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Abstract: The ever-advancing world in terms of technology from web 1.0 to web 3.0, the need for designing and developing 

software applications has increased many folds. The digitalization of everything at a quick pace from including banking 

applications, mobile gaming etc. has led to the negligence of the part of the software developers which has led to increment in 

maintainability as well as security issue of the application, namely, code smells and vulnerability respectively. Code smells are 

the niggardly practices followed while developing a software by the developers or the software engineers, thwacking the 

rudimentary delineation principles and cynically thwacking delineation idiosyncrasy. Vulnerability is the snag, glitch or 

blemishes existing in software or operating system allowing the attackers to derelict the security measures. The paper focusses 

on finding the relationship between the code smells and vulnerability detected using an Eclipse plugin, PMD and correlating 

them using software metrics and rule-based machine learning approach. 
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1. Introduction 
 

With the advancement of technology and internet 

communication networks, a humongous number of software 

applications have come into existence, developed within short 

span of time with least linchpin on its maintenance issues, 

leading the pathway to the attackers with derelicting measures 

of security and technical debt. One discernible feature of the 

non-theoretical liabilities is not up to par smells or often 

recognized as code smells by Fowler. The recent studies have 

shown cynical thwacking of code smells on maintainability of 

software. A code smell[1] is a technical debt in code that 

indicates infringement of rudimentary design postulates and 

negative thwack on design idiosyncrasy. 

 

A software vulnerability is a shortcoming in the system or 

software application that allows attacker to derelict the 

information security infrastructures and measures[2]. The 

vulnerability in a software is dependent on three factors, 

namely, extant, paroxysm and escapade. The extant is the 

extent to which a vulnerability is contemporary in the 

arrangement. The paroxysm is the probability of setting foot 

on by the hackers. The escapade is the competence of the 

hacker to dominate the extant. The occurrence of software 

vulnerability correlates to the indecorous and sloppy 

developers who lack security knowledge[4].  

The paper focusses on unearthing relationship between code 

smells and vulnerability based on the metric values and rules 

generated by a tool known as Weka. The results of three code 

smells and vulnerabilities were toned which showed the 

maximum accuracy value and similar rule set.  

The code smells focused are God Class, Cyclomatic 

Complexity and Long Method and vulnerabilities focused are 

Too Many Method, NPath Complexity and Excessive Method 

Length detected using an Eclipse plugin, namely, PMD[9]. 

 

The source code consisting of code smells and vulnerabilities 

were curated from github based on the java programming 

language. A total of 50 source codes were evaluated and the 

source codes with maximum probability of a particular smell 

and vulnerability were chosen for experimental purpose. 

The stimulus of the research is to perceive the fallibility of 

the set in motion of the software at the maintenance juncture 

of the software engineering cycle.  

 

1.1 Code Smells 

God Class is the genre of code smell which cater to 

streamline the reconnaissance of the system. It gravitates to 

be compounded, have much code and designates humongous 

amount of data from other categories of information. God 

class is burdensome due to its acreage and compounded-ness. 

Cyclomatic Complexity is the computation of number of 

unrestricted path way within a class. Higher the number of 
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unrestricted path way, higher is the complexity and colossal is 

the effort which a developer has to put leading to wide range 

of defaults. 

 

Long Method is the computation of code with colossal line of 

codes. It caters to be compounded and arduous for the 

developer as well as the client to interpret as it increases the 

degree of cohesion and coupling.   

      

1.2 Vulnerabilities 

Too Many Method refers to the conceptualization of 

encountering large number of methods within a method or 

class with varying parameters and varying or similar 

nomenclature. OOPs concept called polymorphism is assisted 

by this method. Despite being a vulnerability in software, it 

offers an advantage of less execution time.  

 

NPath Complexity is the number of pathways possible for 

implementation for a given code. It also refers to the achiral 

implementation pathways through the method. 

Excessive Method Length is a concept related to the 

unbridled lengthy method contrasting the scope of the 

method, catering to the loss of focus and complicating the 

testing as well as maintainability part while dealing with 

security issues. 

 

1.3 Software Metrics 

The object-oriented software metrics[3][4] is the measure of 

the proclivity which can be unfaltering and ascertainable. The 

metrics can be broadly broken down into two  pigeonholes 

i.e. product and process metrics. The process metrics are 

defined as measure of varied features of the software 

development undertaking. The product metrics is defined as 

measure of varied features of the software product.  

 

The tool used for computing software metrics is Scitool 

Understand[8] which provides with a large number of metrics 

values subdivided into three broad categories viz. complexity 

metrics, object-oriented metrics and volume metrics. 

 

The tool was chosen for computing metrics as it comes with 

multiple features like scrutinizing source code with thousands 

of lines of code, supports many programming languages like 

java, c, c++, python etc., and provides reports, graphing, 

standard testing.  

 

The tool used for finding code smells and vulnerabilities in 

different java programming software developments is a 

plugin, PMD [9] compatible with Eclipse. The tool comes 

with built in rule set as well as provides an environment for 

tailor made rule set. The most vital issues reported by this 

tool is the inefficacious code or poor programming habits 

which is one of the important features while detecting code 

smells and vulnerabilities. 

 

Below is the list of the some of the metrics values used for 

comparative study as well as occurred with maximum 

accuracy. 

 

 

Table 1: List of Metrics 

Metrics Name Definition 

CountDeclMeth

od 
Number of class methods 

Sum Cyclomatic 
Sum of cyclomatic complexities of all impacted 

functions and methods. 

Count Line Aggregate of all lines 

Sum Cyclomatic 
Strict 

Sum of strict headlong complexities of all encapsulated 
functions or methods 

Count Paths Aggregate of possible paths 

 

The possible features of PMD includes glitch reporting, 

lamented code identification, labyrinthine expressions, 

piddling code and mimeograph code.   

 

The machine learning is an aptness of artificial intelligence 

which is more prone to be heard and used in present day 

scenarios for different software development, data analysis, 

robot analytics etc. It has the competence of self-learning and 

enhance their learning experience without being programmed 

bluntly. 

 

The machine learning methods can further be divided into 

four parts i.e. supervised learning, unsupervised learning, 

semi-supervised learning and reinforcement machine learning 

methods.  

 

The research is based on the process of supervised learning, 

the which can be applied on the new datasets learnt from the 

past modelling of data. Sowing the seeds from the known 

training dataset the learning algorithm produces a conjecture 

corollary to make prognostication about the end results.    

 

For the purpose of machine learning, open source software 

known as WEKA, Waikato Environment for Knowledge 

Analysis[5] [6]was taken up which produced upshot accuracy 

with 90% and above. The algorithms which produced the 

upshot with highest correctly classified instances are JRip and 

J48. 

 

J48 is a decision tree algorithm[10] with foretelling machine 

learning analysis. The implicit fork of decision tree 

designates the varied impute with the portending as 

dependent variable. The algorithm constructs decision trees 

based on the set of training data. 

 

JRip contrivances a proportional[10] rule learner. It 

comprises of two phases, namely, fabrication stage and 

optimization stage. The fabrication stage is further subdivided 

into grow phase and prune phase. In grow phase, one rule is 

grown by prepending precursory till the error rate is greater 

than or equal to 50%. Pruning phase is imperceptibly 

trimming each rule and allow the any final pruning of the 

precursory. In the optimization phase, the smallest possible 

descrition length is chosen as the culminating representative 

of the initial training set.     

 

The remaining research article is divided as follows: segment 

II reflected the related work under literature review. Segment 

III explains the experimental model adopted for the research 
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purpose. Segment IV highlights the conclusions and 

discussion related to the work. Segment V throws light on the 

future prospects of the work in the related field.  

 

2. Literature Review 
 

New fangled businesses, organisations, companies, and 

censorious infrastructure are advocated by software system 

implementing underwritten operations[12] and transactions, 

procuring services and merchandising humongous quantities 

of secretive data for reinforcing worthwhile decisions and 

persistent business systems.  

 

A decade long search has been going on in the field of code 

smells via different researchers across the globe, to begin 

with Fowler[1] gave the original and well accepted definition 

of code smells. Among all the research conducted and 

published, it has been found out that the duplicate code[13] is 

the most widely studied code smell. 

 

Rasool and Arshad[14] provided a review of the different 

kinds of tools and techniques available for detecting code 

smells with forecasting the limitations of various tools and 

techniques.  

 

The rationality for choosing the source code applications 

written majorly in java as most of the applications are still 

written in java and preferred over others[15] and most 

abundantly found code smells are feature envy, long method, 

god class, long parameter list and duplicate code.   

 

Santos et al. [16] examined the effect of code smells on 

software development procedure and reached a rationality 

that lack of understanding of specifications, meeting deadline 

and lack of testing the maintainability results in the 

occurrence of the code smells in the software being 

developed. 

 

Vulnerability dataset proposed to detect bugs, faults, code 

smells are curated with the help of github, written in java 

programming language. A set of 25 such source codes were 

collected and analysed for the identification of lack of 

maintainability and sustainability issues in the software 

applications. An automated formal vulnerability was adopted 

using a tool called PMD which can boost from static to 

dynamic application development approaches.  

 

The object oriented metrics defined by KK Agarwal [18] and 

globally accepted, based on which and the matching 

definitions and meaning of the metrics were found in the tool 

named Scitool Understand was taken for the research 

purpose.  

The tool provides with a wide range of metrics values while 

supporting variety of programming languages like python, 

java, C++, Ruby etc.   

 

Few of the metrics as found most prevalent while predicting 

the comparison results are listed below. 

 

Sum Cyclomatic Complexity metric is the evaluation of 

intricacy of function’s decision edifices. It reckons the 

number of untrammelled paths through the module.  

 

Count Paths is the intricacy of number of individualistic paths 

in a body of code being written for developing a particular 

application. It may happen that despite having smaller body 

of code, the count path metric value may seem to be larger.  

 

Sum Cyclomatic Strict is a sub category of  sum cyclomatic 

complexity metric which calculates the metrics value based 

on logical ANDs and ORs in conditional expression with 

adding 1 to their complexity values. The values of complexity 

also helps in determining the risk associated with that module 

of application which ranges from 1 to 50 and above[8]. 

 

Count Line is the metric which helps in totaling the number 

of lines of code which are required to build the software 

application. It can widely range from 10 to 1000+ lines of 

code making it more complex and intricate.      

 

Count Decl Method measures the number of local methods 

defined inside a block of code. 

 

Dewangan S. [19] provided a juxtaposition of the five 

different code smells and put in a technique called Smote 

Class Balancing Technique and provided an elaborated result 

based on the chi square feature selection model.  

 

Sehgal R. [20] in their research laid emphasis on providing 

the solution to the problem of code smell detected while 

maintaining a software and found out that despite refactoring 

a code smell in order to do away with, it may lead to 

generation of another code smell in the source code of the 

software invigorated.  

 

Madeyski L. [21] used the MCC method as the main 

parameter as the performance metric and on the basis of the 

modest value formulated that code smells, namely, random 

forest and flexible discriminant analysis were the best 

performers when contrasted on the industrial level of 

juxtaposition.  

   

Above all the mentioned research papers, there is a still scope 

for correlating code smells with vulnerabilities based on the 

different sets of tools and techniques. One such technique is 

elaborated in this research paper.  

 

3. Experimental Setup 
 

The research work is divided into seven different phases. The 

procedure begins by finding the code smells and 

vulnerabilities unveiled in the java applications curated from 

github. The same applications are bypassed into software 

metrics called scitool understand which computes the 

different metrics based on distinct parameters and then a 

dataset is computed taking into account the smells and 

vulnerabilities detected as advisors and corresponding metrics 

obtained for the similar instance synonymous in both tools.  
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The dataset so formulated undergoes into a data 

preprocessing stage and then k means clustering technique is 

applied using a tool called weka which bifurcates the dataset 

into training and testing sets and perform the analysis based 

on it.    

 

 
Figure 1: Following are the research steps taken 

 

A. Corpus Collection 

The corpus collection consists of 25 source codes curated 

from github written in java programming language over a 

time span of 5 years. Applications built on java programming 

language are broadly chosen as more than 3 billion devices 

run on the applications developed in java language. 

 

B. Code Smell Detection 

The code smell detection is the primary step towards 

establishing the correlation. The tool used for it is PMD, an 

Eclipse Plugin with built in functions to check for 

complicated rules during motif phase of methods and classes. 

A total of three code smells, namely, god class, long method 

and cyclomatic complexity were detected in common from 

the curation of different software applications. 

 

C. Vulnerability Detection 

Along with the code smell also includes vulnerability 

detection with the help of Eclipse plugin, PMD from the set 

of curated software applications used in real world. Among 

the huge list of vulnerabilities that can be detected using the 

tool, 5 common and most widely found out vulnerabilities 

were collected for dataset formation and three, namely, 

excessive method length, npath complexity and too many 

method were found to be toning with rule set of code smells.  

 

D. Metrics Computation  

The object oriented software metrics[3] were computed using 

a tool called Scitool Understand which provides a tailor made 

environment with built in set of software metrics compatible 

with the java programming language and accredits static code 

analysis. The software metrics are computed in the form of 

csv file.  

E. Dataset Formalization and preprocessing 

One of the most pivotal steps in the whole process is the 

generation of dataset. The dataset has been manoeuvred using 

advisors(PMD) and software metrics obtained using Scitool 

Understand. The instances on comparing both the values are 

taken and formulated into a dataset with set of false values 

and true values for a particular code smell and vulnerability. 

The data undergoes a stage of preprocessing before being 

converted into arff files. 

 

F. Machine Learning Application 

The csv file on conversion to arff file was analysed using the 

classifier option in Weka using 10 fold cross validation 

technique[11] on different machine learning algorithms. The 

algorithms chosen were JRip, J48, Random Forest and naïve 

byes. The algorithm with the highest accuracy value as well 

as similar rule set was selected for the purpose of comparative 

study.    

 

G. Finding Correlation between code smell and 

vulnerability 

The final stage of the research experiment consists of 

uncovering the relationship between code smell and 

vulnerability on the basis of metrics value premeditated using 

Scitool Understand and k means clustering results produced 

by Weka. 

 

4. Conclusion and Discussion 

 
Through the research conducted on varied code smells and 

vulnerabilities, there exists a relationship between the two 

entities. The violation pattern corresponds with each other not 

only in definition but in practicality as well. The algorithms 

found most compatible with highest accuracy value is J48 and 

Jrip and the rule has been toned with the corresponding 

metric value generated using Scitool Understand. 

 

On comparing the rule set generated using weka primarily 

based on the metrics values obtained from scitool understand, 

it was found that the algorithms Jrip and J48 produced the 

accuracy results with 90% and above.  

The results were calculated based on the k-fold cross 

validation which is a resampling procedure applied on a 

limited dataset.  

 

The value of k has been set to 10 meaning the dataset will be 

split into 10 parts and the upshot will be produced in the 11
th
 

part. The k fold cross validation process was chosen over the 

others as it aims at producing best result based on the 

measures of accuracy, f-measure and roc area curve where 

accuracy is the aptly classified instances in the positive and 

negative class, f-measure is the median of tp rate and recall 

and roc area curve is curve plotted against the values of tp 

rate and fp rate.  

 

The stratified cross validation report consists of the following 

detailed information, namely, correctly classified instances, 

incorrectly classified instances, kappa statistics, mean 

absolute error, root mean square error, relative absolute error, 
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coverage of cases, total number of instances and root relative 

squared error. 

The accuracy results are based on certain factors which can 

be termed as TP Rate, FP rate, Precision, Recall, F-Measure, 

ROC Area and class. 

TP Rate is defined as the percentage of veritable positives 

that are plainly bracketed.  

 

FP Rate is defined as the computation of the positives that are 

falsely identified by the classifier to the sum total of actual 

true positives and false positives.  

Precision is defined as the proportion of the data computed 

was authentically faultless.  

 

Recall is the ratio of the actual true positives to the sum total 

of true positives and false negatives as calculated by a 

classified model of weka by using different algorithms.  

F-measure is the harmonic mean of precision and recall as 

defined above.  

Roc curve presents the recital codification of all the portal 

values of the classification as computed based on the different 

algorithms of the machine learning tool being used.   

 

The result has been computed based on the results obtained 

by k means clustering by bifurcating the dataset into training 

and testing sets and then formulating the values based on the 

different parameters as provided by the tool mentioned above.  

The following tables shows the similarity between code smell 

and corresponding vulnerability. The results obtained on 

comparing the two identities with the similar rule matched 

along with the algorithm that produces maximum accuracy on 

being run by the classifier section of Weka. 

 

The rules are matched on the analysis obtained after k means 

clustering technique of the machine learning and rules so 

obtained are the similar metrics value for both code smell and 

vulnerability. 
 

Table 2: Correlation between vulnerability and code smell 

Code smell  Vulnerability  Algorithm  Rule matched   

God class  
Too many 

method 
JRip CountDeclMethod>=17 

Long 

method 

Excessive 

method 

length  

JRip 
Count Line>=80 and 

SumCyclomatic >=11 

Cyclomatic 

complexity 

NPath 

complexity 
J48 SumCyclomaticStrict>8 

 

5. Future Scope 

 
More such similar kind of correlation can be found out based 

on the java applications already developed using different 

tools and applying techniques like deep learning and 

comparing the two techniques with the accuracy prediction 

after data mining and deep learning techniques.  

 

A juxtaposition of machine [23] and deep learning[22]  

techniques based on different language of generation viz. 

java, python, android smells can be detected and the model so 

generated can be used to predict the presence of such smells 

or vulnerabilities in future applications to make it easily 

maintainable and protect from data stolen due to glitches. 

 

Data Availability 

The varied java applications chosen to predict the correlation 

between the code smells and vulnerabilities are taken from 

the Github repository openly available for the purpose. The 

metrics computed and the dataset formulated using advisors 

cannot be released as it is under process for research work 

based on the deep learning techniques to be applied on the 

same.  
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