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Abstract— The impact of cyber-attacks on organizational and private networks has been significant, causing extensive damage 

and posing serious threats to cybersecurity. This is largely due to the increasing sophistication of malicious hackers, making the 

detection and mitigation of these attacks more challenging. One such attack is the botnet attack, which involves using 

compromised systems to launch attacks, including Denial of Service (DoS) attacks, against victim systems. As a result, 

comprehensive literature reviews have been conducted to examine existing botnet defense and detection techniques, with a 

particular focus on machine learning due to its effectiveness in identifying and classifying botnet attacks within networks. This 

paper presents the development of an Artificial Neural Network (ANN) model, a supervised machine learning technique, using 

MATLAB software for creating, training, and simulating networks. Two datasets, KDD CUP’99 and UNSW-NB15, were used 

to demonstrate the effectiveness of the proposed model by extracting the same set of features from both. The model achieved 

classification accuracies of 99.88% and 96% for the respective datasets. A confusion matrix plot was used to illustrate these 

accuracy values in detail, further validating the model's effectiveness by showing very low false negative and false positive rates 

in identifying and grouping botnet attacks. 
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1. Introduction  
 

In the rapidly advancing era of Information Technology, 

cyber-attacks have become a significant challenge for both 

users and organizations. Over the years, malicious hackers 

have carried out these attacks using various techniques and 

methods, driven by motives such as fun, show of skills, 

revenge, or political benefits. [1]. Botnet attacks happen to be 

one of the emerging cyber-attacks which drastically increase 

due new skills gained by the malicious attacker to launch in 

such a way that the detection of the attacks within the 

network will be difficult.  Botnet attacks can be described as 

types of cyber-attacks that involve a bot master or Master 

handler using already compromised systems that are 

networked together and they are referred to as botnets or 

zombies. These exposed systems are then used to carryout 

further attacks such as DoS, and DDoS, and phishing attacks 

against the victim system (target). [2]. 

 

Denial of Service (DoS) attacks are a type of cyber-attack that 

disrupts network availability for legitimate users. In this 

attack, a bot controller uses the already attacked systems to 

overwhelm a target system by sending a massive volume of 

malicious packets. This excessive traffic exceeds the target 

system's capacity, causing it to crash and become 

inaccessible. [3]. Many legitimate users have encountered this 

issue when trying to navigate the internet, preventing them 

from utilizing the resources they requested from a server. 

Distributed Denial of Service (DDoS) attacks occur when an 

attacker, or bot controller, uses multiple compromised 

systems to launch attacks against several targets 

simultaneously. These compromised systems, which can be 

remotely controlled, are used to carry out large-scale attacks 

on victim systems. This type of cyber-attack has remained a 

constant threat on the internet.. [4].  

 

DDoS attacks are carried out through the use of botnets, 

which are controlled by a botmaster through a command and 

control (C&C) channel. [5]. To recognise botnet attacks and 

curtail their impact on networks, researchers have proposed 

various techniques for identifying these attacks within 

network traffic. Among these, machine learning has emerged 

as a prominent approach. This technique involves using 

available datasets along with models and algorithms to train 

the system, enabling it to achieve accurate results that can 

inform decision-making [6]. This approach functions 

similarly to the human brain, where outputs are generated 

based on the input data provided to the selected model. 

http://www.isroset.org/
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Machine learning techniques are categorized into three types: 

supervised, unsupervised, and reinforcement learning. 

Supervised machine learning produces outputs based on a 

provided labeled dataset (known data). It utilizes algorithms 

such as random forests, decision trees, and support vector 

machines. [7]. Reinforcement learning involves learning from 

new situations through a trial-and-error process, much like 

how humans learn from their experiences, allowing the 

system to continually improve itself [8]. Among these three 

types of learning, supervised machine learning is often the 

easiest to use. It simplifies learning from the provided data 

features to make predictions and address complex 

relationships and issues between the input and output layers, 

making it an effective approach [9].   

 

Researchers have adopted several machine learning 

techniques for various activities, including anomaly detection 

and signature-based methods to identify anomalous packet 

behaviour within networks. A hybrid approach was proposed 

for classifying malware integrating expert-defined features 

with those learned through deep learning from raw data. This 

method utilizes deep learning to extract features such as N-

grams from assembly instructions and malware bytes, texture 

patterns, shapelet-based features from grayscale images, and 

structural entropy. These deep features are then combined 

with hand-crafted features using a gradient-boosting model 

through an early-fusion mechanism [10]. Machine learning 

algorithms and blockchain have been one of the techniques 

used in generating accurate results (outputs) from large 

datasets hence helping in predicting and identifying 

vulnerabilities in IoT-based systems. Blockchain technology 

helps in providing secure and well-cleared decentralized 

record-keeping, while machine learning algorithms can 

evaluate large volumes of data to generate valuable 

perceptions. The combination of these techniques has the 

ability to transform industries as they help enhance efficiency 

via automated and trustworthy processes, enable data-driven 

decision-making, and strengthen security by minimizing 

vulnerabilities and guaranteeing information integrity [11].  

 

Building on recent research into numerous techniques for 

detecting botnets within network traffic, this paper proposes 

adopting a supervised machine learning approach. We will 

use the KDD CUP’99 and UNSW-NB15 datasets to train and 

analyze the data, focusing on detecting botnets, specifically 

DDoS attacks, from normal traffic based on selected features 

(input data). The MATLAB tool was employed for analyzing 

and training the dataset using the Artificial Neural Network 

(ANN) model, and evaluating its performance. This paper 

specifically applies the ANN model to identify and analyze 

DoS attacks, a class of attacks present in the KDD CUP’99 

and UNSW-NB15 datasets. This research paper is organized 

into several sections as follows: Section 1 Introduces cyber-

attacks, with a particular focus on botnet attacks and their 

operational mechanisms within networks. Section 2 Reviews 

related work on anomaly detection mechanisms, machine 

learning techniques, and Intrusion Detection Systems (IDS) 

for identifying anomalous behavior within networks. 

Section 3 describes the research methodology, including the 

justification for the chosen methods, details of the datasets 

used, their collection and extraction processes, the analysis 

tools selected, and the rationale for the proposed model. 

Section 4 outlines the experimental design, including the 

processing of training and testing data for both the KDD 

CUP’99 and UNSW_NB15 datasets, the generation and 

selection of thresholds for computing accuracy values, and 

the use of confusion matrix tools to validate performance and 

section 5 Concludes the research and offers recommendations 

for future work. 

 

2. Related Work  
 

This section reviews various academic journals and 

conference papers focused on existing detection techniques 

and frameworks for identifying and classifying botnet attacks 

within networks. The methods discussed are categorized into 

anomaly-detection mechanisms within the network, machine 

learning techniques, and Intrusion Detection System 

mechanism for Anomaly Behaviour within Network. 

 

2.1 Several anomaly-detection mechanisms within the 

network (methods) 
A study was conducted on noninvasive inspection methods to 

offer a comprehensive overview of recent advancements in 

anomaly detection. This study reviewed research from the 

past five years, focusing on new technologies and future 

opportunities in this field. The literature review specifically 

addressed anomaly detection systems within network traffic, 

including applications in Wireless Sensor Networks (WSN), 

the Internet of Things (IoT), High-Performance Computing, 

Industrial Control Systems (ICS), and Software-Defined 

Networking (SDN) environments. The review also highlights 

various pending issues that must be tackled to enhance 

anomaly detection systems. [12]. 

 

Another research conducted a network traffic anomaly 

detection model that deals with addressing the issues of high-

dimensional abnormal traffic and overfitting due to outliers. 

The model calculates mutual information to choose optimal 

features and employs a chaotic neural network algorithm with 

an adaptive strategy to refine feature selection. This approach 

enhances data quality and significantly improves 

classification performance and prediction accuracy, reducing 

training time by over 12% without compromising the original 

model's performance metrics [13]. 

 

A novel online anomaly detection system based on Software-

Defined Networks (SDN) was developed and this system 

utilizes a Convolutional Neural Network (CNN) to promptly 

excerpt and analyze original network flow features, allowing 

for real-time packet extraction and recognition. Utilizing 

SDN allows the system to flexibly adapt to network changes, 

resulting in a zero-configuration anomaly detection system. 

The system's packet filter automatically implements 

mitigation strategies, achieving real-time mitigation of 

abnormal traffic. Experimental results demonstrate that this 

system is highly accurate, promptly alerts network managers 

to enable timely security measures, and effectively detects 

abnormal traffic, thereby enhancing the security performance 

of edge clustering networks [14]. 
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A network encryption traffic classification model was 

introduced that combines attention mechanisms with 

spatiotemporal features. The model adopts LSTM (long short-

term memory) to analyze temporal correlations in continuous 

network flows, CNN (Convolutional Neural Network) to 

extract high-order spatial features, and the SE (Squeeze and 

Excitation) module to weigh and redistribute these features. 

This three-stage process enables fast classification of network 

flows. Key advantages include automatic mapping of network 

flow to labels without manual intervention, strong 

generalization to various datasets, and high accuracy in 

handling encrypted applications and their traffic. 

Experimental results show the model achieves over 90% 

accuracy in classifying encrypted and unencrypted network 

traffic [15]. 

 

A systematic review was conducted for the AI-based anomaly 

identification techniques for encrypted traffic. Several 

research questions were formulated and studies were based on 

specific eligibility criteria. After performing the vetting 

process and quality assessment, 30 highly relevant research 

articles were chosen for inclusion. These studies were 

reviewed focusing on datasets, feature extraction, feature 

selection, preprocessing, anomaly detection algorithms, and 

performance indicators. The review confirmed that a variety 

of techniques are employed for AI-based anomaly 

identification over encrypted traffic. While some methods are 

identical to those adopted for unencrypted traffic, others are 

distinct and specific to encrypted traffic [16]. 

 

Another study was developed which involves proposing a 

new deep-learning-based traffic anomaly detection model by 

enhancing feature-engineering methods, aiming to improve 

efficiency and accuracy. The research comprised two main 

aspects namely: Dataset Construction and Data Detection 

Algorithm Model. The dataset construction involves the use 

of the UNSW-NB15 dataset, the study integrates feature 

extraction standards and methods from other datasets to 

create a comprehensive feature description set, and the 

resulting dataset, DNTAD, demonstrated improved 

operational efficiency and maintained the training 

performance of machine learning algorithms like XGBoost. 

The Detection Algorithm Model introduces an LSTM-based 

detection algorithm with a self-attention mechanism to 

capture important time-series information in traffic data. The 

model effectively learns time dependencies and the 

relationships between traffic features, confirmed through 

ablation experiments. The proposed model performs better 

than other comparative models on the refined dataset [17]. 

 

A thorough analysis was performed on two primary 

approaches in network traffic anomaly detection: feature 

recognition and anomaly detection. Each approach expresses 

unique strengths and faces particular issues. The study 

explores how integrating deep learning with artificial immune 

systems could likely revolutionize feature identification. 

Additionally, it demonstrates improvements in anomaly 

detection by combining machine learning techniques with 

traditional methods. Looking forward, the paper outlines 

research directions focused on integrating deep learning, 

artificial intelligence, and behavioral analysis. This 

integration works on enhancing network traffic anomaly 

monitoring systems' precision, efficiency, and adaptability. 

Proposed future strategies include advancements in data 

preprocessing, model development, pattern recognition, and 

adaptive adjustments, all aimed at strengthening network 

defenses against the evolving landscape of cyber threats [18]. 

 

2.2 Various Machine Learning Techniques 

The challenge of anomaly detection in network traffic was 

tackled by proposing a three-stage framework that operates 

solely on normal traffic data. The approach generates pseudo-

anomaly samples without prior anomaly knowledge to 

facilitate anomaly detection. The first process was the use of 

a reconstruction method to learn deep representations of 

normal samples and the second process involves the 

representations that are normalized to a standard normal 

distribution through the use of a bidirectional flow module. 

To simulate anomaly samples, noise is added to these 

normalized representations, which are then processed through 

the generation direction of the bidirectional flow module. 

Finally, a simple classifier is trained to distinguish between 

normal samples and pseudo anomaly samples in the latent 

space. During inference, the designed framework relies on 

just two modules for detecting anomalous samples, 

significantly reducing model complexity. Experimental 

results reveal that the method achieves state-of-the-art 

performance on common benchmark datasets for anomaly 

network traffic identification [19]. 
 

A survey paper was done for examining the security 

challenges within NFV (Network Function Virtualization) 

and advocates for the adoption of anomaly recognition 

techniques to alleviate cyber-attack risks. The research 

analyses machine learning-based algorithms' strengths and 

weaknesses in detecting network anomalies specific to NFV 

networks. By identifying the most effective algorithms for 

timely and accurate anomaly detection, this study aims to 

empower network administrators and security professionals in 

bolstering the security of NFV deployments. Ultimately, this 

effort aims to protect the integrity and performance of sensors 

and IoT systems in NFV environments [20]. 
 

The CTU-13 dataset, which is a widely used resource in 

cybersecurity was adopted to develop a machine learning-

based method for recognizing botnets. The CTU-13 dataset 

comprises real network traffic data recorded in an 

environment compromised by a botnet. Various machine 

learning algorithms, including decision trees, regression 

models, naïve Bayes, and neural networks, are trained to 

classify network traffic as either botnet-related or benign. The 

performance of each model is determined using criteria such 

as accuracy, precision, and sensitivity, measuring their 

effectiveness in identifying both known and unknown botnet 

traffic patterns. Experimental results demonstrate the high 

accuracy of this machine learning approach in detecting 

botnets, with impressive detection rates and low false positive 

rates, indicating its potential for real-world application [21]. 
 

Another study was explored about the application of various 

machine learning methods, including logistic regression, 
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random forest, and deep neural networks, for enhanced 

classification performance. Deep learning algorithms were 

applied to artificial neural networks (ANN) in multiple ways. 

To achieve more accurate results compared to traditional 

learning methods, datasets were split into two halves and 

underwent specialized pre-processing. This pre-processing 

aimed to enhance the performance of the classification 

algorithms. The results from the deep learning approach were 

promising, achieving an accuracy of 99.79% for SMS attacks 

and 98.48% for malware attacks [22]. 

 

In ensuring the robustness, reliability, and security of a 

system, mechanisms for botnet detection and removal are 

intensively reviewed. Botnets are typically grouped based on 

the protocol used by their command-and-control servers, such 

as IRC, HTTP, DNS, or Peer-to-Peer (P2P). Detection of 

botnets can be achieved using various algorithms, including 

decision trees, random forests, K-nearest neighbors (KNN), 

naïve Bayes, and support vector machines (SVM). The 

research analyzed various studies on botnet attacks and 

detection techniques, providing insights into the effectiveness 

of different methods [23]. 

 

Analysis of diverse machine learning algorithms for botnet 

detection was carried out. Multiple machine learning 

algorithms are adopted and their effectiveness in detecting 

botnets is evaluated. Using an existing dataset, the algorithms 

are tested and the results demonstrate their capability in 

accurately identifying botnet activity [24]. 

 

The thesis was carried out to tackle the anomaly detection 

complications in edge cloud environments. By exploring 

various anomaly detection strategies and leveraging machine 

learning techniques, this research seeks to enhance the 

efficiency and accuracy of detecting anomalies in such 

environments. The proposed methods aim to overcome 

challenges such as resource limitations, the lack of labeled 

data specific to edge clouds, and the need for accurate 

anomaly detection. Emphasizing on machine learning 

techniques including transfer learning, knowledge distillation, 

reinforcement learning, deep sequential models, and deep 

ensemble learning, this thesis attempts to establish coherent 

and accurate anomaly detection systems tailored for edge 

cloud environments. The results demonstrate significant 

improvements achieved by employing machine learning 

methods for anomaly detection in edge clouds. Extensive 

testing and evaluation in real-world edge environments reveal 

that machine learning-driven anomaly detection systems 

improve the recognition of anomalies in edge clouds. These 

methods achieve a reasonable trade-off between accuracy and 

computational efficiency. The discoveries clearly display how 

machine learning-based anomaly detection approaches 

contribute to building resilient and secure edge-based systems 

[25]. 

 

A study was conducted which involves examining papers 

published between 2015 and 2023 that focus on anomaly 

detection using machine learning techniques. After evaluating 

the selected research papers, Ten (10) diverse applications of 

anomaly detection were identified and outlined in the 

publications. It was realized that machine learning models 

were used to detect anomalies in 6% of all instances. 

Additionally, a comprehensive list of datasets was conducted 

that was used in detecting anomaly, including many other 

general-purpose datasets. Also, the analysis revealed that, 

compared to other categorized anomaly detection methods, 

researchers are more inclined to employ unsupervised 

anomaly detection techniques. The application of machine 

learning models for anomaly detection is one of the most 

promising fields of study, with researchers utilizing various 

ML models in this context. Based on the results of this 

review, recommendations and suggestions were offered to 

researchers in the field [26]. 

 

A systematic literature review was conducted to provide an 

overview of deployed models, data pre-processing 

mechanisms, anomaly detection techniques, and their 

evaluations. Instead of quantitatively comparing existing 

approaches, this survey works on helping readers understand 

important aspects of different model architectures and 

highlight open issues for future research [27]. 

 

Finally, research was proposed for the botnet identification 

system, ACLR, stacking artificial neural network (ANN), 

convolutional neural network (CNN), long short-term 

memory (LSTM), and recurrent neural network (RNN). 

Experiments compare individual models with ACLR using 

the UNSW-NB15 dataset, encompassing nine attack types. 

ACLR achieves 0.9698 testing accuracy, effectively capturing 

botnet attack patterns. K-fold cross-validation at k = 5 shows 

ACLR's robustness (accuracy 0.9749). ACLR detects botnets 

with ROC-AUC 0.9934 and PR-AUC 0.9950. Comparative 

analysis with state-of-the-art models confirms ACLR's 

superior performance, enhancing cybersecurity against 

evolving threats [28]. 

 

2.3 Various Intrusion Detection System mechanism for 

Anomaly Behaviour Within Network 

A framework called IoTBoT-IDS was proposed for statistical 

learning-based botnet recognition to enhance the security of 

IoT-based smart networks against botnet attacks. This 

framework captures and detects the normal characteristics of 

IoT networks using the Beta Mixture Model (BMM) and the 

Correntropy Model. Deviations from normal traffic patterns 

are categorized as abnormal or malicious. Evaluation results 

showed that the proposed framework achieved an average 

detection accuracy of 99.2% [29]. 

 

The Intrusion Detection Dataset Toolkit (ID2T) is another 

technique designed to address the challenges of recreating 

datasets with selected features, aiming to produce accurate 

scientific results. The ID2T architectures facilitate the 

injection of latest and advanced attacks, enabling precise 

detection of potential abnormalities in network traffic [30]. 

 

A paper was conducted as regards introducing a security 

system named Detection of Anomalous Behaviour in Smart 

Conveyance Operations (DAMASCO) which was designed 

for intrusion detection in vehicle-to-vehicle (V2V) 

communication. Adopting a statistical approach, the anomaly 
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detection module targets the Medium Access Control (MAC) 

sublayer to monitor the number of packets sent, detect 

potentially harmful nodes, obstruct their activity, and sustain 

a reputation list. The algorithm employs the Median Absolute 

Deviation (MAD) to detect outliers and characteristics of DoS 

attacks. Experiments conducted in a simulated environment 

with a realistic urban mobility model demonstrate that the 

introduced system achieves a 3% false positive rate and no 

false negatives [31]. 

 

A hybrid feature selection strategy was introduced to improve 

network anomaly and illegal traffic detection. By integrating 

linear-based and tree-based feature selection methods, the 

approach creates a robust feature representation that improves 

the accuracy and efficiency of intrusion detection systems 

(IDS). The study adopts a supervised machine learning 

approach using decision trees and employs 10-fold cross-

validation for rigorous evaluation. Experimental results 

across diverse datasets consistently show accuracy levels 

exceeding 99%. Moreover, the proposed strategy achieves a 

weighty reduction in the number of features, up to 78%, for 

enhancing detection accuracy. This reduction facilitates 

simpler models, substantial resource savings, and faster 

response times, specifically advantageous for real-time 

intrusion detection systems [32]. 

 

3. Research Methodology 

 

After reviewing numerous research papers on various 

detection techniques proposed by researchers, it has been 

found that there are insufficient defense and detection 

methods to effectively mitigate the impact of DoS (Denial of 

Service) and DDoS (Distributed Denial of Service) attacks 

within networks.. Therefore, this section comprised of the 

justications of theadopted research method,  the selected 

datasets, their collection and extraction processes, the selcetd 

analysis tool used, and Justification of the proposed Model. 

 

3.1 Justification of Adopted Research Method 

A quantitative research methodology was chosen for this 

study as it involves the design and simulation of a network 

model, which is based on analyzing and measuring 

performances numerically (in graphical form). This 

methodology was selected due to its ease of interpreting the 

obtained data (results) and its high level of accuracy, as 

assessed via the generated thresholds. 

 

3.2 Justification of the used Datasets 

To achieve the aim of this paper, two different datasets were 

collected and analyzed namely: KDD CUP’99 and 

UNSW_NB15 datasets. KDD (Knowledge Discovery in 

Databases) CUP’99 dataset was selected due to its systematic 

method to revealing, refining, and utilizing meaningful 

insights and patterns within raw databases for various 

applications. This methodical process of data exploration, 

transformation, and refinement extracts actionable 

knowledge. The advantages of the KDD process in data 

mining are extensive, including informed decision-making, 

improved business performance, enhanced efficiency, better 

customer experiences, fraud detection, and predictive 

modeling. By embracing KDD, organizations can access the 

full usage of their data, driving innovation, growth, and 

success in today’s data-driven landscape [33]. While 

UNSW_NB15 dataset is viewed as a indepth dataset mainly 

for network intrusion detection systems. It encompasses nine 

different types of attacks, such as DoS, worms, backdoors, 

and fuzzers. The dataset includes raw network packets, 

capturing a wide range of modern network intrusion 

scenarios, covering both different types of attacks and normal 

traffic [34]. 

 

3.3 Justification of the selected analysis tool 

In achieving the aim and objectives of this paper, MATLAB 

2021a software was used for the simulation and analysis of 

the collected datasets (KDD CUP’99 and UNSW_NB15). 

MATLAB offers a range of functionalities, including 

efficient numerical computation and a vast collection of 

built-in functions and toolboxes across various domains such 

as signal processing, image processing, control systems, 

optimization, and machine learning. It provides 

comprehensive tools for data visualization and plotting, with 

rich capabilities for creating diverse 2D and 3D plots. 

Additionally, MATLAB provides a maximal level of  

interaction with programming languages like C/C++, Java, 

Python, and .NET, allowing users to exploiting funtioning 

code and libraries from different languages, thereby 

enhancing MATLAB's capabilities and extending its reach to 

incorporate external functionalities [35]. The MATLAB 

software was installed on a Windows 10 Pro operating 

system with 4.00 GB of RAM and an Intel® Pentium® CPU 

2020M @ 2.50 GHz. 

 

3.4 Dataset collection and extraction process 
The KDD CUP’99 dataset was downloaded from datahub.io, 

and the UNSW_NB15 dataset was obtained from CloudStor 

(aarnet.edu.au). PyCharm software was then used to view the 

dataset information, extract the necessary features, and save 

them as CSV files in a project folder before importing them 

into Microsoft Excel. In Microsoft Excel, the data was 

processed into binary format (0s and 1s). The dataset 

included records of Smurf, Neptune, and Back (types of DoS 

attacks) as well as normal traffic. To prepare the data for 

analysis, 70% of the records, covering all DoS attack types 

and normal traffic, were allocated for training, while 30% 

were set aside for testing. 

 

Lastly, the datasets were imported into MATLAB for 

analysis to identify botnet attacks (specifically DoS attacks) 

and distinguish them from normal traffic. The same 

processing steps were applied to the UNSW_NB15 dataset, 

dividing it into training and testing data. 

 

Out of the whole features included in KDD CUP’99  and 

UNSW_NB15datasets, four main features were extracted 

separately from each dataset. This was done after the dataset 

had been downloaded and then imported into pycharm 

Professional 2021.2.1 software. Using pycharm helped in 

completing smart codes as it supports writing Python, 

javascript, CSS, and other languages which helps in easily 

detecting errors(highly sensitive to any type of code), code 

https://datahub.io/machine-learning/kddcup99#resource-kddcup99
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editing, and fixing the errors when running. It can as well be 

adopted to any related work that includes importing, creating, 

editing, and saving files. 

 

Figure 1 explains the set of Python codes used for easy view 

of the whole KDD CUP’99 dataset and UNSW_NB15 

dataset as this seems better compared to using  Microsoft 

Excel due to the large volume of data (including the 

columns).  The python code was used for the extraction of 

features in both datasets. The screenshot shows the overall 

information of the dataset such as the the headers (features) 

and the total number of data records.  Python code makes it 

easier to extract the chosen features without having to scroll 

through the entire data.  A total of 42 features were identified 

from the KDD CUP’99 dataset, including the label feature 

that classifies each data record by attack class type and 

specifies their data types. Among these features, four were 

selected for their critical importance in understanding packet 

transmission within a network: source bytes, destination 

bytes, duration, and counts. 

 

These features are integral to the packet header and provide 

essential details about packet contents, source, and 

destination. Specifically: 

I. Source bytes indicate the number of bytes sent from 

the source IP address. 

II. Destination bytes represent the number of bytes 

received by the destination IP address during data 

transmission. 

III. Duration reflects the time (in seconds) taken for the 

packet to travel from the source IP address to the 

destination IP address. 

IV. Counts reveal the number of connections from the 

source and destination IP addresses, compared to 

connections established in the past two seconds. 

 

These features are crucial for analyzing network traffic and 

understanding packet flow. [36]. The same four features 

extracted from the KDD CUP’99 dataset—duration, source 

bytes, destination bytes, and count—were also extracted 

from the UNSW_NB15 dataset. In the UNSW_NB15 

dataset, the count feature is labeled as “dwin.”  

 

i. Duration is defined as the time difference between 

the first and last packet of a network connection, 

measured in seconds 

ii. Source bytes represent the number of data bytes sent 

from the source to the destination. 

iii. Destination bytes are the number of data bytes 

received by the source from the destination. 

iv. Count (dwin in UNSW_NB15) indicates the number 

of packets counted within the specified packet group. 

 

These features were selected to ensure consistency in 

classifying and detecting DoS attacks, a type of botnet 

attack. [37].  

 
Extraction of KDD’CUP’99 data features 

 

 
Extraction of UNSW_NB15 data features 

Figure 1: features extraction of both datasets 

 

3.5 The Proposed Model Justification 
The proposed architecture utilizes a neural network model to 

detect and analyze botnet attacks. Botnet attacks are 

orchestrated by botmasters who use compromised systems 

(bots) to launch DoS (Denial of Service) or DDoS 

(Distributed Denial of Service) attacks. The model is 

designed to recognize and classify traffic patterns associated 

with DoS attacks [38]. The application of an Artificial Neural 

Network (ANN) model is essential for reducing the false 

positive rate in detecting botnet attacks, thereby improving 

the accuracy of distinguishing normal traffic from botnet 

(DoS) attack traffic [39]. 

 

For the KDD CUP’99 dataset, the model focuses on three 

types of DoS attacks: Smurf, Neptune, and Back. In the 

UNSW_NB15 dataset, only the DoS attack class and normal 

traffic are considered, in alignment with the paper's emphasis 

on botnet attacks. 

a) Smurf Attacks: These are a type of DDoS attack that 

floods the target system with packets by exploiting the 

Internet Control Message Protocol (ICMP). This 

involves creating large spoofed packets with a fake 

source address, which leads to overwhelming the target 

system and rendering it slow or inoperable [40]. 
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b) Neptune Attacks: Also known as half-open TCP SYN 

attacks, these involve sending repeated SYN packets 

with fake IP addresses and random ports to every port on 

the targeted server. This causes network saturation and 

results in a high number of SYN error connections 

compared to other attack types [41]. 

c) Back Attacks: These attacks target Apache web servers 

by overwhelming them with requests that contain large 

numbers of forward slashes (/) in the URL, causing the 

server to become unresponsive. As a result, the server 

becomes unable to process requests from authorized 

users (clients) due to the overwhelming volume of 

incoming requests. This overload forces the server to 

attempt processing all requests simultaneously, 

effectively denying service to legitimate users [42]. 

 

An Artificial Neural Network (ANN) is described as a 

supervised machine learning technique where input nodes are 

processed through hidden layers, with weights applied to 

generate the expected outputs at the output layer. In this 

paper, the ANN model utilizes a Multilayer Perceptron 

(MLP) network, which produces accurate results by learning 

a general rule that maps inputs to outputs. This approach 

enhances the effectiveness of the system, making it more 

reliable compared to other methods. [43]. Multilayer 

Perceptron (MLP) architecture is one of the most common 

feed-forward neural network models which effectively 

identifies basic patterns (behaviors) within neural models. In 

MLP, the propagation of an impulse occurs in one 

direction—from the input layer, consisting of four input 

nodes, through the hidden layer, also known as the "network 

brain." Here, the sum of weights associated with all neurons 

is combined, excluding the input bias, to produce the output 

layer with two output features [43]. 

 

Figure 2 illustrates an MLP with a single hidden layer, 

featuring a decision boundary that surrounds a single convex 

region of the input space. The process begins at the input 

layer, where the data vector is accepted. The hidden layer 

receives output from the input layer, applies weights, and 

passes the data through a non-linear activation function. 

Finally, the output layer accepts the weighted outputs from 

the hidden layer, passes them through an output non-

linearity, and generates the target values.  

 

Each circular node in Figure 2 represents an artificial neuron, 

while the arrows indicate connections between neurons from 

one layer to the next. These connections form the Artificial 

Neural Network (ANN), enabling neurons to signal one 

another as the information is processed. In the ANN model 

diagram (Figure 2), the input features are represented as (Xi), 

where i = (X1, X2, X3, X4,…n) indicates the number of input 

features extracted from the dataset for model training. The 

hidden layer is denoted as (Hn), where (n = 1, 2, 3, 4,….n) 

represents the number of nodes in the hidden layer. Lastly, 

(Y) represents the outputs from the hidden layer after being 

weighted (Win) from both the input and hidden layers, which 

are then passed to the output layer as Y1and Y2 (the two 

output features). 

 

 
Figure 2: ANN Model with Multilayer perceptron 

 

The linear activation function (P) is implemented to both the 

hidden and output layers, while (α) represents the bias, and 

(Win) represents the weights for individual linked neurons. 

This process involves multiplying the inputs (Xi) by the 

weight ((Win), adding the constant bias (α), and applying the 

activation function to produce the final outputs. 

 

Figure 3 explains the basic steps involved in applying the 

Artificial Neural Network model The first step involves the 

collection of KDDS CUP’99 dataset which are DoS attack 

class types, these include Smurf, Neptune and Back attacks 

as well as the normal traffic type. These same steps were 

repeated for the processing of UNSW_NB15 dataset.  

 

Secondly, the dataset was processed, and four (4) features 

are chosen from the DoS attack class types that were 

selected the normal traffic type as well. Next, the training 

data and the testing data was be imported into MATLAB 

for training and analysis. The input and output data for the 

training and testing datasets was viewed in MATLAB 

using (typing) a set of commands in the command window. 

 

Next to this, involves the transposition of input data and 

output data for both training data and testing data, then, 

nntool (neural network tool) was opened where the 

transposed features which are the inputs and output of both 

training datasets and testing datasets was be imported, thus 

leading to creating network where network type, transposed 

features (input and output), number of neurons to be 

applied was be selected for the creation of the outputs of 

the network.  

 

Both output and input features needed to be transposed in 

order to fit into the designed model, hence generating 

accurate results. After this, the transposed features (input 

and output) of both training data and training data was 

trained in order to display number of iterations conducted 

as well as the performance graph which determine its 

accuracy.  

 

The next step was to simulate only the input transpose 

feature (only input transpose feature will be chosen) 

producing Simulated network outputs which were 

compared to the actual output (output transpose features), if 

peradventure sufficient accurate results are not gotten, then 

threshold was obtained, and this was used in training test 

data to generate an accurate and effective classification of 

the attacks and distinguishing them from the normal traffic. 
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Figure 3: procedures involve in analyzing the collected data 

 

4. Results and Discussion 
 

4.1. Experimental Design Details 

The Artificial Neural Network (ANN), also referred to as the 

Neural Network model, is utilized to analyze the KDD 

CUP’99 and UNSW-NB15 datasets for accurate detection 

and differentiation of anomalous traffic from normal traffic. 

The ANN was chosen for its superior ability to model 

complex patterns and generate precise predictions. Its 

strength lies in handling non-linear and intricate relationships 

between the input and output layers, transforming inputs into 

meaningful outputs through its activation function [44]. When 

applying the neural network model for data analysis, the 

Levenberg-Marquardt algorithm is considered among other 

algorithms used for training neural networks. This algorithm 

aims to minimize the sum of squared errors between the 

model function and the data points through a series of 

carefully selected updates to the model parameters. 

Specifically designed to address the sum of squared errors, 

the Levenberg-Marquardt algorithm utilizes loss functions 

and operates with the gradient vector and the Jacobian matrix. 

The Jacobian matrix, constructed from the first-order partial 

derivatives of scalar functions relative to a set of independent 

variables, is primarily used for analyzing small signal 

stability within the system [45]. The Levenberg-Marquardt 

backpropagation algorithm (trainlm) is specifically used for 

training both the training and test data. This algorithm 

functions as a network training tool that updates weight and 

bias values based on Levenberg-Marquardt optimization. It is 

considered the fastest backpropagation method and is 

recommended as the first-choice supervised algorithm, 

despite its higher memory consumption compared to other 

algorithms [45]. The experimental neural network, designed 

to simulate datasets for the effective detection of anomalous 

(malicious) traffic, was developed using MATLAB 2021a. 

 

Understanding the information provided by each header 

(which is the feature) of the dataset highlights their 

significanees in detecting botnet attacks. These attacks aim to 

use compromised systems (bots) to launch assaults on target 

systems, ultimately rendering services and resources 

unavailable to clients on the internet [46]. The selected 

features are instrumental in determining the number of bytes 

transferred between the source and destination IP addresses, 

and in detecting delays between these endpoints. This 

information is crucial for identifying delays or complete 

unavailability of resources for clients (victim systems). As 

illustrated in Figure 4, the input layer consists of these four 

selected features, which are processed through the hidden 

layer. This hidden layer, equipped with ten neurons, utilizes 

weights (w) and biases (b) to achieve optimal attack 

classification results. The TANSIG (Hyperbolic Tangent 

Sigmoid) function is applied in the hidden layer to produce 

effective results. TANSIG is a nonlinear activation function 

used in artificial neural networks to compute the output of a 

layer based on its net input. [47]. The output layer portrays 

the network traffic (output) features in binary form, with two 

outputs indicated as 0s and 1s. This layer employs the 

PURELIN function, a linear activation function that computes 

the layer's output based on its net input. [48]. 

 

 
Figure 4: The generated Artificial Neural Network Model 

 

4.2. Extracted and processed features of the collected 

datasets 

The KDD CUP’99 dataset includes various attack types, but 

this paper focuses on just two: normal traffic and DoS (Denial 

of Service) attacks. For the UNSW_NB15 dataset, which 

does not have subclasses for DoS attacks like the KDD 

dataset, the analysis also concentrates on DoS attacks and 

normal traffic. From a total of 3,000 extracted records, 2,100 
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(comprising both DoS attacks and normal traffic) were 

designated for training, while 900 records (also a mix of DoS 

attacks and normal traffic) were used for testing. Three 

specific DoS attack types were selected for analysis: Back, 

Neptune, and Smurf attacks. In total, 6,000 records of attack 

traffic were used, with 70% of records from each attack type 

allocated to the training dataset and 30% to the testing 

dataset. Output features were represented as Attack Bit1 and 

Attack Bit2, encoded in binary format (0s and 1s). As 

outlined in Table 1, the datasets consist of selected attack 

types: the KDD CUP’99 dataset includes Back, Neptune, and 

Smurf DoS attacks along with normal traffic, while the 

UNSW_NB15 dataset includes only DoS attacks (without 

subclasses) and normal traffic. Both datasets feature four 

input attributes (Duration, Source Bytes, Destination Bytes, 

and Counts) and two output attributes (Attack Bit1 and 

Attack Bit2), represented as binary values (0s and 1s) before 

being imported into MATLAB. 

 

                 Table 1: Attack Class types selected from KDD CUP’99 and 

UNSW_NB15 datasets 

 
KDD CUP’99 DATASET 

Attack  class types Number  of features selected 

DoS 

Attacks 

 

 

Normal 

Class 

Type 

(Normal 

Traffic) 

Selected 

Input 

Features 

Generated 

output 

Features 

Back Duration, 

Source bytes, 

Destination 

bytes, and 

Counts 

Attack Bit1 

 

Attack Bit2 
Neptune 

Smurf 

UNSW_NB15 DATASET 

Attack class types Number of features selected 

DoS 

attacks 

Normal 

Class 

Type 

Selected 

Input 

Features 

Generated 

output 

Features 

Duration, 

Source bytes, 

Destination 

bytes, and 

Counts 

(named as 

“dwin”) 

Attack Bit1 

 

Attack Bit2 

 

Table 2 details the distribution of KDD dataset records across 

different attack types. For each attack type, 70% of the total 

records were allocated to the training dataset, while 30% were 

used for testing. The output features for each attack type are 

as follows: i. Back Attack: (0, 0), ii. Neptune Attack: (0, 1), 

iii. Smurf Attack: ( 1, 0), and iv. Normal Traffic: (1,1) 

 

This resulted in a total of 4,200 training records to be used in 

MATLAB for network training and output generation. In the 

UNSW_NB15 dataset, 70% of the data records were 

designated for training, encompassing both DoS attack types 

and normal traffic. The output features in this dataset were 

represented as: i. DoS Attack Type: (0, 1), and ii. Normal 

Traffic: (1, 0). The total number of training records used from 

the UNSW_NB15 dataset was 2,100. 

 

Table 2: Computation for Training dataset records IN KDD CUP’99 

and UNSW_NB15 datasets 

Training dataset records IN KDD CUP’99 dataset estimation 

Back Attacks Neptune 

Attacks 

Smurf 

Attacks 

Normal 

class 

Total number of 

records = 1,500 

records 

 

70% of 1,500 = 

1,050 

Total 

number of 

records = 

1,500 

records 

 

 

70% of 

1,500 = 

1,050 

 

Total 

number of 

records = 

1,500 

records 

 

70% of 

1,500 = 

1,050 

Total 

number 

of 

records = 

1,500 

records 

 

70% of 

1,500 = 

1,050 

Total Number of Records = 4,200  

The Training dataset records (UNSW_NB15) estimation 

DoS attacks Normal Class 

Total number of records = 1,500 

records 

 

70% of 1,500 = 1,050 

Total number of records 

= 1,500 records 

70% of 1,500 = 1,050 

Total Number of Records = 2,100 

 
Table 3 illustrates the generation of the testing dataset, which 

comprises 30% of the total records for each attack class type 

(Back, Neptune, Smurf) and Normal traffic. This equates to 

450 records for each class type. The output features are 

represented as follows: i. Back Attack:(0,0), ii. Neptune 

Attack: (0,1),iii. Smurf Attack: (1,0), and iv. Normal 

Traffic:(1,1) 

 

For the UNSW_NB15 dataset, 30% of the total records were 

allocated to the testing dataset, including DoS attack types 

and normal traffic. The output features are denoted as i. DoS 

Attack Type: (0, 1), and Normal Traffic: (1,0). The total 

number of records used for testing in the UNSW_NB15 

dataset was 900 

 
Table 3: Table 3: Computation for Testing dataset records in KDD 

CUP’99 and UNSW_NB15 datasets 

The Testing dataset records (KDD CUP’99) estimation 

Back 

Attack 

Neptune 

Attack 

Smurf 

Attack 

Normal Class 

Total 

number 

of 

records 

= 1500 

records 

 

 

30% of 

1,500 = 

450 

Total 

number of 

records = 

1500 

records 

 

 

30% of 

1,500 = 

450 

 

Total 

number 

of 

records = 

1500 

records 

 

30% of 

1,500 = 

450 

Total number of 

records = 1,500 

records 

 

70% of 1,500 = 

450 

Total Number of Records = 1,800 

The Testing dataset records (UNSW_NB15) estimation 

DoS attacks Normal Class 

Total number of records 

= 1500 records 

 

Total number of records = 1500 

records 
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30% of 1,500 = 450 

 

30% of 1,500 = 450 

Total Number of Records = 900 

 
4.3 The processing of KDD CUP’99 Training Data in 

MATLAB 

The training data, which constitutes 70% of the entire KDD 

CUP’99 dataset, was first downloaded and organized in 

Microsoft Excel. This data was then imported into MATLAB 

using the command `nntool` in the MATLAB command 

window, allowing for easy viewing and manipulation within 

the environment as depicted in Figure 5(a). Next, the training 

data's output features (which contain four features) were 

separated from the input features (which include two features) 

by converting the numerical values to a double data type 

format and saving it as "TRAINDATA" using a command in 

the MATLAB command window. The input features, 

occupying columns 1 to 4, were saved as "TrainInputData" 

(as shown in Figure 5(b)). Meanwhile, the output features, 

located in columns 5 and 6, were saved as "TrainOutputData" 

(as shown in Figure 5(c). Both TrainInputData and 

TrainOutputData variables were then transposed to be 

suitable for the designed ANN model, hence getting accurate 

results for the analysis. 
 

       Training Dataset for KDD dataset (a) 

  TrainInputData (b) 

 TrainOutputData (c) 

Figure 5: The process of training data for KDD dataset 

4.4 The processing of KDD CUP’99 Testing Data in 

MATLAB 

The same process used for the training data was repeated for 

the testing data, which comprised 30% of the whole dataset 

(KDD CUP’99). It was imported from Microsoft Excel into 

MATLAB using the line of code in the command window 

(nntool) for easy readability and Extraction of input and 

output features from the test data, including converting the 

table into a double data type format for use in MATLAB and 

“TESTDATA” variable is created as depicted in figure 6a. 

The input features occupied columns 1 to 4 and were saved as 

“TestInputData” in Figure 6(b)while the output features that 

occupied columns 5 and 6 were saved as “TestOutputData” in 

Figure 6(c). Both TestInputData and TestOutputData 

variables were then transposed to be suitable for the designed 

ANN model, hence getting accurate results for the analysis.  

 

 Testing Dataset for KDD dataset (a) 

  
TestInputData (b) 

    
TestOutputData (c) 

         Figure 6: The testing data process for the KDD CUP’99 dataset 
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After transposing both the input and output features of the 

test data (KDD CUP’99), the neural network was opened 

using the nntool command where both transposed 

TestInputData and TestOutputData variables are being 

imported. The `nntool` in MATLAB is a built-in tool that 

allows users to open the Network/Data Manager for 

importing, creating, utilizing, and exporting network 

outputs[49]. TestInputDataTranspose is imported as input 

data while TestOutputDataTranspose serves as the network's 

target data. The transposed data must be imported to create a 

network for training. As illustrated in Figure 4, the network 

model includes 4 neurons in the input layer, 10 neurons in 

the hidden layer using the TANSIG (Hyperbolic Tangent 

sigmoid transfer) function, and 4 neurons in the output layer 

where the PURELIN function is used to produce effective 

network outputs. After creating the network using `nntool`, it 

is accessed by double-clicking to open the training and 

simulation page. Here, both transposed `TestInputData` and 

`TestOutputData` are selected for training the network, and 

`TestInputDataTranspose` is used for simulating the network. 

After completing the procedures for creating, importing, 

transposing features, and training and simulation of networks 

with the KDD CUP’99 dataset, the same process was applied 

to the UNSW_NB15 dataset. This involved creating and 

importing both the training and testing datasets into 

MATLAB, transposing the input and output features, and 

importing them into `nntool` (Data Manager) for training and 

simulation. The resulting network outputs were then 

evaluated through regression plots, training state plots, and 

performance plots, as detailed in Section 4.4 for the KDD 

CUP’99 dataset results 

 

4.5 Interpretation of the graphical plots of Trained data 

(KDD CUP’99) 

Figure 7 displays three key plots from the training results for 

the dataset: 

1. Performance Plot (Figure 7a): This plot shows the 

trained network's Best Validation Performance (BVP), which 

reached 0.00083262 at epoch 35 out of 41 iterations. The 

mean squared error is close to zero, indicating effective 

training. Training and validation both concluded at the 35th 

epoch. 

2. Training State Plot (Figure 7b): The gradient result is 

0.0012869, the control parameter (MU) is set to 1e-06, and 

the validation checks total 6, all achieved by epoch 41. 

3. Regression Plot (Figure 7c): The regression analysis 

shows that the performance of the trained dataset is 0.99671, 

the validation plot is 0.99833, and the performance on test 

data is 0.99297. The overall training performance of the 

dataset is 0.99639, reflecting high accuracy as indicated by its 

proximity to 1 

 
Performance plot (a) 

 
Training State Plot (b) 

  Regression Plot (c) 

 

4.6 Generation of Threshold table for Training data for 

KDD dataset 
This section focuses on evaluating the accuracy and Mean 

Squared Error (MSE) of the exported simulated network 

outputs from the trained data. The goal is to assess the 

network’s effectiveness in detecting botnet attacks within the 

network. To accomplish this, four thresholds were generated 

using MATLAB scripts. The scripts calculated and compared 

these thresholds to identify the one that achieved the highest 

accuracy value and MSE (Mean Square error). Suitable 

thresholds for training datasets were obtained for training 

datasets Median predicted values were tested on the network 

outputs, resulting in the selection of four thresholds. Among 

these, the threshold with the lowest Mean Squared Error 

(MSE) was chosen as the best option. This is quite similar to 

choosing thresholds from the ROC (Receiver Operating 

Characteristics) curve which shows the relationship between 

the true positive rate (TPR) for the model and the false 

positive rate (FPR). This process involves identifying where 

the true positive rate (TPR) intersects with (1 -{false positive 

rate (FPR)}). This intersection point maximizes true 

positives while minimizing false negatives [50]. Among the 

four thresholds, the threshold of 0.95542 was selected for its 

high accuracy and low Mean Square Error (MSE). Although 

two other thresholds, 0.97184 and 0.97725, had the same 

MSE as the chosen threshold, they exhibited lower accuracy 

values. The chosen threshold was preferred because its lower 

MSE indicated better accuracy. Accuracy is defined as the 

percentage of correctly classified samples divided by the 

total number of samples [51]. The selected threshold was 

used to calculate the network outputs, with results obtained 

using both Microsoft Excel and MATLAB. Table 4 presents 

the generated threshold values along with their corresponding 

accuracy and MSE values. 
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Table 4 Threshold table generated for the training data of the KDD dataset 

THE 

GENERATED 

THRESHOLD

S (µ) 

ACCURACY VALUE MEAN 

SQUARE 

ERROR 

(MSE) 

0.98005       98.30238 0.655238 

0.95592      99.847619 0.6547619 

0.97184      98.766667 0.6547619 

0.97725     98.4190476 0.6547619 

 

4.7 The Regression Plots Results of the KDD trained 

test data  

As expressed in Figure 8, applying the selected threshold 

(0.95592) to the network outputs of the trained test data, the 

regression plots for training, test, and validation all show 

values converging at 1 after 19 iterations. This indicates that 

the output results are highly accurate, with all plots reaching 

a value of 1. Specifically, the performance of the trained 

dataset, the validation plot for the overall dataset, and the 

performance result for the testing data all show a value of 1. 

The convergence of all values at 1 demonstrates an 

exceptionally high accuracy rate for the model. 

 

 
Figure 8: regression plots of the KDD-trained test data 

  

4.8 further discussion of the KDD Trained Test Data 

Results  

The optimal threshold (µ), determined during the training 

phase, was applied to the network outputs obtained from the 

test data. The test data was trained fifteen times, and 

accuracy values (%) were calculated and recorded. This 

process involved using the selected threshold to evaluate the 

network outputs by applying the IF function in Microsoft 

Excel. Specifically, each network output from MATLAB was 

copied into Excel, where the formula `[IF (A1 > 0.95592, A1, 

0)]` was used. In this formula, 0.95592 is the chosen 

threshold from the trained data, as shown in Table 4. 

 

Values below the threshold were set to 0, while values above 

the threshold were retained. After applying the threshold, the 

results were imported back into MATLAB, where scripts 

were created to calculate the average of the classified 

samples, thus generating the accuracy percentages. Figure 9 

illustrates the application of the IF function in Excel. 

 

 
Figure 9: Microsoft Excel calculation 

 

Table 5 presents the accuracy results of the trained test data, 

showing the overall average accuracy which reflects the 

botnet detection rate. The test dataset underwent 15 training 

sessions, each involving the creation of a new network. After 

each training session, the network outputs were exported to 

the workspace where the selected threshold was applied to 

compute the accuracy value. 

 
       Table 5:  The Accuracy Values of the Trained TestData (KDD CUP’99) with 

the chosen Threshold 

 

The 

selected 

threshold

(µ) 

 (0.95592) 

Number 

of 

training 

sessions 

Computed Results 

using the selected 

threshold 

Accuracy 

value (%) 

1 (1794.9/1800) X 100 99.71667 

2 (1800/1800) X 100 100  

3 (1794.9/1800) X 100 99.71667 

4 (1800/1800) X 100 100 

5 (1794.9/1800) X 100 99.71667 

6 (1800/1800) X 100 99.94444 

7 (1800/1800) X 100 100 

8 (1800/1800) X 100 100 

9 (1800/1800) X 100 100 

10 (1800/1800) X 100 100 

11 (1794.9/1800) X 100 99.71667 

12 (1794.9/1800) X 100 99.71667 

13 (1799.0/1800) X 100 99.99444 

14 (1794.9/1800) X 100 99.71667 

15 ( 1798.9/1800) X 100 99.93889 

 

The overall average represents the accuracy detection 

rate = 

 99.71667 + 100 + 99.71667 + 100 + 99.71667 + 99.94444 

+ 100 + 100 + 100 + 100 + 99.71667 + 99.71667 + 

99.99444 + 99.71667 + 99.93889 

                                                   15 

 Accuracy rate (%) = 99.87852% 

 
Using the ANN model, an accuracy detection rate of 

99.87852% was achieved, demonstrating a high effectiveness 

in detecting Botnet attacks. To further validate these results, 

several parameters were considered: 

a) Correct Rate (0.99877): This rate is calculated as the 

ratio of correctly classified samples to the total classified 

samples. It indicates a high accuracy in detecting Botnet 
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attacks, with a value close to 1, affirming the model's 

effectiveness. 

     {Correct Rate} =   0.99877 

b) Error Rate (1.2222 × 10⁻³): This is derived from dividing 

the number of incorrectly classified samples by the total 

classified samples. A lower error rate signifies fewer 

errors in detection, indicating high model performance. 

{Error Rate}=  1.2222 × 10
-3 

c) Last Correct Rate (0.99877): This reflects the last 

recorded performance of the classifier, calculated as the 

ratio of correctly classified samples to the total classified 

samples.
 

d) Last Error Rate (1.2222 × 10⁻³): This represents the last 

recorded error rate, calculated as the ratio of incorrectly 

classified samples to the total classified samples. 

e) Inconclusive Rate (0): This value is obtained by dividing 

the number of nonclassified samples by the total number 

of samples. A rate of 0 indicates no unclassified samples, 

proving the model's ability to classify all data. 

f) Classified Rate (1): Calculated as the ratio of classified 

samples to the total number of samples. A value of 1 

indicates that all samples were classified accurately. 

{Classified Rate} =  1 

g) Sensitivity (0.9999992): Sensitivity measures how well 

the model identifies true positives. It is calculated as the 

ratio of correctly classified positive samples to the sum of 

true positive and false negative samples.  

{Sensitivity} =  

h) Specificity (0.99999993): Specificity assesses how well 

the model identifies true negatives. It is calculated as the 

ratio of correctly classified negative samples to the sum of 

true negative and false positive samples. {Specificity}= 

  

i) Positive Predictive Value (0.9999995): This is calculated 

as the ratio of correctly classified positive samples to the 

total positive classified samples. 

j) Negative Predictive Value (0.9999992): This is obtained 

by calculating the ratio of correctly classified negative 

samples to the total negative classified samples. 

 

To further validate the effectiveness of the accuracy rate in 

detecting botnet attacks using the Artificial Neural Network 

(ANN) model, a Confusion Matrix was utilized. The 

Confusion Matrix is a tool designed to evaluate the 

performance of a classification model by providing a detailed 

overview of its accuracy and error rates [53]. It allows for a 

comprehensive interpretation of how well the classification 

model performs by comparing the predicted values with the 

actual values.  

 

The Confusion Matrix for the test data is shown in Figure 10, 

illustrating how the true class labels are plotted against the 

predicted class labels obtained from the trained model. The 

matrix results are displayed diagonally, indicating a 100% 

accuracy rate with no misclassification of data. This results in 

a True Positive Rate (TPR) of 100% and zero false negatives. 

Specifically, the Confusion Matrix confirms the accurate 

classification of: 

a. Predicted class “A” (Back attack) 

b. Predicted class “B” (Neptune attack) 

c. Predicted class “C” (Smurf attack) 

d. Predicted class “D” (Normal traffic) 

 

Each class was correctly classified with no errors, 

demonstrating the high effectiveness of the neural network 

model in detecting and classifying botnet attacks 

 

 
Figure 10: confusion matrix plot of test data (KDD CUP’99) 

 

4.9 The graphical plots results of the UNSW_NB15 

trained test data  
The same procedures used for processing the KDD CUP’99 

dataset were applied to the UNSW_NB15 dataset. This 

included importing the data into MATLAB, transposing, 

creating a network using nntool, training, and simulating to 

obtain network outputs. The network outputs were analyzed 

using performance plots, training state plots, and regression 

plots. 

 

Figure 11 illustrates the graphical plots obtained from training 

the data with the ANN model: 

1) Figure 11a: The regression plot at epoch 15 shows a 

performance of 0.60213 for the trained dataset, 0.64928 

for the validation plot, 0.58472 for the testing data, and an 

overall result of 0.60742 for general training. These values 

indicate that the performance of the ANN model on the 

UNSW_NB15 dataset is moderate but not as high as the 

results from the KDD CUP’99 dataset. 

2) Figure 11b: The training state plot reveals a validation 

check of 6, a gradient convergence at 0.047409, and a 

control parameter (μ) of 1e-05 at epoch 15, which is close 

to zero. 

3) Figure 11c: The performance plot indicates that validation 

of the trained data stopped at iteration 9 and remained 

steady with a very low mean square error (MSE), close to 

zero, reflecting the model’s effectiveness on this dataset, 

though not as high as in the KDD CUP’99 dataset. 



Int. J. Sci. Res. in Computer Science and Engineering                                                                             Vol.12, Issue.4, Aug. 2024   

© 2024, IJSRCSE All Rights Reserved                                                                                                                                           90 

          Regression Plot(11a)   

            
Training State Plot(11b)   

    
Performance Plot (11c) 

Figure 11: graphical plots interpretation of the Train data (UNSW-NB15 

dataset) 

 

To further assess the performance of the model on the 

UNSW_NB15 dataset, the accuracy of the trained data was 

evaluated using the Classification Learner app in MATLAB, 

following the same process applied to the KDD dataset. The 

confusion matrix provides a detailed understanding of the 

performance results. As shown in Figure 11, the overall 

accuracy of the model on the training data was 92.2%. 

Specifically, 92.2% of DoS attacks were correctly classified, 

while 7.8% were misclassified (false negative rate). For 

normal traffic, 92.5% was accurately classified, with 6.5% 

incorrectly classified (false negative rate). These results 

demonstrate the effectiveness of the model on the 

UNSW_NB15 dataset. 

 

Figure 12: confusion matrix plot results for train-data (UNSW-NB15) 

 

Table 6 presents a comparison of the results obtained from 

the designed ANN model with those from various studies 

using different algorithms and datasets. The designed ANN 

model achieved an accuracy of 99.87852% with the KDD 

CUP’99 dataset and 96% with the UNSW_NB15 dataset. 

These results are compared with those from Qazi [54], who 

used CNN (Convolutional Neural Networks) and RNN 

(Recurrent Neural Network) algorithms on the CICIDS-2018 

dataset, achieving an average accuracy of 98.90%, an F-

measure of 99.03, a precision of 98.64%, and a recall of 

99.15%. 

 

Additionally, the ANN model's accuracy results for the KDD 

dataset (99.87852%) and UNSW_NB15 dataset (96%) are 

compared with those obtained by Bhavsar[55], who 

developed the Pearson-Correlation Coefficient - 

Convolutional Neural Networks (PCC-CNN) algorithm for 

evaluating three datasets: NSL-KDD, CICIDS-2017, and 

IOTID20, achieving a detection accuracy of 99.89% and a 

low misclassification rate of 0.001. 

 

The proposed ANN model is also compared with the results 

from Ayantayo [56], who employed Early-fusion, late-fusion, 

and late-ensemble learning models using feature fusion with 

fully connected deep networks to analyze the UNSW-NB15 

and NSL-KDD datasets. This approach yielded an accuracy 

of 86.81%, a recall of 86.80%, and a precision of 86.86%. In 

contrast, the proposed model achieved 99.87852% accuracy 

with the KDD CUP’99 dataset and 96% accuracy with the 

UNSW_NB15 dataset. 

 

Finally, a comparison is made with the results from 

Srinivasan [57], who used an Extreme Learning Machine 

(ELM), Support Vector Machine (SVM), and Convolutional 

Neural Network (CNN) with the Ensemble Classifier 

Algorithm with Stacking Process (ECASP) to analyze the 

Cyber Clean Center (CCC) dataset. This method achieved 
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94.08% accuracy, 86.5% sensitivity, 85.68% specificity, and 

a 78.24% F-measure. The proposed ANN model 

outperformed these results, highlighting its effectiveness. 

This shows that the proposed model performed better in terms 

of its accuracy results on the two datasets applied.  

 
Table 6. Comparison of performance results of the existing related works 

with the proposed model 

Author(s)  Applied 

Methods  

(algorithms) 

classifier 

Name of 

Dataset (s) 

employed  

Performance 

(Accuracy) 

Results 

[54] CNN and  RNN CICIDS-2018 The model 

achieved an 

average accuracy 
of 98.90%, an F-

measure of 99.03, 

a precision of 
98.64%, and a 

recall of 99.15%. 

[55] Pearson-

Correlation 
Coefficient - 

Convolutional 

Neural Networks 
(PCC-CNN) 

NSL-KDD, 

CICIDS-2017, 
and IOTID20 

Similar accuracies 

of 98%, 99%, and 
98% from the 

KNN and CART 

models across 
three datasets 

were achieved. 

However, the 
proposed PCC-

CNN model 
demonstrated 

superior 

performance with 

a detection 

accuracy of 

99.89% and a low 
misclassification 

rate of 0.001. 

[56] Early-fusion, late-

fusion, and late-
ensemble 

learning models 

using feature 
fusion with fully 

connected deep 

networks 

UNSW-NB15 

and NSL-KDD 

The model 

achieved an 
accuracy of 

86.81%, recall 

(86.80%), and 
86.86% precision.  

[57] Extreme Learning 

Machine (ELM), 

Support Vector 
Machine (SVM), 

and 

Convolutional 
Neural Network 

(CNN) with the 

proposed 
Ensemble 

Classifier 

Algorithm with 
Stacking Process 

(ECASP). 

Cyber Clean 

Center (CCC) 

dataset 

the method 

achieves  94.08% 

accuracy, 86.5% 
sensitivity, 

85.68% 

specificity, and 
78.24% F-measure 

This paper Artificial Neural 
Network (ANN) 

using Levenberg-

Marquardt Back 
propagation 

algorithm 

KDD Cup’99 
datasets 

& 

UNSW_NB15 
dataset 

99.87852% was 
achieved using the 

selected threshold 

and 100% was 
achieved using the 

confusion matrix 

plot for the KDD 

dataset while a 

96% accuracy 

value was 
obtained using the 

UNSW_NB15 

dataset. 

5. Conclusion and Future Scope  
 

The successful implementation of the Artificial Neural Network 

(ANN) model, which involved meticulous adherence to all 

procedural steps, demonstrates its effectiveness in detecting and 

classifying botnet attacks from normal traffic based on accuracy 

results. This effectiveness is attributed to the meticulous 

collection and extraction of features from the KDD CUP’99 and 

UNSW_NB15 datasets using Python (PyCharm software). The 

model was trained on 70% of the datasets and tested in 

MATLAB 2021a, with the results validated using a confusion 

matrix. The ANN model achieved an accuracy of 99.87852% 

using the selected threshold and 100% using the confusion 

matrix for the KDD dataset, with a very low false rate close to 

zero. For the UNSW_NB15 dataset, the model achieved a 96% 

accuracy rate. The study focused on DoS attack types in both 

datasets, specifically selecting Back, Neptune, and Smurf attacks 

from the KDD dataset and only Dos attacks in the 

UNSW_NB15 dataset which produced high-performance 

results. 

 
Since the level of cyber-attacks and mode of operation by the 

malicious hackers change from time to time (such as zero-day 

attacks), which sometimes cannot be easily identified by 

already existing detection techniques and models, therefore, 

future research should explore more dynamic and accurate 

network models or frameworks for real-time identification of 

various cyber-attacks, thus, lessening their impacts on 

organizational and private networks.  

 

Another aspect that future research work should focus on is 

evaluating different datasets or attack class types from the 

KDD CUP’99 and UNSW_NB15 datasets to determine their 

performances using the proposed model as well as testing 

them on other developed algorithms. 
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