
© 2023, IJSRCSE All Rights Reserved 23

International Journal of Scientific Research in

Computer Science and Engineering
Vol.11, Issue.1, pp.23-28, February 2023

E-ISSN: 2320-7639

Available online at: www.isroset.org

Research Paper

Correlating Propensity between Code Smells and Vulnerabilities in Java

Applications

Kritika

1

1Government of India, New Delhi, India

Author’s Mail ID: kritikaa2297@yahoo.com

Received: 03/Jan/2022; Accepted: 01/Feb/2023; Published: 28/Feb/2023

Abstract: The ever-advancing world in terms of technology from web 1.0 to web 3.0, the need for designing and developing

software applications has increased many folds. The digitalization of everything at a quick pace from including banking

applications, mobile gaming etc. has led to the negligence of the part of the software developers which has led to increment in

maintainability as well as security issue of the application, namely, code smells and vulnerability respectively. Code smells are

the niggardly practices followed while developing a software by the developers or the software engineers, thwacking the

rudimentary delineation principles and cynically thwacking delineation idiosyncrasy. Vulnerability is the snag, glitch or

blemishes existing in software or operating system allowing the attackers to derelict the security measures. The paper focusses

on finding the relationship between the code smells and vulnerability detected using an Eclipse plugin, PMD and correlating

them using software metrics and rule-based machine learning approach.

Keywords: Code smell, Vulnerability, software metrics, machine learning, K means clustering, data mining

1. Introduction

With the advancement of technology and internet

communication networks, a humongous number of software

applications have come into existence, developed within short

span of time with least linchpin on its maintenance issues,

leading the pathway to the attackers with derelicting measures

of security and technical debt. One discernible feature of the

non-theoretical liabilities is not up to par smells or often

recognized as code smells by Fowler. The recent studies have

shown cynical thwacking of code smells on maintainability of

software. A code smell[1] is a technical debt in code that

indicates infringement of rudimentary design postulates and

negative thwack on design idiosyncrasy.

A software vulnerability is a shortcoming in the system or

software application that allows attacker to derelict the

information security infrastructures and measures[2]. The

vulnerability in a software is dependent on three factors,

namely, extant, paroxysm and escapade. The extant is the

extent to which a vulnerability is contemporary in the

arrangement. The paroxysm is the probability of setting foot

on by the hackers. The escapade is the competence of the

hacker to dominate the extant. The occurrence of software

vulnerability correlates to the indecorous and sloppy

developers who lack security knowledge[4].

The paper focusses on unearthing relationship between code

smells and vulnerability based on the metric values and rules

generated by a tool known as Weka. The results of three code

smells and vulnerabilities were toned which showed the

maximum accuracy value and similar rule set.

The code smells focused are God Class, Cyclomatic

Complexity and Long Method and vulnerabilities focused are

Too Many Method, NPath Complexity and Excessive Method

Length detected using an Eclipse plugin, namely, PMD[9].

The source code consisting of code smells and vulnerabilities

were curated from github based on the java programming

language. A total of 50 source codes were evaluated and the

source codes with maximum probability of a particular smell

and vulnerability were chosen for experimental purpose.

The stimulus of the research is to perceive the fallibility of

the set in motion of the software at the maintenance juncture

of the software engineering cycle.

1.1 Code Smells

God Class is the genre of code smell which cater to

streamline the reconnaissance of the system. It gravitates to

be compounded, have much code and designates humongous

amount of data from other categories of information. God

class is burdensome due to its acreage and compounded-ness.

Cyclomatic Complexity is the computation of number of

unrestricted path way within a class. Higher the number of

http://www.isroset.org/
https://orcid.org/0000-0002-1186-6032

Int. J. Sci. Res. in Computer Science and Engineering Vol.11, Issue.1, Feb 2023

© 2023, IJSRCSE All Rights Reserved 24

unrestricted path way, higher is the complexity and colossal is

the effort which a developer has to put leading to wide range

of defaults.

Long Method is the computation of code with colossal line of

codes. It caters to be compounded and arduous for the

developer as well as the client to interpret as it increases the

degree of cohesion and coupling.

1.2 Vulnerabilities

Too Many Method refers to the conceptualization of

encountering large number of methods within a method or

class with varying parameters and varying or similar

nomenclature. OOPs concept called polymorphism is assisted

by this method. Despite being a vulnerability in software, it

offers an advantage of less execution time.

NPath Complexity is the number of pathways possible for

implementation for a given code. It also refers to the achiral

implementation pathways through the method.

Excessive Method Length is a concept related to the

unbridled lengthy method contrasting the scope of the

method, catering to the loss of focus and complicating the

testing as well as maintainability part while dealing with

security issues.

1.3 Software Metrics

The object-oriented software metrics[3][4] is the measure of

the proclivity which can be unfaltering and ascertainable. The

metrics can be broadly broken down into two pigeonholes

i.e. product and process metrics. The process metrics are

defined as measure of varied features of the software

development undertaking. The product metrics is defined as

measure of varied features of the software product.

The tool used for computing software metrics is Scitool

Understand[8] which provides with a large number of metrics

values subdivided into three broad categories viz. complexity

metrics, object-oriented metrics and volume metrics.

The tool was chosen for computing metrics as it comes with

multiple features like scrutinizing source code with thousands

of lines of code, supports many programming languages like

java, c, c++, python etc., and provides reports, graphing,

standard testing.

The tool used for finding code smells and vulnerabilities in

different java programming software developments is a

plugin, PMD [9] compatible with Eclipse. The tool comes

with built in rule set as well as provides an environment for

tailor made rule set. The most vital issues reported by this

tool is the inefficacious code or poor programming habits

which is one of the important features while detecting code

smells and vulnerabilities.

Below is the list of the some of the metrics values used for

comparative study as well as occurred with maximum

accuracy.

Table 1: List of Metrics

Metrics Name Definition

CountDeclMeth

od
Number of class methods

Sum Cyclomatic
Sum of cyclomatic complexities of all impacted

functions and methods.

Count Line Aggregate of all lines

Sum Cyclomatic
Strict

Sum of strict headlong complexities of all encapsulated
functions or methods

Count Paths Aggregate of possible paths

The possible features of PMD includes glitch reporting,

lamented code identification, labyrinthine expressions,

piddling code and mimeograph code.

The machine learning is an aptness of artificial intelligence

which is more prone to be heard and used in present day

scenarios for different software development, data analysis,

robot analytics etc. It has the competence of self-learning and

enhance their learning experience without being programmed

bluntly.

The machine learning methods can further be divided into

four parts i.e. supervised learning, unsupervised learning,

semi-supervised learning and reinforcement machine learning

methods.

The research is based on the process of supervised learning,

the which can be applied on the new datasets learnt from the

past modelling of data. Sowing the seeds from the known

training dataset the learning algorithm produces a conjecture

corollary to make prognostication about the end results.

For the purpose of machine learning, open source software

known as WEKA, Waikato Environment for Knowledge

Analysis[5] [6]was taken up which produced upshot accuracy

with 90% and above. The algorithms which produced the

upshot with highest correctly classified instances are JRip and

J48.

J48 is a decision tree algorithm[10] with foretelling machine

learning analysis. The implicit fork of decision tree

designates the varied impute with the portending as

dependent variable. The algorithm constructs decision trees

based on the set of training data.

JRip contrivances a proportional[10] rule learner. It

comprises of two phases, namely, fabrication stage and

optimization stage. The fabrication stage is further subdivided

into grow phase and prune phase. In grow phase, one rule is

grown by prepending precursory till the error rate is greater

than or equal to 50%. Pruning phase is imperceptibly

trimming each rule and allow the any final pruning of the

precursory. In the optimization phase, the smallest possible

descrition length is chosen as the culminating representative

of the initial training set.

The remaining research article is divided as follows: segment

II reflected the related work under literature review. Segment

III explains the experimental model adopted for the research

Int. J. Sci. Res. in Computer Science and Engineering Vol.11, Issue.1, Feb 2023

© 2023, IJSRCSE All Rights Reserved 25

purpose. Segment IV highlights the conclusions and

discussion related to the work. Segment V throws light on the

future prospects of the work in the related field.

2. Literature Review

New fangled businesses, organisations, companies, and

censorious infrastructure are advocated by software system

implementing underwritten operations[12] and transactions,

procuring services and merchandising humongous quantities

of secretive data for reinforcing worthwhile decisions and

persistent business systems.

A decade long search has been going on in the field of code

smells via different researchers across the globe, to begin

with Fowler[1] gave the original and well accepted definition

of code smells. Among all the research conducted and

published, it has been found out that the duplicate code[13] is

the most widely studied code smell.

Rasool and Arshad[14] provided a review of the different

kinds of tools and techniques available for detecting code

smells with forecasting the limitations of various tools and

techniques.

The rationality for choosing the source code applications

written majorly in java as most of the applications are still

written in java and preferred over others[15] and most

abundantly found code smells are feature envy, long method,

god class, long parameter list and duplicate code.

Santos et al. [16] examined the effect of code smells on

software development procedure and reached a rationality

that lack of understanding of specifications, meeting deadline

and lack of testing the maintainability results in the

occurrence of the code smells in the software being

developed.

Vulnerability dataset proposed to detect bugs, faults, code

smells are curated with the help of github, written in java

programming language. A set of 25 such source codes were

collected and analysed for the identification of lack of

maintainability and sustainability issues in the software

applications. An automated formal vulnerability was adopted

using a tool called PMD which can boost from static to

dynamic application development approaches.

The object oriented metrics defined by KK Agarwal [18] and

globally accepted, based on which and the matching

definitions and meaning of the metrics were found in the tool

named Scitool Understand was taken for the research

purpose.

The tool provides with a wide range of metrics values while

supporting variety of programming languages like python,

java, C++, Ruby etc.

Few of the metrics as found most prevalent while predicting

the comparison results are listed below.

Sum Cyclomatic Complexity metric is the evaluation of

intricacy of function’s decision edifices. It reckons the

number of untrammelled paths through the module.

Count Paths is the intricacy of number of individualistic paths

in a body of code being written for developing a particular

application. It may happen that despite having smaller body

of code, the count path metric value may seem to be larger.

Sum Cyclomatic Strict is a sub category of sum cyclomatic

complexity metric which calculates the metrics value based

on logical ANDs and ORs in conditional expression with

adding 1 to their complexity values. The values of complexity

also helps in determining the risk associated with that module

of application which ranges from 1 to 50 and above[8].

Count Line is the metric which helps in totaling the number

of lines of code which are required to build the software

application. It can widely range from 10 to 1000+ lines of

code making it more complex and intricate.

Count Decl Method measures the number of local methods

defined inside a block of code.

Dewangan S. [19] provided a juxtaposition of the five

different code smells and put in a technique called Smote

Class Balancing Technique and provided an elaborated result

based on the chi square feature selection model.

Sehgal R. [20] in their research laid emphasis on providing

the solution to the problem of code smell detected while

maintaining a software and found out that despite refactoring

a code smell in order to do away with, it may lead to

generation of another code smell in the source code of the

software invigorated.

Madeyski L. [21] used the MCC method as the main

parameter as the performance metric and on the basis of the

modest value formulated that code smells, namely, random

forest and flexible discriminant analysis were the best

performers when contrasted on the industrial level of

juxtaposition.

Above all the mentioned research papers, there is a still scope

for correlating code smells with vulnerabilities based on the

different sets of tools and techniques. One such technique is

elaborated in this research paper.

3. Experimental Setup

The research work is divided into seven different phases. The

procedure begins by finding the code smells and

vulnerabilities unveiled in the java applications curated from

github. The same applications are bypassed into software

metrics called scitool understand which computes the

different metrics based on distinct parameters and then a

dataset is computed taking into account the smells and

vulnerabilities detected as advisors and corresponding metrics

obtained for the similar instance synonymous in both tools.

Int. J. Sci. Res. in Computer Science and Engineering Vol.11, Issue.1, Feb 2023

© 2023, IJSRCSE All Rights Reserved 26

The dataset so formulated undergoes into a data

preprocessing stage and then k means clustering technique is

applied using a tool called weka which bifurcates the dataset

into training and testing sets and perform the analysis based

on it.

Figure 1: Following are the research steps taken

A. Corpus Collection

The corpus collection consists of 25 source codes curated

from github written in java programming language over a

time span of 5 years. Applications built on java programming

language are broadly chosen as more than 3 billion devices

run on the applications developed in java language.

B. Code Smell Detection

The code smell detection is the primary step towards

establishing the correlation. The tool used for it is PMD, an

Eclipse Plugin with built in functions to check for

complicated rules during motif phase of methods and classes.

A total of three code smells, namely, god class, long method

and cyclomatic complexity were detected in common from

the curation of different software applications.

C. Vulnerability Detection

Along with the code smell also includes vulnerability

detection with the help of Eclipse plugin, PMD from the set

of curated software applications used in real world. Among

the huge list of vulnerabilities that can be detected using the

tool, 5 common and most widely found out vulnerabilities

were collected for dataset formation and three, namely,

excessive method length, npath complexity and too many

method were found to be toning with rule set of code smells.

D. Metrics Computation

The object oriented software metrics[3] were computed using

a tool called Scitool Understand which provides a tailor made

environment with built in set of software metrics compatible

with the java programming language and accredits static code

analysis. The software metrics are computed in the form of

csv file.

E. Dataset Formalization and preprocessing

One of the most pivotal steps in the whole process is the

generation of dataset. The dataset has been manoeuvred using

advisors(PMD) and software metrics obtained using Scitool

Understand. The instances on comparing both the values are

taken and formulated into a dataset with set of false values

and true values for a particular code smell and vulnerability.

The data undergoes a stage of preprocessing before being

converted into arff files.

F. Machine Learning Application

The csv file on conversion to arff file was analysed using the

classifier option in Weka using 10 fold cross validation

technique[11] on different machine learning algorithms. The

algorithms chosen were JRip, J48, Random Forest and naïve

byes. The algorithm with the highest accuracy value as well

as similar rule set was selected for the purpose of comparative

study.

G. Finding Correlation between code smell and

vulnerability

The final stage of the research experiment consists of

uncovering the relationship between code smell and

vulnerability on the basis of metrics value premeditated using

Scitool Understand and k means clustering results produced

by Weka.

4. Conclusion and Discussion

Through the research conducted on varied code smells and

vulnerabilities, there exists a relationship between the two

entities. The violation pattern corresponds with each other not

only in definition but in practicality as well. The algorithms

found most compatible with highest accuracy value is J48 and

Jrip and the rule has been toned with the corresponding

metric value generated using Scitool Understand.

On comparing the rule set generated using weka primarily

based on the metrics values obtained from scitool understand,

it was found that the algorithms Jrip and J48 produced the

accuracy results with 90% and above.

The results were calculated based on the k-fold cross

validation which is a resampling procedure applied on a

limited dataset.

The value of k has been set to 10 meaning the dataset will be

split into 10 parts and the upshot will be produced in the 11
th

part. The k fold cross validation process was chosen over the

others as it aims at producing best result based on the

measures of accuracy, f-measure and roc area curve where

accuracy is the aptly classified instances in the positive and

negative class, f-measure is the median of tp rate and recall

and roc area curve is curve plotted against the values of tp

rate and fp rate.

The stratified cross validation report consists of the following

detailed information, namely, correctly classified instances,

incorrectly classified instances, kappa statistics, mean

absolute error, root mean square error, relative absolute error,

Int. J. Sci. Res. in Computer Science and Engineering Vol.11, Issue.1, Feb 2023

© 2023, IJSRCSE All Rights Reserved 27

coverage of cases, total number of instances and root relative

squared error.

The accuracy results are based on certain factors which can

be termed as TP Rate, FP rate, Precision, Recall, F-Measure,

ROC Area and class.

TP Rate is defined as the percentage of veritable positives

that are plainly bracketed.

FP Rate is defined as the computation of the positives that are

falsely identified by the classifier to the sum total of actual

true positives and false positives.

Precision is defined as the proportion of the data computed

was authentically faultless.

Recall is the ratio of the actual true positives to the sum total

of true positives and false negatives as calculated by a

classified model of weka by using different algorithms.

F-measure is the harmonic mean of precision and recall as

defined above.

Roc curve presents the recital codification of all the portal

values of the classification as computed based on the different

algorithms of the machine learning tool being used.

The result has been computed based on the results obtained

by k means clustering by bifurcating the dataset into training

and testing sets and then formulating the values based on the

different parameters as provided by the tool mentioned above.

The following tables shows the similarity between code smell

and corresponding vulnerability. The results obtained on

comparing the two identities with the similar rule matched

along with the algorithm that produces maximum accuracy on

being run by the classifier section of Weka.

The rules are matched on the analysis obtained after k means

clustering technique of the machine learning and rules so

obtained are the similar metrics value for both code smell and

vulnerability.

Table 2: Correlation between vulnerability and code smell

Code smell Vulnerability Algorithm Rule matched

God class
Too many

method
JRip CountDeclMethod>=17

Long

method

Excessive

method

length

JRip
Count Line>=80 and

SumCyclomatic >=11

Cyclomatic

complexity

NPath

complexity
J48 SumCyclomaticStrict>8

5. Future Scope

More such similar kind of correlation can be found out based

on the java applications already developed using different

tools and applying techniques like deep learning and

comparing the two techniques with the accuracy prediction

after data mining and deep learning techniques.

A juxtaposition of machine [23] and deep learning[22]

techniques based on different language of generation viz.

java, python, android smells can be detected and the model so

generated can be used to predict the presence of such smells

or vulnerabilities in future applications to make it easily

maintainable and protect from data stolen due to glitches.

Data Availability

The varied java applications chosen to predict the correlation

between the code smells and vulnerabilities are taken from

the Github repository openly available for the purpose. The

metrics computed and the dataset formulated using advisors

cannot be released as it is under process for research work

based on the deep learning techniques to be applied on the

same.

Conflict of Interest

There is no conflict of interest involved in the process of the

research conducted.

Funding Source

No funding source exists for the research project being

carried out.

Author’s Contribution

The author is solely responsible for carrying out the research

process from collection of data to the formulation of dataset

and analysing the results and finding out a comparative

relation between the code smells and vulnerabilities.

Acknowledgement

I would like to appreciate the guidance provided to me by my

masters faculty in further enhancing and exploring the scope

and providing the guidance to carry out the research work in

this field of computer science and engineering.

References

[1] Fontana, F. A., Zanoni, M., Marino, A., & Mäntylä, M. V, “Code

smell detection: Towards a machine learning-based approach”, IEEE

international conference on software maintenance, pp. 396-399,

2013.

[2] Alhazmi, O., Malaiya, Y., & Ray, I, “Security vulnerabilities in

software systems: A quantitative perspective”, In IFIP Annual

Conference on Data and Applications Security and Privacy, pp. 281-

294, 2005.

[3] KS, V. K, “A method for predicting software reliability using object

oriented design metrics”, “International Conference on Intelligent

Computing and Control Systems (ICCS), pp. 679-682, 2019.

[4] Elia, I. A., Antunes, N., Laranjeiro, N., & Vieira, M, “An analysis of

openstack vulnerabilities”, “13th European Dependable Computing

Conference (EDCC)”, pp. 129-134, 2017.

[5] Reutemann, G. H. B. P. P., Hall, I. H. W. M., Frank, E., & Witten, I.

H, “The weka data mining software: An update”, SIGKDD

Explorations, Vol. 11, Issue. 1, pp. 10-18, 2009.

[6] Kirkby, R., & Frank, E, “WEKA Explorer User Guide for Version 3-

4”, University of Weikato, pp.3-4, 2002.

 [7] Di Nucci, D., Palomba, F., Tamburri, D. A., Serebrenik, A., & De

Lucia, A, “Detecting code smells using machine learning techniques:

are we there yet?”, Ieee 25th international conference on software

analysis, evolution and reengineering (saner), pp. 612-621, 2018.

[8] Kim, D.K., “Finding bad code smells with neural network models”

International Journal of Electrical and Computer Engineering, Vol.

7, Issue. 6, p.3613, 2017.

Int. J. Sci. Res. in Computer Science and Engineering Vol.11, Issue.1, Feb 2023

© 2023, IJSRCSE All Rights Reserved 28

[9] Pessoa, T., Monteiro, M.P. and Bryton, S, “ An eclipse plugin to

support code smells detection” arXiv preprint arXiv:1204.6492,

2012.

[10] Sharma, S., & Rathore, M, “Comparison Study of Classification

Techniques for Predicting Performance of Students Using Weka

Environment”, “Rising Threats in Expert Applications and

Solutions, (pp. 673-681), 2022.

[11] Rezaei, E., Ghoreyshi, K., Dimitrov, Y., Sadique, K. M., &

Campos, J, “Data Mining with WEKA”, 2021.

[12] Medeiros, N., Ivaki, N., Costa, P., & Vieira, M, “Vulnerable code

detection using software metrics and machine learning”, IEEE

Access, 8, 2020.

[13] Pereira dos Reis, J., Brito e Abreu, F., de Figueiredo Carneiro, G.,

& Anslow, C, “Code smells detection and visualization: a systematic

literature review”, Archives of Computational Methods in

Engineering, Vol. 29, Issue.1, pp. 47-94, 2022.

[14] Rattan, D., Bhatia, R., & Singh, M, “Software clone detection: A

systematic review”, Information and Software Technology, Vol. 55,

Issue.7, pp. 1165-1199, 2013.

[15] Kaur, A, “A systematic literature review on empirical analysis of

the relationship between code smells and software quality

attributes”, Archives of Computational Methods in Engineering, Vol.

27, Issue. 4, pp. 1267-1296, 2020.

[16] Santos, J. A. M., Rocha-Junior, J. B., Prates, L. C. L., do

Nascimento, R. S., Freitas, M. F., & de Mendonça, M. G, “A

systematic review on the code smell effect”, Journal of Systems and

Software, Vol.144, pp. 450-477, 2018.

[17] Elkhail, A. A., & Cerny, T, “On relating code smells to security

vulnerabilities”, IEEE 5th intl conference on big data security on

cloud (BigDataSecurity), IEEE Intl Conference on High

Performance and Smart Computing,(HPSC) and IEEE intl

conference on intelligent data and security (IDS) pp. 7-12, 2019.

[18] Aggarwal, K. K., Singh, Y., Kaur, A., & Malhotra, R, “Software

Design Metrics for Object-Oriented Software, J. Object

Technol., Vol.6, Issue.1, pp. 121-138, 2007.

[19] Dewangan, S., Rao, R.S., Mishra, A. and Gupta, M., 2022. Code

Smell Detection Using Ensemble Machine Learning

Algorithms. Applied Sciences, 12(20), p.10321 2022.

[20] Sehgal, R., Mehrotra, D. and Nagpal, R, “Is refactoring a solution to

resolve code smell?”, International Journal of System of Systems

Engineering, Vol.12, Issue.4, pp.371-385. 2022.

[21] Madeyski, L. and Lewowski, T., “Detecting code smells using

industry-relevant data”, Information and Software Technology,

p.107112. 2023.

[22] S. D. Raut and S. A. Thorat, "Deep Learning Techniques: A

Review," International Journal of Scientific Research in Computer

Science and Engineering, vol.8, Issue.1, pp. 105-109, 2020.

[23] Anoushka, Shivani Dubey, Vikas Singhal, "Student Grade

Prediction by using Machine Learning Methods and Data Analytics

Techniques," International Journal of Scientific Research in

Computer Science and Engineering, vol.10, no. 6, pp. 22-29, 2022.

AUTHORS’ PROFILE

Kritika- has completed her B.Tech and

M.Tech in the years 2019 and 2022

respectively in Computer Science and

Engineering and is currently working

with Government of India. The author is

certified as Cyber Hygiene Practitioner

issued by Ministry of Electronics and

Information Technology and has

occupied certifications in the field of cyber security. The area

of specialisation includes code smells, vulnerabilities,

machine learning, deep learning and cyber security.

Submit your manuscripts at

www.isroset.org
email: support@isroset.org

Call for Papers:

Authors are cordially invited to submit their original research papers, based on theoretical or experimental works for

publication in the journal.

All submissions:

- must be original

- must be previously unpublished research results

- must be experimental or theoretical

- must be in the journal's prescribed Word template

- and will be peer-reviewed

- may not be considered for publication elsewhere at any time during the review period

https://www.isroset.org/
https://www.isroset.org/journals.php
https://www.isroset.org/journal/IJMSRP/index.php
https://www.ijsrnsc.org/
https://www.isroset.org/journals.php
https://www.isroset.org/journal/IJSRBS/index.php
https://www.isroset.org/journal/IJSRCS/index.php
https://www.isroset.org/journal/IJSRCSE/index.php
https://www.isroset.org/journal/WAJES/index.php
https://www.isroset.org/journal/JPCM/index.php
https://www.isroset.org/journal/IJSRMSS/index.php
https://www.isroset.org/journal/IJSRMS/index.php
https://www.isroset.org/journal/WAJM/index.php
https://www.isroset.org/journal/IJSRPAS/index.php
https://www.ijcseonline.org/

	4-ISROSET-IJSRCSE-08561
	Last page of Each Paper

