
 © 2013, IJSRCSE All Rights Reserved 45

International Journal of Scientific Research in Computer Science and Engineering

Research Paper

Volume-1, Issue-2, Mar- Apr-2013

Available online at www.isroset.org

Outlier Detection Based on Clustering Over Sensed Data Using Hadoop

V. Jain

Institute of Engineering & Technology, Devi Ahilya Vishwavidyalaya Indore, India

Received: 16 Mar 2013 Revised: 22 Mar 2013 Accepted: 18 Apr 2013 Published: 30 Apr 2013

Abstract- Outliers are regarded as noisy data in statistics, has turned out to be an important problem which is being

researched in diverse fields of research and application domains. Many outlier detection techniques have been developed

specific to certain application domains, while some techniques are more generic. Outlier detection aims to find patterns in

data that do not conform to expected behaviour. It has extensive use in a wide variety of applications such as military

surveillance for enemy activities, intrusion detection in cyber security, fraud detection for credit cards, insurance or health

care and fault detection in safety critical systems. In our work, we investigate that there is need to develop an outlier

detection solution for large amount of sensed data facts to optimize the processing of data mining. Sensed data is the output

of sensor nodes consisting the real values after sensing. Existing solutions provide outlier detection only for static datasets

and using clustering algorithms for normal data size. In our work, we have developed an outlier detection system which

performs outlier detection of Intel sensed dataset using clustering algorithms DBScan and K-Means. Experimental study

has been performed using java application and hadoop system.

Keywords: Outlier detection, Clustering, Hadoop.

1. INTRODUCTION

Extraction of information is an important aspect in data

mining field which not only results in driving force for

business strategies but also a prominent factor in the

detection of frauds and any unusual events and activities.

This extraction process is easily possible with small size

dataset but as soon as the size of dataset tends to increase,

the complexity starts to arises, and in that large amount of

dataset which is generally expected to be scattered and

unstructured. It is not always possible that every

information is relevant. It may contain some data which is

not of interest for a particular user but may be useful for

others. Such immaterial data is called outlier.

Hence, outliers are those data objects that shows deviated

behaviour from normal data objects [2]. To find these

deviated patterns we need some techniques that are called

outlier detection techniques. There are various techniques

that finds outlier in the given dataset, It is easily possible

with the small dataset but if volume of data is too large

which do not fit into single disk [8], variety is more and

unstructured, if it is then, so many overhead starts to

appear like, memory starts to run out of the bound,

processing and execution time increases, efficiency and

accuracy gets reduces.

To overcome these overheads, Hadoop is widely adopted

to support distributed applications [7]. Hadoop is the most

popular alternative to the best of our knowledge, thus we

in our work finding outlier using Hadoop. Hadoop is able

to handle the large files easily as it has its own dedicated

storage and processing unit i.e. HDFS and MapReduce

respectively [5]. HDFS stores the datasets and

MapReduce processes the data stored at HDFS. Hadoop

uses MapReduce framework which is the processing unit,

it is scalable, reliable and fault tolerant. This framework

splits the large data into the chunks and then process all

the small chunks simultaneously through map function

using <key, value> pair and output of this map function is

given as input to reduce function which merges the small

processed units and generates a final output.

In our work for detecting outliers we are using DBScan

algorithm. This algorithm clusters the data on basis of

density which requires two parameters as input i.e. Eps

and Minpts. Eps defines the radius or the neighbourhood

of cluster and Minpts defines the minimum number of

points in the cluster. The dataset we are using in our work

is from Intel laboratory Berkeley, US in which data is

collected through 54 sensors deployed in the lab [1]. This

is wireless sensor data which is a real time data. Real time

data are more vulnerable and prone to be maliciously

altered thus it is highly recommended to find outlier and

discard the noise data from it. Based on experiments, we

found that K-Mean works better than DBScan algorithm if

computation time is major concern whereas if we concern

about outliers and noise than DBScan is the better choice.

ISSN 2320-7639

ISROSET - International Journal of Scientific Research in Computer Science and Engineering, Volume-1, Issue-2, 2013

 © 2013, IJSRCSE All Rights Reserved 46

In our study, we also found that WEKA tool [12] could

not handle a large dataset.

2. BACKGROUND

BigData is growing rapidly day by day. BigData is set of

large dataset and large size creates complexity and

difficulty for processing, storage, transfer, visualization

and analysis. Due to high scale and large size of

collection, it is very difficult for processing and mining

purpose. Traditional processing algorithms and

architectures are not perfectly suitable for BigData thus it

incorporates the set of techniques and technologies that

require new forms of integration to uncover large hidden

values from large datasets that are diverse, complex, and

of a massive scale.

2.1 Hadoop

Hadoop is open-source software that enables reliable,

scalable, distributed computing on clusters of inexpensive

servers. Hadoop provides its services using MapReduce

Framework [16]. Hadoop is used for processing, storing

and analyzing massive amounts of distributed

unstructured data. As a distributed file storage subsystem,

Hadoop Distributed File System (HDFS) was designed to

handle petabytes and exabyte of data distributed over

multiple nodes in parallel.

2.2 HDFS Architecture

The Hadoop Distributed File System (HDFS) is the file

system component of the Hadoop framework. HDFS is

designed and optimized to store data over a large amount

of low cost hardware in a distributed fashion.

2.3 MapReduce

Map Reduce is a software framework for distributed

processing of large data sets on computer clusters [11]. It

is first developed by Google. Map Reduce is intended to

facilitate and simplify the processing of vast amounts of

data in parallel on large clusters of commodity hardware

in a reliable, fault-tolerant manner. As shown in Fig. 1,

this framework works on two methods i.e. map() function

and reduce() function. MapReduce framework receives

input and generates output in <key, value> pair.

Fig. 1: MapReduce Framework

2.4 Clustering

Clustering is a division of data into groups of similar

objects. Each group, called cluster, consists of objects that

are similar between themselves and dissimilar to objects

of other groups. Representing data by fewer clusters

necessarily loses certain fine details, but achieves

simplification. It represents many data objects by few

clusters, and hence, it models data by its clusters. Data

modeling puts clustering in a historical perspective rooted

in mathematics, statistics, and numerical analysis. From a

machine learning perspective clusters correspond to

hidden patterns, the search for clusters is unsupervised

learning, and the resulting system represents a data

concept. Therefore, clustering is unsupervised learning of

a hidden data concept. Data mining deals with large

databases that impose on clustering analysis additional

severe computational requirements. These challenges led

to the emergence of powerful broadly applicable data

mining clustering methods surveyed below.

 2.5 DBSCAN CLUSTERING ALGORITHM

DBSCAN (Density Based Spatial Clustering of

Applications with Noise) algorithm clusters the dataset on

basis of density. Data objects within cluster have higher

density as compared to those which are outside the

clusters. Data objects those are outside the cluster are

considered as noise. As shown in Fig. 2, cluster formation

is done on basis of two parameters i.e. radius (Eps) and

minimum points (MinPts).With this understanding, we

can describe core, border and noise points in a given data

set.

Core points: A point is a core point if the number of

points within a given radius (Eps) has more than specified

no. of points (MinPts). This point exists inside the cluster.

Border points: A border point is not a core point, but

falls within the neighbourhood of a core point.

Noise points: A noise point is any point that is neither a

core point nor a border point.

About DBSCAN Algorithm

1. It labels all points as core, border or noise points.

2. Eliminate noise points.

3. Make each group of connected core points into a

separate cluster.

4. Assign each border point to one of the clusters of

its associated core points.

ISROSET - International Journal of Scientific Research in Computer Science and Engineering, Volume-1, Issue-2, 2013

 © 2013, IJSRCSE All Rights Reserved 47

Fig.2: Border and Core Points Representation of DBScan

2.6 K-MEANS CLUSTERING ALGORITHM

K-Mean clustering is a centroid based partitioning

technique. This algorithm aims to partition the n

observation into k clusters in which each observation

belongs to the cluster. The no. of clusters generated

depends on the user defined value i.e. k. An objective

function is used to assess the partitioning quality so that

objects within the cluster are similar to one another but

dissimilar to objects in other cluster. K-Means Clustering

is a technique which can be used to provide a structure to

unstructured data so that valuable information can be

extracted. The key to the implementation of the K-Means

algorithm using hadoop is the design of the Mapper and

Reducer routines.

3. RELATED WORK

Outlier detection in wireless sensor networks (WSNs) is

the process of identifying those data instances that deviate

from the rest of data patterns based on certain measures.

WSNs are vulnerable to faults and malicious attacks; this

in turn causes inaccurate and unreliable sensor readings.

Traditional outlier detection techniques are not directly

applicable to wireless sensor networks due to their

particular requirements, dynamic nature and resource

limitations. In this research they proposed a novel in-

network knowledge discovery approach that provides

outlier detection in WSNs. Zhao et al. [10], numerous

applications requires the management of spatial data i.e.

data related to space. Increasingly large amount of data

are obtained from satellite images, x-ray, crystallography

or other automatic equipment. Therefore, automated

knowledge discovery becomes more and more important

in spatial database. The task considered in this paper is

class identification i.e. the grouping of the objects of a

database into meaningful subclasses. In this paper they

used distance based and density based algorithms in

which k-medoid and DBSCAN algorithms. First

determines k-representatives minimizing the objective

function. Second, assign each object to the clusters with

its representative “closest” to the considered object.

Through density based notion they formalize an intuitive

notion of “clusters” and “noise” in a database D of points

of some k-dimensional space S. The key idea behind is

that for each point of a cluster the neighbourhood of a

given radius has to contain at least a minimum no. of

points i.e. the density in the neighbourhood has to exceed

some threshold. Wang and Su [3] proposed an improved

version of K-Means algorithm.

Fu et al. [9], The enlarging volumes of information

emerging by the progress of technology, makes clustering

of very large scale of data a challenging task. In order to

deal with the problem, many researchers try to design

efficient parallel clustering algorithms. In this paper,

adapted K-Means algorithm in MapReduce framework

which is implemented by hadoop to make the clustering

method applicable to large scale data. By applying proper

<key, value> pairs, the proposed algorithm can be

parallel executed effectively.

Firstly it randomly selects k objects from the whole

objects which represents initial clusters centre. Each

remaining object is assign to the cluster to which it is the

most similar, based on the distance between the object and

the cluster centre. The new mean for each cluster is then

calculated. This process iterates until the criterion

function converges.

Map-function: The input dataset is stored on HDFS as a

sequence file of <key, value> pairs, each of which

represents a record in the dataset. The key is the offset of

these records in bytes, and the value is a string of the

content of this record.

Combine- function: After each map task we apply a

combiner to combine the intermediate data of the same

map task. Combine function contains partial sum of the

values of the points assigned to the same cluster.

Reduce- function: The input of the reduce function is the

data obtained from the combine function of each host.

Reduce function contains sum of all the samples and

compute the total no. of samples assigned to the same

clusters.

Zhao et al [6] proposed an efficient parallel k-means

clustering algorithm based on MapReduce and their study

confirmed that it scales well and can handle large datasets

efficiently.

ISROSET - International Journal of Scientific Research in Computer Science and Engineering, Volume-1, Issue-2, 2013

 © 2013, IJSRCSE All Rights Reserved 48

4. METHODOLOGY

Fig. 1 : Our methodology for Outlier detection

The Block representation consist the major components of

proposed solution. Here, a brief explanation against the

understanding of block representation is cited below:

User gives minimum value for cluster and epsilon

parameters as input and load Intel dataset to HDFS. It

supports .csv format and upload file into input folder of

HDFS. Initially, any one Map and Reduce function (MR)

from voltage, humidity, light and temperature has been

called with DBSCAN MR to prepare the clusters and store

on slave machines. Configuration components help to

establish synchronization between DBSCAN MR and

HDFS with input parameters. Similar to above steps, K-

Means MR is also involved with voltage, humidity, light

and temperature MR to obtain the outliers and rewrite to

HDFS. At last HDFS generates results and forward to

command user interface in terms of clustered value. A

computation time for all MR has been evaluated on single

machine and multimode machine to observe the

performance of proposed solution. Finally, all the results

are compared with performance of Weka tool and simple

java applications.

5. IMPLEMENTATION & RESULTS

A java based application has been developed to implement

DBSCAN and K-means to obtain the outliers of the

existing dataset. This application has been executed on

simple JVM platform on single node. The objective

behind this implementation is to measure the computation

time and performance of outlier detection from large data

on single matching with traditional technology. Weka

tool has been used to explore the knowledge and outliers

from selected dataset. Similar to section one DBSCAN

and K-means algorithm is implemented to obtain the

outliers from the Intel dataset. Although, K-means does

not support outlier detection but can help to evaluate the

difference between two clustering algorithms in terms of

performance and clustering approach. Hadoop

Computation environment has been used to implement

parallel and distributed processing with high performance

objective [4]. Similar with above sections, DBSCAN and

K-Means algorithms has been implemented to obtain the

clusters and outliers from dataset. It has implemented with

single node configuration and multimode configuration.

Table 1 and Table 2 shows the results of the experiment

performed on intel dataset for outlier detection using K-

means and DBScan algorithm by varying different dataset

sizes and using Java application, hadoop based single

node cluster and multi-node clusters.

ISROSET - International Journal of Scientific Research in Computer Science and Engineering, Volume-1, Issue-2, 2013

 © 2013, IJSRCSE All Rights Reserved 49

Computation Time (in seconds)

Parm Voltage Light

DSize DB J KM

J

DB

S

KMS DBM KM

M

DBJ KMJ DB

S

KMS DBM KM M

1K <1 <1 10 9 9 10 <1 <1 9 10 9 10

10K <1 <1 10 9 10 10 <1 <1 10 10 10 10

100K 1 <1 10 9 10 10 1 1 10 9 10 9

1M 32 4 35 10 13 13 11 4 17 9 16 15

50M 1180 175 10 10 12 12 436 192 17 9 14 13

100M -- -- 10 10 9 9 -- -- 17 9 13 9

Table 1: Computation time for DBScan & KMeans algorithm for voltage & light

Computation Time (in seconds)

Param Humidity Temperature

DSize DB J KMJ DB

S

KMS DBM KM

M

DBJ KMJ DBS KMS DBM KM

M

1K <1 <1 22 9 23 20 <1 <1 10 10 19 17
10K <1 <1 10 10 20 16 <1 <1 9 10 19 17
100K 1 1 21 10 21 14 1 1 10 10 19 15
1M 16 4 22 10 19 13 15 4.5 21 10 25 20
50M 648 180 21 10 17 9 680 185 21 9 14 13
100M -- -- 21 10 15 10 -- -- 21 9 14 9

Table 2: Computation time for DBScan & KMeans algorithm for humidity & temperature

6. DISCUSSION

This work concludes that K-mean is good for clustering

purpose but have certain drawbacks like fix number of

cluster and incapable for outlier detection. Subsequently,

DBScan execution and computation time is similar with

K-Means but gives better result in terms of arbitrary shape

clusters and outliers detection. Implementation of both

algorithms on java platform was efficient solution for

small data sample but gives poor results for large data

size. In addition, it also gives poor computation time for

average data sample. Proposed solution is also

implemented and tested with Weka tool and gives similar

results with java implementation. However, it was not

able to handle large data processing and could not handle

dataset beyond 30MB. Implementation of application with

single node hadoop computing environment gives better

and hurdles results then above two techniques. It is good

for large data sample but becomes exhaust for very large

data sample due to absence of slave machine. Multiple

node Hadoop computation environments conclude that

deployment of multiple slave machine help for

deployment of multiple mapper function and distribution

of data processing on other servers. It concludes that this

solution is good for large data sample but performs poorly

for small dataset and in comparison to single node

because of distribution overhead.

REFERENCES

[1] M. Ester, H.P. Kriegel, J. Sander, X. Xu, "A Density-

Based Algorithm for Discovering Clusters in Large

Spatial Databases with Noise",KDD-96 Proceedings, ,

German, pp.226-231, 1996.

[2] K. Narita, H. Kitagawa, “Outlier Detection for

Transaction Databases Using Association Rules”, In

Proceedings of the Ninth International Conference on

Web-Age Information Management,Washington, pp.

373-380, 2008.

[3] J. Wang, X. Su, "An improved K-Means clustering

algorithm," 2011 IEEE 3rd International Conference

on Communication Software and Networks, China,

pp. 44-46, 2011.

[4] M. Bhandarkar, "MapReduce programming with

apache Hadoop", IEEE International Symposium on

Parallel & Distributed Processing (IPDPS), Atlanta-

GA, pp.1-1, 2010.

[5] M. Ding, L. Zheng, Y. Lu, L. Li, S. Guo, and M. Guo,

“More convenient more overhead: the performance

evaluation of Hadoop streaming”, In Proceedings of

the ACM Symposium on Research in Applied

Computation (RACS), USA, pp. 307-313, 2011.

[6] W. Zhao, H. Ma and Q. He, “Parallel K-Means

Clustering Based on MapReduce”, Cloud Computing:

First International Conference, CloudCom 2009,

Beijing, China, Springer Berlin Heidelberg, pp. 674-

679, 2009.

[7] Feng Wang, Jie Qiu, Jie Yang, Bo Dong, Xinhui Li,

Ying Li, “Hadoop high availability through metadata

replication”. In Proceedings of the first international

workshop on Cloud data management (CloudDB '09).

ACM- USA, pp. 37-44, 2009.

[8] R. Leonardo, F, Cordeiro, "Clustering very large

ISROSET - International Journal of Scientific Research in Computer Science and Engineering, Volume-1, Issue-2, 2013

 © 2013, IJSRCSE All Rights Reserved 50

multi-dimensional datasets with MapReduce", ACM

SIGKDD international conference on Knowledge

discovery and data mining, USA, pp.690-698,

2011.Y. X. Fu, W. Z. Zhao, H. F. Ma, "Research on

Parallel DBSCAN Algorithm Design Based on

MapReduce", Advanced Materials Research,

Vols.301, Issue.303, pp. 1133-1138, 2011.

[9] W. Zhao, H.Ma, Q. He, “Parallel K-Means Clustering

Based on MapReduce”, In Proceedings of the 1st

International Conference on Cloud Computing ,

Springer-Verlag, Berlin, pp. 674-679, 2009.

[10] J. Dean and S. Ghemawat, “MapReduce: Simplified

Data Processing on Large Clusters”, Sixth symposium

on Operating Systems design and implementation

(OSDI), San Francisco, CA, pp. 213-220, 2004.

[11] M.F. Hornick, E. Marcadé, S. Venkayala, "Java Data

Mining: Strategy, Standard, and Practice: A Practical

Guide for Architecture, Design, and Implementation",

Morgan Kaufmann, canada,pp.1-544, 2010.

