soluble protein synthesis pathways in Vitis 

vinifera plants. 
 
Table 1: α tocopherol content, antioxidant compounds and soluble sugars in 

the healthy plant and diseased plants. 

 
Note: *** - p < 0,001, ** - p < 0,01, * - p < 0,05, ns – no significative. FW: 

fresh weight, DW: dry weight. 

 

3.4) PROLINE AND GLYCINE-BETAINE 

ESTIMATION. 
The proline content of diseased plants was increased by 

40,55, 50,85 and 41,38 % for diseased plants with one, two 

and three viruses respectively compared to healthy plant 

(Table II). The average increase of proline with respect to the 

healthy plant represented 44,26 % more. In diseased plants 

with one virus, two and three, the glycine-betaine content was 

increased by 72,50 %, 45,43 % and 57,68 % respectively, 

compared to the healthy plant, used as a negative control 

plant (Table II). The average increase of diseased plants was 

58,54 % with respect to the healthy plant. 

 

In the present investigation, a high amount of proline in 

plants infected with GLRaV and GVA was observed in 

comparison with healthy plants (control plants). The results 

presented here are consistent with those of similar 
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investigations [21]. For example, it was found that in potato 

plants infected with Potato virus Y and Potato virus X, 

proline concentrations increased a few days after infection 

[11]. This was also observed in “soybean” plants (Glicine 

max) under saline stress [32], or also in rice plants (Oryza 

sativa L.) [67]. Microbial pathogens promote ROS 

production, which can induce programmed cell death in some 

leaf and stem cells [5] [1]. The proline molecule functions as 

a preventer of apoptosis, which is triggered by ROS, fulfilling 

the function of both cytoprotector and osmoprotector [15]. 

Thus, the accumulation of this primary metabolite is 

explained as a product of GLRaV and GVA infection [21]. 

The glycine betaine molecule is a product of glycine 

metabolism; both have a prominent role in the activation of 

membrane phospholipid synthesis pathways [6]. The protein 

holin and two enzymes, holinmonooxygenase and 

betaineadialdehyde dehydrogenase, play an important role in 

the synthesis of the glycine betaine molecule in plants [26]. 

Glycine betaine plays the role of osmolyte and osmoprotect, 

accumulating when the plant is under some type of stress, 

thus becoming involved in its protection through the 

regulation of the osmotic balance [63]. The stabilization of 

antioxidant enzymes and the structure of membrane proteins 

belonging to the complexes of oxygenic photosynthesis of 

photosystem II [62]. The glycine betaine molecule is 

responsible for regulating the photosynthetic function of the 

plant, thus protecting cells from damage caused by different 

types of stress, fulfilling the function of promoter of the 

enzyme ribulose-1,5-bisphosphate carboxylase. oxygenase 

(RuBisCO) [65]. Under the assumptions explained above, we 

can infer that the synthesis and subsequent accumulation of 

the glycine betaine molecule in the leaves of infected plants 

occurs as a consequence of the viral infection, which 

especially affects the phloem, not allowing the correct 

transport of nutrients towards the cells of the leaves, tending 

these molecules to protect cell membranes from damage 

caused by stress. The results of this thesis are consistent with 

these investigations. The infection by GVA, GLARaV-1, 

GLARaV-2 and GLARaV-3, causes an increase in the 

synthesis of glycine betaine and its subsequent accumulation 

in leaves. 

 
Table 2: content of soluble proteins, proline and glicine betaine in healthy 

plant and diseased plants. 

 

Note: *** - p < 0,001, ** - p < 0,01, * - p < 0,05, ns – no significative. FW: 

fresh weight, DW: dry weight. 

6. Conclusion and Future Scope  
 

In the present investigation it was determined that, under viral 

infection by Leafroll virus and Grapevine Virus A, V. vinifera 

plants respond by increasing the concentration of some 

secondary and primary metabolites, such as proline, glycine 

betaine, proteins and sugars, which have some function 

specific protection against stress. These results are also 

consistent with previous research on the subject [57], [58], 

assuming that any of these metabolites studied could result, as 

explained above, as a chemical elictor when these plants are 

infected with the aforementioned pathogens, being eco-

friendly chemical compounds, not synthetics. The results of 

this research serve as a basis for future research in order to 

search for new methods for the early detection of vine 

curling, avoiding its rapid spread, and thus, as a consequence, 

the great losses to fruit producers. 
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