
© 2013, IJSRCSE All Rights Reserved 62

 Forn Forn Forn Forn International Journal of Scientific Research in Computer Science and EngineeringInternational Journal of Scientific Research in Computer Science and EngineeringInternational Journal of Scientific Research in Computer Science and EngineeringInternational Journal of Scientific Research in Computer Science and Engineering

Review Paper Vol-1, Issue-3 ISSN: 2320-7639

Cross Browser Testing: A Challenge for Web Testing

Chandraprakash Patidar

Department of Information Technology, Institute of Engineering & Technology DAVV Indore, M.P.-INDIA

 chandraprakash_patidar@yahoo.co.in

Available online at www.isroset.org

Received: 05 May 2013 Revised: 20 May 2013 Accepted: 17 June 2013 Published: 30 June 2013

Abstract— Today’s world is around internet. To access internet we need a browser. Browsers also have variety and versions.

For successful browsing we need compatibility among browsers. Web based applications need to test before deploying. A web

application is known as successful when it is executed on all the variety and versions of browsers. For this, web applications

should be tested on all types of browsers. This type of testing is known as cross browser testing. Cross browser testing is very

important issue as different browsers has its own specification and separate architecture. Today’s three most popular browsers

are Firefox, Chrome and Internet Explorer. 90% of web testing is performed using these three browsers. Safari also coming

close fourth browser. Of course testing only few browsers (Three or Four) is not only the solution of web testing. To cover all

web browsers under testing, cross browser testing is very important.

Keywords— Browser, Testing, Web application, Versions.

I. INTRODUCTION

Web applications are increasingly being used for both

personal and business activities. Users of such applications

might use any web browser to access them, and the

application is expected to behave consistently across these

different environments. However, web applications often

exhibit differences when executed in different browsers,

leading to cross-browser inconsistencies (XBIs). XBIs are

discrepancies between a web application's appearance,

behaviour, or both, when it is run on two different

environments. XBIs are not only fairly common, but also

notoriously difficult to

Identify and fix. For example, 5328 posts were created and

tagged with cross-browser", on stackoverflow.com over the

past four years alone. Moreover, nearly 2000 of these posts

have been active during the past year [8]. In general, if

XBIs are not identified during testing, they can adversely

degrade the experience of the users of the web application

with the affected browser. In fact, as shown in our

evaluation of X-PERT, some XBIs completely prevent

users from accessing the functionality offered by the web

application, thereby rendering it useless on that particular

platform. XBIs are thus a serious concern for companies,

which rely on such applications for business or for creating

their public brand image. The current practice in industry is

to identify XBIs through manual inspection of the web

application screens across all the different browsers [2].

Such testing is not only human intensive, but also error-

prone.

II. LITERATURE SURVEY

To get a deeper understanding of XBIs, we performed a

systematic study of 100 real-world web

application[6].Through this study, we were able to establish

a classification of XBIs, which further helped us in defining

our technique, described in the next section. In particular,

we found three

main types of XBIs: structural, content, and behaviour.

Structural XBIs: Such XBIs a_ect the structure, or layout, of

individual web pages. The web page structure is essentially

a particular arrangement of elements, which in case of

structural XBIs is erroneous in a particular browser. For

instance, the misalignment of one or more web page

elements on a given web page, in a particular browser, can

constitute a structural XBI.We found that this was the most

common category of XBIs, occurring in 57% of the subjects

with XBIs. Content XBIs: This kind of XBI is observed in

the content of individual components on a web page. Such

differences can occur, where the visual appearance of a web

page element, or the textual value of an element, are

di_erent across two browsers. We further classify these two

cases

as visual-content and text-content XBIs. In our study, we

found that these XBIs occurred in 30% and 22% of the sites

with XBIs respectively. Behavioural XBIs: These type of

XBIs involve differences in the behaviour of individual

widgets on a web page. An example of such an XBI would

be a button that performs a particular action within one

browser and a totally different action, or no action at all, in

another browser. Another example of behavioural XBI is

the presence of an HTML link, which works in one browser

but is broken in another one. In our study, such XBIs

occurred in 9% of the web applications with XBIs. In

summary, behavioural XBIs affect the functionality of

individual components, resulting in broken navigation

between different screens. Structural and content XBIs,

conversely, involve differences in the arrangement or

rendering of elements on a particular web page. In the next

ISROSET- IJSRCSE Vol-1, Issue-3, PP (62-64) May- June 2013

© 2013, IJSRCSE All Rights Reserved 63

section, we describe how our technique detects each of

these XBIs.

III. TECHNIQUE OVERVIEW

Algorithm 1 presents an overview of our XBI detection

technique. As shown in the algorithm, our technique takes

as input the URL of the home page of the web application

under test, url, and two browsers considered for the testing,

Br1 and Br2. The technique outputs a list of XBIs, X. In this

paper, we only summarize the main steps of the algorithm

(for all the details, see Reference [6]).

Model Generation via Crawling: The technique starts by

crawling the web application, in an identical fashion, in

each of the two browsers Br1 and Br2. In this process, it

records the observed behaviour as navigation models M1

and M2. The model is captured as a labelled transition

system, which represents the top-level structure of the

crawled web application. In the model, the states

correspond to web application screens, and each transition

is labelled with a widget action that leads to a screen

navigation. In addition to this navigation model, we also

capture the screen image and the DOM structure of the

elements on each observed screen. In the algorithm, this

step is implemented in function genCrawlModel (line 3).

Behavioral XBI Detection: The navigation models M1 and

M2 are checked for equivalence to uncover differences in

behavior. To do this, the technique uses the graph

isomorphism checking algorithm for rooted labeled directed

graphs proposed in [3]. This algorithm is implemented in

the different StateGraphs function (line 4), which produces

a set of differences (B) and a list PageMatchList of

corresponding web-page pairs S1

i ; S2

i between M1 and M2. B contains a set of missing and/or

mismatched transitions across pages,

IV. TOOL DESCRIPTION

X-PERT can work with any web application that runs on

desktop browsers. Since X-PERT analyses the client-side of

such applications, it is agnostic to any server-side

technology. X-PERT is written in Python and Java and can

run on a variety of desktop operating systems, including

Windows, Mac OS X, and Linux. Figure 1 shows a high-

level overview of X-PERT, which operates as follows. First,

the user invokes the web interface of the tool and interacts

with its model generation wizard. This web interface is

implemented in Python using the Flask framework

(http://flask.pocoo.org) on the server-side, and Twitter

bootstrap (http://getbootstrap.com) and jQuery

(http://jquery.com) libraries on the client-side. Once the

user submits the subject web application's URL and model

capture parameters to the wizard, X-PERT uses this

information to generate different crawler instances, one for

each browser. The generated models are then processed by

the model comparison module, which applies our proposed

technique to compare these models in a pair-wise fashion.

This model comparison module is a key contribution of the

X-PERT technique as it compares the different aspects of

the web application's execution to uncover the three types of

XBIs, which are then gathered, tabulated, and reported to

the user. The architecture of X-PERT, shown in Figure 2,

consists of the model capture and comparison modules.

Both these modules are mainly implemented in Java.

Further details of the implementation are discussed below.

The Model Capture module uses the Crawljax tool [4],

which internally uses the Selenium testing framework

(http://seleniumhq.org) to explore the web application in the

different web browsers. We extended Crawljax to save the

model from its exploration along with the screen shot and

DOM structure of each page. The DOM structure is

obtained by querying the browser through its Graph

Isomorphism Checker.

II. EVALUATION

To assess the usefulness of X-PERT, we ran it on 14

subjects. These subjects are divided in three groups: the rest

six subjects were used in prior work, the next four were

from our study, and the final four were obtained using an

online random URL service (http://www.uroulette.com/).

Our experiments were performed using the latest stable

versions of Internet Explorer (v9.0.9) and Mozilla Firefox

(v14.0.1). The results of our investigation of X-PERT's

effectiveness are shown in Table 1, which lists, for each

subject, the XBIs reported in the terms of true (T) and false

(F) positives. As shown in the table, X-PERT was effective

in finding different kinds of XBIs in the subjects. A deeper

investigation of the results [6] revealed that X-PERT's

precision and recall are 76% and 95%, respectively, against

18% and 83% for the state-of-the-art tool CrossCheck [5].

V. RELATED WORK

To the best of our knowledge, X-PERT is the _rst tool for

comprehensive detection of XBIs. Previous research tools

(e.g., [7, 5, 3]) only focused on certain types of issues and

had low precision and recall. Developers typically use

browser-compatibility tables, such as Quirksmode.org and

CanIUse.com, to check their web applications. Some web

development tools, such as Adobe Dreamweaver

(http://adobe.com/products/dreamweaver.html), provide

basic static- analysis based hints to help detect certain

issues. However, the issues targeted by reference websites

and development tools are limited to features that are

known to be missing in a particular browser. Other tools,

such as BrowserShots (BrowserShots.org) and Microsoft

Expression Web SuperPreview (http://microsoft.com),

provide previews of single pages in di_erent browsers,

while tools such as CrossBrowserTesting.com and

BrowserStack.com allow for browsing web applications in

di_erent emulated environments. In both cases, the

ISROSET- IJSRCSE Vol-1, Issue-3, PP (62-64) May- June 2013

© 2013, IJSRCSE All Rights Reserved 64

comparison of the observed behavior across browsers must

still be performed manually.

VI. CONCLUSION

Cross-browser inconsistencies (XBIs) are a serious problem

for web developers. Current industrial practice relies on

(expensive and error prone) manual inspection to find these

issues. Existing research tools, conversely, only target

particular aspects of XBIs and can report a significant

number of false positives and negatives. To address these

limitations, we presented X-PERT, an open source tool for

comprehensive XBI detection. Our empirical evaluation

shows the effectiveness of X-PERT over the state of the art.

This demonstration presents the details of the

implementation of XPERT and illustrates how it is fully

automated and easy to use through its web interface. In

addition, X-PERT generates easy to comprehend and

actionable reports for the developer, thus allowing them to

address XBIs effectively.

REFERENCES

[1] G. Bradski and A. Kaehler. Learning OpenCV.

O'Reilly Media, September 2008.

[2] J. Lewis. Techniques for mobile and responsive cross

- browser testing: An envato case study.

http://webuild.envato.com 2013.

[3] A. Mesbah and M. R. Prasad. Automated Cross-

browser Compatibility Testing. In Proceeding of the

33rd International Conference on Software

Engineering (ICSE), pages 561{570. ACM, May

2011.

[4] A. Mesbah, A. van Deursen, and S. Lenselink.

Crawling Ajax-based Web Applications through

Dynamic Analysis of User Interface State Changes.

ACM Transactions on the

Web, 6(1):3:1{3:30, March 2012.

[5] S. Roy Choudhary, M. R. Prasad, and A. Orso.

CrossCheck: Combining Crawling and Di_erencing to

Better Detect Cross-browser Incompatibilities in Web

Applications. In Proceedings of the IEEE Fifth

International Conference on Software Testing,

Veri_cation, and Validation (ICST), pages 171{180.

IEEE, April 2012.

[6] S. Roy Choudhary, M. R. Prasad, and A. Orso. X-

PERT:

Accurate Identi_cation of Cross-browser Issues in

Web

Applications. In Proceedings of the 2013 International

Conference on Software Engineering, ICSE '13, pages

702{711. IEEE Press, 2013.

[7] S. Roy Choudhary, H. Versee, and A. Orso.

WebDi_:Automated Identi_cation of Cross-browser

Issues in WebApplications. In Proceeding of the 2010

IEEE InternationalConference on Software

Maintenance (ICSM), pages 1-10.IEEE, September

2010.

[8] Stackoverow. Posts for cross-browser issues.

http://data.stackexchange.com May 2014.

