
© 2024, IJSRCSE All Rights Reserved 77

International Journal of Scientific Research in

Computer Science and Engineering
Vol.12, Issue.4, pp.77-93, August 2024

E-ISSN: 2320-7639

Available online at: www.isroset.org

Research Article

Identifying Botnets within the Traffic Generated By a Network in Two

Different Datasets

Grace Bunmi Akintola
1*

1Dept. of Cyber Security, Nigerian Defence Academy, Kaduna, Nigeria

*Corresponding Author: gbogundele@nda.edu.ng

Received: 24/Jun/2024; Accepted: 26/Jul/2024; Published: 31/Aug/2024

Abstract— The impact of cyber-attacks on organizational and private networks has been significant, causing extensive damage

and posing serious threats to cybersecurity. This is largely due to the increasing sophistication of malicious hackers, making the

detection and mitigation of these attacks more challenging. One such attack is the botnet attack, which involves using

compromised systems to launch attacks, including Denial of Service (DoS) attacks, against victim systems. As a result,

comprehensive literature reviews have been conducted to examine existing botnet defense and detection techniques, with a

particular focus on machine learning due to its effectiveness in identifying and classifying botnet attacks within networks. This

paper presents the development of an Artificial Neural Network (ANN) model, a supervised machine learning technique, using

MATLAB software for creating, training, and simulating networks. Two datasets, KDD CUP’99 and UNSW-NB15, were used

to demonstrate the effectiveness of the proposed model by extracting the same set of features from both. The model achieved

classification accuracies of 99.88% and 96% for the respective datasets. A confusion matrix plot was used to illustrate these

accuracy values in detail, further validating the model's effectiveness by showing very low false negative and false positive rates

in identifying and grouping botnet attacks.

Keywords— Botnets, Networks, Machine Learning, MATLAB, DoS attacks, detection techniques, and datasets

1. Introduction

In the rapidly advancing era of Information Technology,

cyber-attacks have become a significant challenge for both

users and organizations. Over the years, malicious hackers

have carried out these attacks using various techniques and

methods, driven by motives such as fun, show of skills,

revenge, or political benefits. [1]. Botnet attacks happen to be

one of the emerging cyber-attacks which drastically increase

due new skills gained by the malicious attacker to launch in

such a way that the detection of the attacks within the

network will be difficult. Botnet attacks can be described as

types of cyber-attacks that involve a bot master or Master

handler using already compromised systems that are

networked together and they are referred to as botnets or

zombies. These exposed systems are then used to carryout

further attacks such as DoS, and DDoS, and phishing attacks

against the victim system (target). [2].

Denial of Service (DoS) attacks are a type of cyber-attack that

disrupts network availability for legitimate users. In this

attack, a bot controller uses the already attacked systems to

overwhelm a target system by sending a massive volume of

malicious packets. This excessive traffic exceeds the target

system's capacity, causing it to crash and become

inaccessible. [3]. Many legitimate users have encountered this

issue when trying to navigate the internet, preventing them

from utilizing the resources they requested from a server.

Distributed Denial of Service (DDoS) attacks occur when an

attacker, or bot controller, uses multiple compromised

systems to launch attacks against several targets

simultaneously. These compromised systems, which can be

remotely controlled, are used to carry out large-scale attacks

on victim systems. This type of cyber-attack has remained a

constant threat on the internet.. [4].

DDoS attacks are carried out through the use of botnets,

which are controlled by a botmaster through a command and

control (C&C) channel. [5]. To recognise botnet attacks and

curtail their impact on networks, researchers have proposed

various techniques for identifying these attacks within

network traffic. Among these, machine learning has emerged

as a prominent approach. This technique involves using

available datasets along with models and algorithms to train

the system, enabling it to achieve accurate results that can

inform decision-making [6]. This approach functions

similarly to the human brain, where outputs are generated

based on the input data provided to the selected model.

http://www.isroset.org/
https://orcid.org/0009-0007-3818-3606

Int. J. Sci. Res. in Computer Science and Engineering Vol.12, Issue.4, Aug. 2024

© 2024, IJSRCSE All Rights Reserved 78

Machine learning techniques are categorized into three types:

supervised, unsupervised, and reinforcement learning.

Supervised machine learning produces outputs based on a

provided labeled dataset (known data). It utilizes algorithms

such as random forests, decision trees, and support vector

machines. [7]. Reinforcement learning involves learning from

new situations through a trial-and-error process, much like

how humans learn from their experiences, allowing the

system to continually improve itself [8]. Among these three

types of learning, supervised machine learning is often the

easiest to use. It simplifies learning from the provided data

features to make predictions and address complex

relationships and issues between the input and output layers,

making it an effective approach [9].

Researchers have adopted several machine learning

techniques for various activities, including anomaly detection

and signature-based methods to identify anomalous packet

behaviour within networks. A hybrid approach was proposed

for classifying malware integrating expert-defined features

with those learned through deep learning from raw data. This

method utilizes deep learning to extract features such as N-

grams from assembly instructions and malware bytes, texture

patterns, shapelet-based features from grayscale images, and

structural entropy. These deep features are then combined

with hand-crafted features using a gradient-boosting model

through an early-fusion mechanism [10]. Machine learning

algorithms and blockchain have been one of the techniques

used in generating accurate results (outputs) from large

datasets hence helping in predicting and identifying

vulnerabilities in IoT-based systems. Blockchain technology

helps in providing secure and well-cleared decentralized

record-keeping, while machine learning algorithms can

evaluate large volumes of data to generate valuable

perceptions. The combination of these techniques has the

ability to transform industries as they help enhance efficiency

via automated and trustworthy processes, enable data-driven

decision-making, and strengthen security by minimizing

vulnerabilities and guaranteeing information integrity [11].

Building on recent research into numerous techniques for

detecting botnets within network traffic, this paper proposes

adopting a supervised machine learning approach. We will

use the KDD CUP’99 and UNSW-NB15 datasets to train and

analyze the data, focusing on detecting botnets, specifically

DDoS attacks, from normal traffic based on selected features

(input data). The MATLAB tool was employed for analyzing

and training the dataset using the Artificial Neural Network

(ANN) model, and evaluating its performance. This paper

specifically applies the ANN model to identify and analyze

DoS attacks, a class of attacks present in the KDD CUP’99

and UNSW-NB15 datasets. This research paper is organized

into several sections as follows: Section 1 Introduces cyber-

attacks, with a particular focus on botnet attacks and their

operational mechanisms within networks. Section 2 Reviews

related work on anomaly detection mechanisms, machine

learning techniques, and Intrusion Detection Systems (IDS)

for identifying anomalous behavior within networks.

Section 3 describes the research methodology, including the

justification for the chosen methods, details of the datasets

used, their collection and extraction processes, the analysis

tools selected, and the rationale for the proposed model.

Section 4 outlines the experimental design, including the

processing of training and testing data for both the KDD

CUP’99 and UNSW_NB15 datasets, the generation and

selection of thresholds for computing accuracy values, and

the use of confusion matrix tools to validate performance and

section 5 Concludes the research and offers recommendations

for future work.

2. Related Work

This section reviews various academic journals and

conference papers focused on existing detection techniques

and frameworks for identifying and classifying botnet attacks

within networks. The methods discussed are categorized into

anomaly-detection mechanisms within the network, machine

learning techniques, and Intrusion Detection System

mechanism for Anomaly Behaviour within Network.

2.1 Several anomaly-detection mechanisms within the

network (methods)
A study was conducted on noninvasive inspection methods to

offer a comprehensive overview of recent advancements in

anomaly detection. This study reviewed research from the

past five years, focusing on new technologies and future

opportunities in this field. The literature review specifically

addressed anomaly detection systems within network traffic,

including applications in Wireless Sensor Networks (WSN),

the Internet of Things (IoT), High-Performance Computing,

Industrial Control Systems (ICS), and Software-Defined

Networking (SDN) environments. The review also highlights

various pending issues that must be tackled to enhance

anomaly detection systems. [12].

Another research conducted a network traffic anomaly

detection model that deals with addressing the issues of high-

dimensional abnormal traffic and overfitting due to outliers.

The model calculates mutual information to choose optimal

features and employs a chaotic neural network algorithm with

an adaptive strategy to refine feature selection. This approach

enhances data quality and significantly improves

classification performance and prediction accuracy, reducing

training time by over 12% without compromising the original

model's performance metrics [13].

A novel online anomaly detection system based on Software-

Defined Networks (SDN) was developed and this system

utilizes a Convolutional Neural Network (CNN) to promptly

excerpt and analyze original network flow features, allowing

for real-time packet extraction and recognition. Utilizing

SDN allows the system to flexibly adapt to network changes,

resulting in a zero-configuration anomaly detection system.

The system's packet filter automatically implements

mitigation strategies, achieving real-time mitigation of

abnormal traffic. Experimental results demonstrate that this

system is highly accurate, promptly alerts network managers

to enable timely security measures, and effectively detects

abnormal traffic, thereby enhancing the security performance

of edge clustering networks [14].

Int. J. Sci. Res. in Computer Science and Engineering Vol.12, Issue.4, Aug. 2024

© 2024, IJSRCSE All Rights Reserved 79

A network encryption traffic classification model was

introduced that combines attention mechanisms with

spatiotemporal features. The model adopts LSTM (long short-

term memory) to analyze temporal correlations in continuous

network flows, CNN (Convolutional Neural Network) to

extract high-order spatial features, and the SE (Squeeze and

Excitation) module to weigh and redistribute these features.

This three-stage process enables fast classification of network

flows. Key advantages include automatic mapping of network

flow to labels without manual intervention, strong

generalization to various datasets, and high accuracy in

handling encrypted applications and their traffic.

Experimental results show the model achieves over 90%

accuracy in classifying encrypted and unencrypted network

traffic [15].

A systematic review was conducted for the AI-based anomaly

identification techniques for encrypted traffic. Several

research questions were formulated and studies were based on

specific eligibility criteria. After performing the vetting

process and quality assessment, 30 highly relevant research

articles were chosen for inclusion. These studies were

reviewed focusing on datasets, feature extraction, feature

selection, preprocessing, anomaly detection algorithms, and

performance indicators. The review confirmed that a variety

of techniques are employed for AI-based anomaly

identification over encrypted traffic. While some methods are

identical to those adopted for unencrypted traffic, others are

distinct and specific to encrypted traffic [16].

Another study was developed which involves proposing a

new deep-learning-based traffic anomaly detection model by

enhancing feature-engineering methods, aiming to improve

efficiency and accuracy. The research comprised two main

aspects namely: Dataset Construction and Data Detection

Algorithm Model. The dataset construction involves the use

of the UNSW-NB15 dataset, the study integrates feature

extraction standards and methods from other datasets to

create a comprehensive feature description set, and the

resulting dataset, DNTAD, demonstrated improved

operational efficiency and maintained the training

performance of machine learning algorithms like XGBoost.

The Detection Algorithm Model introduces an LSTM-based

detection algorithm with a self-attention mechanism to

capture important time-series information in traffic data. The

model effectively learns time dependencies and the

relationships between traffic features, confirmed through

ablation experiments. The proposed model performs better

than other comparative models on the refined dataset [17].

A thorough analysis was performed on two primary

approaches in network traffic anomaly detection: feature

recognition and anomaly detection. Each approach expresses

unique strengths and faces particular issues. The study

explores how integrating deep learning with artificial immune

systems could likely revolutionize feature identification.

Additionally, it demonstrates improvements in anomaly

detection by combining machine learning techniques with

traditional methods. Looking forward, the paper outlines

research directions focused on integrating deep learning,

artificial intelligence, and behavioral analysis. This

integration works on enhancing network traffic anomaly

monitoring systems' precision, efficiency, and adaptability.

Proposed future strategies include advancements in data

preprocessing, model development, pattern recognition, and

adaptive adjustments, all aimed at strengthening network

defenses against the evolving landscape of cyber threats [18].

2.2 Various Machine Learning Techniques

The challenge of anomaly detection in network traffic was

tackled by proposing a three-stage framework that operates

solely on normal traffic data. The approach generates pseudo-

anomaly samples without prior anomaly knowledge to

facilitate anomaly detection. The first process was the use of

a reconstruction method to learn deep representations of

normal samples and the second process involves the

representations that are normalized to a standard normal

distribution through the use of a bidirectional flow module.

To simulate anomaly samples, noise is added to these

normalized representations, which are then processed through

the generation direction of the bidirectional flow module.

Finally, a simple classifier is trained to distinguish between

normal samples and pseudo anomaly samples in the latent

space. During inference, the designed framework relies on

just two modules for detecting anomalous samples,

significantly reducing model complexity. Experimental

results reveal that the method achieves state-of-the-art

performance on common benchmark datasets for anomaly

network traffic identification [19].

A survey paper was done for examining the security

challenges within NFV (Network Function Virtualization)

and advocates for the adoption of anomaly recognition

techniques to alleviate cyber-attack risks. The research

analyses machine learning-based algorithms' strengths and

weaknesses in detecting network anomalies specific to NFV

networks. By identifying the most effective algorithms for

timely and accurate anomaly detection, this study aims to

empower network administrators and security professionals in

bolstering the security of NFV deployments. Ultimately, this

effort aims to protect the integrity and performance of sensors

and IoT systems in NFV environments [20].

The CTU-13 dataset, which is a widely used resource in

cybersecurity was adopted to develop a machine learning-

based method for recognizing botnets. The CTU-13 dataset

comprises real network traffic data recorded in an

environment compromised by a botnet. Various machine

learning algorithms, including decision trees, regression

models, naïve Bayes, and neural networks, are trained to

classify network traffic as either botnet-related or benign. The

performance of each model is determined using criteria such

as accuracy, precision, and sensitivity, measuring their

effectiveness in identifying both known and unknown botnet

traffic patterns. Experimental results demonstrate the high

accuracy of this machine learning approach in detecting

botnets, with impressive detection rates and low false positive

rates, indicating its potential for real-world application [21].

Another study was explored about the application of various

machine learning methods, including logistic regression,

Int. J. Sci. Res. in Computer Science and Engineering Vol.12, Issue.4, Aug. 2024

© 2024, IJSRCSE All Rights Reserved 80

random forest, and deep neural networks, for enhanced

classification performance. Deep learning algorithms were

applied to artificial neural networks (ANN) in multiple ways.

To achieve more accurate results compared to traditional

learning methods, datasets were split into two halves and

underwent specialized pre-processing. This pre-processing

aimed to enhance the performance of the classification

algorithms. The results from the deep learning approach were

promising, achieving an accuracy of 99.79% for SMS attacks

and 98.48% for malware attacks [22].

In ensuring the robustness, reliability, and security of a

system, mechanisms for botnet detection and removal are

intensively reviewed. Botnets are typically grouped based on

the protocol used by their command-and-control servers, such

as IRC, HTTP, DNS, or Peer-to-Peer (P2P). Detection of

botnets can be achieved using various algorithms, including

decision trees, random forests, K-nearest neighbors (KNN),

naïve Bayes, and support vector machines (SVM). The

research analyzed various studies on botnet attacks and

detection techniques, providing insights into the effectiveness

of different methods [23].

Analysis of diverse machine learning algorithms for botnet

detection was carried out. Multiple machine learning

algorithms are adopted and their effectiveness in detecting

botnets is evaluated. Using an existing dataset, the algorithms

are tested and the results demonstrate their capability in

accurately identifying botnet activity [24].

The thesis was carried out to tackle the anomaly detection

complications in edge cloud environments. By exploring

various anomaly detection strategies and leveraging machine

learning techniques, this research seeks to enhance the

efficiency and accuracy of detecting anomalies in such

environments. The proposed methods aim to overcome

challenges such as resource limitations, the lack of labeled

data specific to edge clouds, and the need for accurate

anomaly detection. Emphasizing on machine learning

techniques including transfer learning, knowledge distillation,

reinforcement learning, deep sequential models, and deep

ensemble learning, this thesis attempts to establish coherent

and accurate anomaly detection systems tailored for edge

cloud environments. The results demonstrate significant

improvements achieved by employing machine learning

methods for anomaly detection in edge clouds. Extensive

testing and evaluation in real-world edge environments reveal

that machine learning-driven anomaly detection systems

improve the recognition of anomalies in edge clouds. These

methods achieve a reasonable trade-off between accuracy and

computational efficiency. The discoveries clearly display how

machine learning-based anomaly detection approaches

contribute to building resilient and secure edge-based systems

[25].

A study was conducted which involves examining papers

published between 2015 and 2023 that focus on anomaly

detection using machine learning techniques. After evaluating

the selected research papers, Ten (10) diverse applications of

anomaly detection were identified and outlined in the

publications. It was realized that machine learning models

were used to detect anomalies in 6% of all instances.

Additionally, a comprehensive list of datasets was conducted

that was used in detecting anomaly, including many other

general-purpose datasets. Also, the analysis revealed that,

compared to other categorized anomaly detection methods,

researchers are more inclined to employ unsupervised

anomaly detection techniques. The application of machine

learning models for anomaly detection is one of the most

promising fields of study, with researchers utilizing various

ML models in this context. Based on the results of this

review, recommendations and suggestions were offered to

researchers in the field [26].

A systematic literature review was conducted to provide an

overview of deployed models, data pre-processing

mechanisms, anomaly detection techniques, and their

evaluations. Instead of quantitatively comparing existing

approaches, this survey works on helping readers understand

important aspects of different model architectures and

highlight open issues for future research [27].

Finally, research was proposed for the botnet identification

system, ACLR, stacking artificial neural network (ANN),

convolutional neural network (CNN), long short-term

memory (LSTM), and recurrent neural network (RNN).

Experiments compare individual models with ACLR using

the UNSW-NB15 dataset, encompassing nine attack types.

ACLR achieves 0.9698 testing accuracy, effectively capturing

botnet attack patterns. K-fold cross-validation at k = 5 shows

ACLR's robustness (accuracy 0.9749). ACLR detects botnets

with ROC-AUC 0.9934 and PR-AUC 0.9950. Comparative

analysis with state-of-the-art models confirms ACLR's

superior performance, enhancing cybersecurity against

evolving threats [28].

2.3 Various Intrusion Detection System mechanism for

Anomaly Behaviour Within Network

A framework called IoTBoT-IDS was proposed for statistical

learning-based botnet recognition to enhance the security of

IoT-based smart networks against botnet attacks. This

framework captures and detects the normal characteristics of

IoT networks using the Beta Mixture Model (BMM) and the

Correntropy Model. Deviations from normal traffic patterns

are categorized as abnormal or malicious. Evaluation results

showed that the proposed framework achieved an average

detection accuracy of 99.2% [29].

The Intrusion Detection Dataset Toolkit (ID2T) is another

technique designed to address the challenges of recreating

datasets with selected features, aiming to produce accurate

scientific results. The ID2T architectures facilitate the

injection of latest and advanced attacks, enabling precise

detection of potential abnormalities in network traffic [30].

A paper was conducted as regards introducing a security

system named Detection of Anomalous Behaviour in Smart

Conveyance Operations (DAMASCO) which was designed

for intrusion detection in vehicle-to-vehicle (V2V)

communication. Adopting a statistical approach, the anomaly

Int. J. Sci. Res. in Computer Science and Engineering Vol.12, Issue.4, Aug. 2024

© 2024, IJSRCSE All Rights Reserved 81

detection module targets the Medium Access Control (MAC)

sublayer to monitor the number of packets sent, detect

potentially harmful nodes, obstruct their activity, and sustain

a reputation list. The algorithm employs the Median Absolute

Deviation (MAD) to detect outliers and characteristics of DoS

attacks. Experiments conducted in a simulated environment

with a realistic urban mobility model demonstrate that the

introduced system achieves a 3% false positive rate and no

false negatives [31].

A hybrid feature selection strategy was introduced to improve

network anomaly and illegal traffic detection. By integrating

linear-based and tree-based feature selection methods, the

approach creates a robust feature representation that improves

the accuracy and efficiency of intrusion detection systems

(IDS). The study adopts a supervised machine learning

approach using decision trees and employs 10-fold cross-

validation for rigorous evaluation. Experimental results

across diverse datasets consistently show accuracy levels

exceeding 99%. Moreover, the proposed strategy achieves a

weighty reduction in the number of features, up to 78%, for

enhancing detection accuracy. This reduction facilitates

simpler models, substantial resource savings, and faster

response times, specifically advantageous for real-time

intrusion detection systems [32].

3. Research Methodology

After reviewing numerous research papers on various

detection techniques proposed by researchers, it has been

found that there are insufficient defense and detection

methods to effectively mitigate the impact of DoS (Denial of

Service) and DDoS (Distributed Denial of Service) attacks

within networks.. Therefore, this section comprised of the

justications of theadopted research method, the selected

datasets, their collection and extraction processes, the selcetd

analysis tool used, and Justification of the proposed Model.

3.1 Justification of Adopted Research Method

A quantitative research methodology was chosen for this

study as it involves the design and simulation of a network

model, which is based on analyzing and measuring

performances numerically (in graphical form). This

methodology was selected due to its ease of interpreting the

obtained data (results) and its high level of accuracy, as

assessed via the generated thresholds.

3.2 Justification of the used Datasets

To achieve the aim of this paper, two different datasets were

collected and analyzed namely: KDD CUP’99 and

UNSW_NB15 datasets. KDD (Knowledge Discovery in

Databases) CUP’99 dataset was selected due to its systematic

method to revealing, refining, and utilizing meaningful

insights and patterns within raw databases for various

applications. This methodical process of data exploration,

transformation, and refinement extracts actionable

knowledge. The advantages of the KDD process in data

mining are extensive, including informed decision-making,

improved business performance, enhanced efficiency, better

customer experiences, fraud detection, and predictive

modeling. By embracing KDD, organizations can access the

full usage of their data, driving innovation, growth, and

success in today’s data-driven landscape [33]. While

UNSW_NB15 dataset is viewed as a indepth dataset mainly

for network intrusion detection systems. It encompasses nine

different types of attacks, such as DoS, worms, backdoors,

and fuzzers. The dataset includes raw network packets,

capturing a wide range of modern network intrusion

scenarios, covering both different types of attacks and normal

traffic [34].

3.3 Justification of the selected analysis tool

In achieving the aim and objectives of this paper, MATLAB

2021a software was used for the simulation and analysis of

the collected datasets (KDD CUP’99 and UNSW_NB15).

MATLAB offers a range of functionalities, including

efficient numerical computation and a vast collection of

built-in functions and toolboxes across various domains such

as signal processing, image processing, control systems,

optimization, and machine learning. It provides

comprehensive tools for data visualization and plotting, with

rich capabilities for creating diverse 2D and 3D plots.

Additionally, MATLAB provides a maximal level of

interaction with programming languages like C/C++, Java,

Python, and .NET, allowing users to exploiting funtioning

code and libraries from different languages, thereby

enhancing MATLAB's capabilities and extending its reach to

incorporate external functionalities [35]. The MATLAB

software was installed on a Windows 10 Pro operating

system with 4.00 GB of RAM and an Intel® Pentium® CPU

2020M @ 2.50 GHz.

3.4 Dataset collection and extraction process
The KDD CUP’99 dataset was downloaded from datahub.io,

and the UNSW_NB15 dataset was obtained from CloudStor

(aarnet.edu.au). PyCharm software was then used to view the

dataset information, extract the necessary features, and save

them as CSV files in a project folder before importing them

into Microsoft Excel. In Microsoft Excel, the data was

processed into binary format (0s and 1s). The dataset

included records of Smurf, Neptune, and Back (types of DoS

attacks) as well as normal traffic. To prepare the data for

analysis, 70% of the records, covering all DoS attack types

and normal traffic, were allocated for training, while 30%

were set aside for testing.

Lastly, the datasets were imported into MATLAB for

analysis to identify botnet attacks (specifically DoS attacks)

and distinguish them from normal traffic. The same

processing steps were applied to the UNSW_NB15 dataset,

dividing it into training and testing data.

Out of the whole features included in KDD CUP’99 and

UNSW_NB15datasets, four main features were extracted

separately from each dataset. This was done after the dataset

had been downloaded and then imported into pycharm

Professional 2021.2.1 software. Using pycharm helped in

completing smart codes as it supports writing Python,

javascript, CSS, and other languages which helps in easily

detecting errors(highly sensitive to any type of code), code

https://datahub.io/machine-learning/kddcup99#resource-kddcup99

Int. J. Sci. Res. in Computer Science and Engineering Vol.12, Issue.4, Aug. 2024

© 2024, IJSRCSE All Rights Reserved 82

editing, and fixing the errors when running. It can as well be

adopted to any related work that includes importing, creating,

editing, and saving files.

Figure 1 explains the set of Python codes used for easy view

of the whole KDD CUP’99 dataset and UNSW_NB15

dataset as this seems better compared to using Microsoft

Excel due to the large volume of data (including the

columns). The python code was used for the extraction of

features in both datasets. The screenshot shows the overall

information of the dataset such as the the headers (features)

and the total number of data records. Python code makes it

easier to extract the chosen features without having to scroll

through the entire data. A total of 42 features were identified

from the KDD CUP’99 dataset, including the label feature

that classifies each data record by attack class type and

specifies their data types. Among these features, four were

selected for their critical importance in understanding packet

transmission within a network: source bytes, destination

bytes, duration, and counts.

These features are integral to the packet header and provide

essential details about packet contents, source, and

destination. Specifically:

I. Source bytes indicate the number of bytes sent from

the source IP address.

II. Destination bytes represent the number of bytes

received by the destination IP address during data

transmission.

III. Duration reflects the time (in seconds) taken for the

packet to travel from the source IP address to the

destination IP address.

IV. Counts reveal the number of connections from the

source and destination IP addresses, compared to

connections established in the past two seconds.

These features are crucial for analyzing network traffic and

understanding packet flow. [36]. The same four features

extracted from the KDD CUP’99 dataset—duration, source

bytes, destination bytes, and count—were also extracted

from the UNSW_NB15 dataset. In the UNSW_NB15

dataset, the count feature is labeled as “dwin.”

i. Duration is defined as the time difference between

the first and last packet of a network connection,

measured in seconds

ii. Source bytes represent the number of data bytes sent

from the source to the destination.

iii. Destination bytes are the number of data bytes

received by the source from the destination.

iv. Count (dwin in UNSW_NB15) indicates the number

of packets counted within the specified packet group.

These features were selected to ensure consistency in

classifying and detecting DoS attacks, a type of botnet

attack. [37].

Extraction of KDD’CUP’99 data features

Extraction of UNSW_NB15 data features

Figure 1: features extraction of both datasets

3.5 The Proposed Model Justification
The proposed architecture utilizes a neural network model to

detect and analyze botnet attacks. Botnet attacks are

orchestrated by botmasters who use compromised systems

(bots) to launch DoS (Denial of Service) or DDoS

(Distributed Denial of Service) attacks. The model is

designed to recognize and classify traffic patterns associated

with DoS attacks [38]. The application of an Artificial Neural

Network (ANN) model is essential for reducing the false

positive rate in detecting botnet attacks, thereby improving

the accuracy of distinguishing normal traffic from botnet

(DoS) attack traffic [39].

For the KDD CUP’99 dataset, the model focuses on three

types of DoS attacks: Smurf, Neptune, and Back. In the

UNSW_NB15 dataset, only the DoS attack class and normal

traffic are considered, in alignment with the paper's emphasis

on botnet attacks.

a) Smurf Attacks: These are a type of DDoS attack that

floods the target system with packets by exploiting the

Internet Control Message Protocol (ICMP). This

involves creating large spoofed packets with a fake

source address, which leads to overwhelming the target

system and rendering it slow or inoperable [40].

Int. J. Sci. Res. in Computer Science and Engineering Vol.12, Issue.4, Aug. 2024

© 2024, IJSRCSE All Rights Reserved 83

b) Neptune Attacks: Also known as half-open TCP SYN

attacks, these involve sending repeated SYN packets

with fake IP addresses and random ports to every port on

the targeted server. This causes network saturation and

results in a high number of SYN error connections

compared to other attack types [41].

c) Back Attacks: These attacks target Apache web servers

by overwhelming them with requests that contain large

numbers of forward slashes (/) in the URL, causing the

server to become unresponsive. As a result, the server

becomes unable to process requests from authorized

users (clients) due to the overwhelming volume of

incoming requests. This overload forces the server to

attempt processing all requests simultaneously,

effectively denying service to legitimate users [42].

An Artificial Neural Network (ANN) is described as a

supervised machine learning technique where input nodes are

processed through hidden layers, with weights applied to

generate the expected outputs at the output layer. In this

paper, the ANN model utilizes a Multilayer Perceptron

(MLP) network, which produces accurate results by learning

a general rule that maps inputs to outputs. This approach

enhances the effectiveness of the system, making it more

reliable compared to other methods. [43]. Multilayer

Perceptron (MLP) architecture is one of the most common

feed-forward neural network models which effectively

identifies basic patterns (behaviors) within neural models. In

MLP, the propagation of an impulse occurs in one

direction—from the input layer, consisting of four input

nodes, through the hidden layer, also known as the "network

brain." Here, the sum of weights associated with all neurons

is combined, excluding the input bias, to produce the output

layer with two output features [43].

Figure 2 illustrates an MLP with a single hidden layer,

featuring a decision boundary that surrounds a single convex

region of the input space. The process begins at the input

layer, where the data vector is accepted. The hidden layer

receives output from the input layer, applies weights, and

passes the data through a non-linear activation function.

Finally, the output layer accepts the weighted outputs from

the hidden layer, passes them through an output non-

linearity, and generates the target values.

Each circular node in Figure 2 represents an artificial neuron,

while the arrows indicate connections between neurons from

one layer to the next. These connections form the Artificial

Neural Network (ANN), enabling neurons to signal one

another as the information is processed. In the ANN model

diagram (Figure 2), the input features are represented as (Xi),

where i = (X1, X2, X3, X4,…n) indicates the number of input

features extracted from the dataset for model training. The

hidden layer is denoted as (Hn), where (n = 1, 2, 3, 4,….n)

represents the number of nodes in the hidden layer. Lastly,

(Y) represents the outputs from the hidden layer after being

weighted (Win) from both the input and hidden layers, which

are then passed to the output layer as Y1and Y2 (the two

output features).

Figure 2: ANN Model with Multilayer perceptron

The linear activation function (P) is implemented to both the

hidden and output layers, while (α) represents the bias, and

(Win) represents the weights for individual linked neurons.

This process involves multiplying the inputs (Xi) by the

weight ((Win), adding the constant bias (α), and applying the

activation function to produce the final outputs.

Figure 3 explains the basic steps involved in applying the

Artificial Neural Network model The first step involves the

collection of KDDS CUP’99 dataset which are DoS attack

class types, these include Smurf, Neptune and Back attacks

as well as the normal traffic type. These same steps were

repeated for the processing of UNSW_NB15 dataset.

Secondly, the dataset was processed, and four (4) features

are chosen from the DoS attack class types that were

selected the normal traffic type as well. Next, the training

data and the testing data was be imported into MATLAB

for training and analysis. The input and output data for the

training and testing datasets was viewed in MATLAB

using (typing) a set of commands in the command window.

Next to this, involves the transposition of input data and

output data for both training data and testing data, then,

nntool (neural network tool) was opened where the

transposed features which are the inputs and output of both

training datasets and testing datasets was be imported, thus

leading to creating network where network type, transposed

features (input and output), number of neurons to be

applied was be selected for the creation of the outputs of

the network.

Both output and input features needed to be transposed in

order to fit into the designed model, hence generating

accurate results. After this, the transposed features (input

and output) of both training data and training data was

trained in order to display number of iterations conducted

as well as the performance graph which determine its

accuracy.

The next step was to simulate only the input transpose

feature (only input transpose feature will be chosen)

producing Simulated network outputs which were

compared to the actual output (output transpose features), if

peradventure sufficient accurate results are not gotten, then

threshold was obtained, and this was used in training test

data to generate an accurate and effective classification of

the attacks and distinguishing them from the normal traffic.

Int. J. Sci. Res. in Computer Science and Engineering Vol.12, Issue.4, Aug. 2024

© 2024, IJSRCSE All Rights Reserved 84

Figure 3: procedures involve in analyzing the collected data

4. Results and Discussion

4.1. Experimental Design Details

The Artificial Neural Network (ANN), also referred to as the

Neural Network model, is utilized to analyze the KDD

CUP’99 and UNSW-NB15 datasets for accurate detection

and differentiation of anomalous traffic from normal traffic.

The ANN was chosen for its superior ability to model

complex patterns and generate precise predictions. Its

strength lies in handling non-linear and intricate relationships

between the input and output layers, transforming inputs into

meaningful outputs through its activation function [44]. When

applying the neural network model for data analysis, the

Levenberg-Marquardt algorithm is considered among other

algorithms used for training neural networks. This algorithm

aims to minimize the sum of squared errors between the

model function and the data points through a series of

carefully selected updates to the model parameters.

Specifically designed to address the sum of squared errors,

the Levenberg-Marquardt algorithm utilizes loss functions

and operates with the gradient vector and the Jacobian matrix.

The Jacobian matrix, constructed from the first-order partial

derivatives of scalar functions relative to a set of independent

variables, is primarily used for analyzing small signal

stability within the system [45]. The Levenberg-Marquardt

backpropagation algorithm (trainlm) is specifically used for

training both the training and test data. This algorithm

functions as a network training tool that updates weight and

bias values based on Levenberg-Marquardt optimization. It is

considered the fastest backpropagation method and is

recommended as the first-choice supervised algorithm,

despite its higher memory consumption compared to other

algorithms [45]. The experimental neural network, designed

to simulate datasets for the effective detection of anomalous

(malicious) traffic, was developed using MATLAB 2021a.

Understanding the information provided by each header

(which is the feature) of the dataset highlights their

significanees in detecting botnet attacks. These attacks aim to

use compromised systems (bots) to launch assaults on target

systems, ultimately rendering services and resources

unavailable to clients on the internet [46]. The selected

features are instrumental in determining the number of bytes

transferred between the source and destination IP addresses,

and in detecting delays between these endpoints. This

information is crucial for identifying delays or complete

unavailability of resources for clients (victim systems). As

illustrated in Figure 4, the input layer consists of these four

selected features, which are processed through the hidden

layer. This hidden layer, equipped with ten neurons, utilizes

weights (w) and biases (b) to achieve optimal attack

classification results. The TANSIG (Hyperbolic Tangent

Sigmoid) function is applied in the hidden layer to produce

effective results. TANSIG is a nonlinear activation function

used in artificial neural networks to compute the output of a

layer based on its net input. [47]. The output layer portrays

the network traffic (output) features in binary form, with two

outputs indicated as 0s and 1s. This layer employs the

PURELIN function, a linear activation function that computes

the layer's output based on its net input. [48].

Figure 4: The generated Artificial Neural Network Model

4.2. Extracted and processed features of the collected

datasets

The KDD CUP’99 dataset includes various attack types, but

this paper focuses on just two: normal traffic and DoS (Denial

of Service) attacks. For the UNSW_NB15 dataset, which

does not have subclasses for DoS attacks like the KDD

dataset, the analysis also concentrates on DoS attacks and

normal traffic. From a total of 3,000 extracted records, 2,100

Int. J. Sci. Res. in Computer Science and Engineering Vol.12, Issue.4, Aug. 2024

© 2024, IJSRCSE All Rights Reserved 85

(comprising both DoS attacks and normal traffic) were

designated for training, while 900 records (also a mix of DoS

attacks and normal traffic) were used for testing. Three

specific DoS attack types were selected for analysis: Back,

Neptune, and Smurf attacks. In total, 6,000 records of attack

traffic were used, with 70% of records from each attack type

allocated to the training dataset and 30% to the testing

dataset. Output features were represented as Attack Bit1 and

Attack Bit2, encoded in binary format (0s and 1s). As

outlined in Table 1, the datasets consist of selected attack

types: the KDD CUP’99 dataset includes Back, Neptune, and

Smurf DoS attacks along with normal traffic, while the

UNSW_NB15 dataset includes only DoS attacks (without

subclasses) and normal traffic. Both datasets feature four

input attributes (Duration, Source Bytes, Destination Bytes,

and Counts) and two output attributes (Attack Bit1 and

Attack Bit2), represented as binary values (0s and 1s) before

being imported into MATLAB.

 Table 1: Attack Class types selected from KDD CUP’99 and

UNSW_NB15 datasets

KDD CUP’99 DATASET

Attack class types Number of features selected

DoS

Attacks

Normal

Class

Type

(Normal

Traffic)

Selected

Input

Features

Generated

output

Features

Back Duration,

Source bytes,

Destination

bytes, and

Counts

Attack Bit1

Attack Bit2
Neptune

Smurf

UNSW_NB15 DATASET

Attack class types Number of features selected

DoS

attacks

Normal

Class

Type

Selected

Input

Features

Generated

output

Features

Duration,

Source bytes,

Destination

bytes, and

Counts

(named as

“dwin”)

Attack Bit1

Attack Bit2

Table 2 details the distribution of KDD dataset records across

different attack types. For each attack type, 70% of the total

records were allocated to the training dataset, while 30% were

used for testing. The output features for each attack type are

as follows: i. Back Attack: (0, 0), ii. Neptune Attack: (0, 1),

iii. Smurf Attack: (1, 0), and iv. Normal Traffic: (1,1)

This resulted in a total of 4,200 training records to be used in

MATLAB for network training and output generation. In the

UNSW_NB15 dataset, 70% of the data records were

designated for training, encompassing both DoS attack types

and normal traffic. The output features in this dataset were

represented as: i. DoS Attack Type: (0, 1), and ii. Normal

Traffic: (1, 0). The total number of training records used from

the UNSW_NB15 dataset was 2,100.

Table 2: Computation for Training dataset records IN KDD CUP’99

and UNSW_NB15 datasets

Training dataset records IN KDD CUP’99 dataset estimation

Back Attacks Neptune

Attacks

Smurf

Attacks

Normal

class

Total number of

records = 1,500

records

70% of 1,500 =

1,050

Total

number of

records =

1,500

records

70% of

1,500 =

1,050

Total

number of

records =

1,500

records

70% of

1,500 =

1,050

Total

number

of

records =

1,500

records

70% of

1,500 =

1,050

Total Number of Records = 4,200

The Training dataset records (UNSW_NB15) estimation

DoS attacks Normal Class

Total number of records = 1,500

records

70% of 1,500 = 1,050

Total number of records

= 1,500 records

70% of 1,500 = 1,050

Total Number of Records = 2,100

Table 3 illustrates the generation of the testing dataset, which

comprises 30% of the total records for each attack class type

(Back, Neptune, Smurf) and Normal traffic. This equates to

450 records for each class type. The output features are

represented as follows: i. Back Attack:(0,0), ii. Neptune

Attack: (0,1),iii. Smurf Attack: (1,0), and iv. Normal

Traffic:(1,1)

For the UNSW_NB15 dataset, 30% of the total records were

allocated to the testing dataset, including DoS attack types

and normal traffic. The output features are denoted as i. DoS

Attack Type: (0, 1), and Normal Traffic: (1,0). The total

number of records used for testing in the UNSW_NB15

dataset was 900

Table 3: Table 3: Computation for Testing dataset records in KDD

CUP’99 and UNSW_NB15 datasets

The Testing dataset records (KDD CUP’99) estimation

Back

Attack

Neptune

Attack

Smurf

Attack

Normal Class

Total

number

of

records

= 1500

records

30% of

1,500 =

450

Total

number of

records =

1500

records

30% of

1,500 =

450

Total

number

of

records =

1500

records

30% of

1,500 =

450

Total number of

records = 1,500

records

70% of 1,500 =

450

Total Number of Records = 1,800

The Testing dataset records (UNSW_NB15) estimation

DoS attacks Normal Class

Total number of records

= 1500 records

Total number of records = 1500

records

Int. J. Sci. Res. in Computer Science and Engineering Vol.12, Issue.4, Aug. 2024

© 2024, IJSRCSE All Rights Reserved 86

30% of 1,500 = 450

30% of 1,500 = 450

Total Number of Records = 900

4.3 The processing of KDD CUP’99 Training Data in

MATLAB

The training data, which constitutes 70% of the entire KDD

CUP’99 dataset, was first downloaded and organized in

Microsoft Excel. This data was then imported into MATLAB

using the command `nntool` in the MATLAB command

window, allowing for easy viewing and manipulation within

the environment as depicted in Figure 5(a). Next, the training

data's output features (which contain four features) were

separated from the input features (which include two features)

by converting the numerical values to a double data type

format and saving it as "TRAINDATA" using a command in

the MATLAB command window. The input features,

occupying columns 1 to 4, were saved as "TrainInputData"

(as shown in Figure 5(b)). Meanwhile, the output features,

located in columns 5 and 6, were saved as "TrainOutputData"

(as shown in Figure 5(c). Both TrainInputData and

TrainOutputData variables were then transposed to be

suitable for the designed ANN model, hence getting accurate

results for the analysis.

 Training Dataset for KDD dataset (a)

 TrainInputData (b)

 TrainOutputData (c)

Figure 5: The process of training data for KDD dataset

4.4 The processing of KDD CUP’99 Testing Data in

MATLAB

The same process used for the training data was repeated for

the testing data, which comprised 30% of the whole dataset

(KDD CUP’99). It was imported from Microsoft Excel into

MATLAB using the line of code in the command window

(nntool) for easy readability and Extraction of input and

output features from the test data, including converting the

table into a double data type format for use in MATLAB and

“TESTDATA” variable is created as depicted in figure 6a.

The input features occupied columns 1 to 4 and were saved as

“TestInputData” in Figure 6(b)while the output features that

occupied columns 5 and 6 were saved as “TestOutputData” in

Figure 6(c). Both TestInputData and TestOutputData

variables were then transposed to be suitable for the designed

ANN model, hence getting accurate results for the analysis.

 Testing Dataset for KDD dataset (a)

TestInputData (b)

TestOutputData (c)

 Figure 6: The testing data process for the KDD CUP’99 dataset

Int. J. Sci. Res. in Computer Science and Engineering Vol.12, Issue.4, Aug. 2024

© 2024, IJSRCSE All Rights Reserved 87

After transposing both the input and output features of the

test data (KDD CUP’99), the neural network was opened

using the nntool command where both transposed

TestInputData and TestOutputData variables are being

imported. The `nntool` in MATLAB is a built-in tool that

allows users to open the Network/Data Manager for

importing, creating, utilizing, and exporting network

outputs[49]. TestInputDataTranspose is imported as input

data while TestOutputDataTranspose serves as the network's

target data. The transposed data must be imported to create a

network for training. As illustrated in Figure 4, the network

model includes 4 neurons in the input layer, 10 neurons in

the hidden layer using the TANSIG (Hyperbolic Tangent

sigmoid transfer) function, and 4 neurons in the output layer

where the PURELIN function is used to produce effective

network outputs. After creating the network using `nntool`, it

is accessed by double-clicking to open the training and

simulation page. Here, both transposed `TestInputData` and

`TestOutputData` are selected for training the network, and

`TestInputDataTranspose` is used for simulating the network.

After completing the procedures for creating, importing,

transposing features, and training and simulation of networks

with the KDD CUP’99 dataset, the same process was applied

to the UNSW_NB15 dataset. This involved creating and

importing both the training and testing datasets into

MATLAB, transposing the input and output features, and

importing them into `nntool` (Data Manager) for training and

simulation. The resulting network outputs were then

evaluated through regression plots, training state plots, and

performance plots, as detailed in Section 4.4 for the KDD

CUP’99 dataset results

4.5 Interpretation of the graphical plots of Trained data

(KDD CUP’99)

Figure 7 displays three key plots from the training results for

the dataset:

1. Performance Plot (Figure 7a): This plot shows the

trained network's Best Validation Performance (BVP), which

reached 0.00083262 at epoch 35 out of 41 iterations. The

mean squared error is close to zero, indicating effective

training. Training and validation both concluded at the 35th

epoch.

2. Training State Plot (Figure 7b): The gradient result is

0.0012869, the control parameter (MU) is set to 1e-06, and

the validation checks total 6, all achieved by epoch 41.

3. Regression Plot (Figure 7c): The regression analysis

shows that the performance of the trained dataset is 0.99671,

the validation plot is 0.99833, and the performance on test

data is 0.99297. The overall training performance of the

dataset is 0.99639, reflecting high accuracy as indicated by its

proximity to 1

Performance plot (a)

Training State Plot (b)

 Regression Plot (c)

4.6 Generation of Threshold table for Training data for

KDD dataset
This section focuses on evaluating the accuracy and Mean

Squared Error (MSE) of the exported simulated network

outputs from the trained data. The goal is to assess the

network’s effectiveness in detecting botnet attacks within the

network. To accomplish this, four thresholds were generated

using MATLAB scripts. The scripts calculated and compared

these thresholds to identify the one that achieved the highest

accuracy value and MSE (Mean Square error). Suitable

thresholds for training datasets were obtained for training

datasets Median predicted values were tested on the network

outputs, resulting in the selection of four thresholds. Among

these, the threshold with the lowest Mean Squared Error

(MSE) was chosen as the best option. This is quite similar to

choosing thresholds from the ROC (Receiver Operating

Characteristics) curve which shows the relationship between

the true positive rate (TPR) for the model and the false

positive rate (FPR). This process involves identifying where

the true positive rate (TPR) intersects with (1 -{false positive

rate (FPR)}). This intersection point maximizes true

positives while minimizing false negatives [50]. Among the

four thresholds, the threshold of 0.95542 was selected for its

high accuracy and low Mean Square Error (MSE). Although

two other thresholds, 0.97184 and 0.97725, had the same

MSE as the chosen threshold, they exhibited lower accuracy

values. The chosen threshold was preferred because its lower

MSE indicated better accuracy. Accuracy is defined as the

percentage of correctly classified samples divided by the

total number of samples [51]. The selected threshold was

used to calculate the network outputs, with results obtained

using both Microsoft Excel and MATLAB. Table 4 presents

the generated threshold values along with their corresponding

accuracy and MSE values.

Int. J. Sci. Res. in Computer Science and Engineering Vol.12, Issue.4, Aug. 2024

© 2024, IJSRCSE All Rights Reserved 88

Table 4 Threshold table generated for the training data of the KDD dataset

THE

GENERATED

THRESHOLD

S (µ)

ACCURACY VALUE MEAN

SQUARE

ERROR

(MSE)

0.98005 98.30238 0.655238

0.95592 99.847619 0.6547619

0.97184 98.766667 0.6547619

0.97725 98.4190476 0.6547619

4.7 The Regression Plots Results of the KDD trained

test data

As expressed in Figure 8, applying the selected threshold

(0.95592) to the network outputs of the trained test data, the

regression plots for training, test, and validation all show

values converging at 1 after 19 iterations. This indicates that

the output results are highly accurate, with all plots reaching

a value of 1. Specifically, the performance of the trained

dataset, the validation plot for the overall dataset, and the

performance result for the testing data all show a value of 1.

The convergence of all values at 1 demonstrates an

exceptionally high accuracy rate for the model.

Figure 8: regression plots of the KDD-trained test data

4.8 further discussion of the KDD Trained Test Data

Results

The optimal threshold (µ), determined during the training

phase, was applied to the network outputs obtained from the

test data. The test data was trained fifteen times, and

accuracy values (%) were calculated and recorded. This

process involved using the selected threshold to evaluate the

network outputs by applying the IF function in Microsoft

Excel. Specifically, each network output from MATLAB was

copied into Excel, where the formula `[IF (A1 > 0.95592, A1,

0)]` was used. In this formula, 0.95592 is the chosen

threshold from the trained data, as shown in Table 4.

Values below the threshold were set to 0, while values above

the threshold were retained. After applying the threshold, the

results were imported back into MATLAB, where scripts

were created to calculate the average of the classified

samples, thus generating the accuracy percentages. Figure 9

illustrates the application of the IF function in Excel.

Figure 9: Microsoft Excel calculation

Table 5 presents the accuracy results of the trained test data,

showing the overall average accuracy which reflects the

botnet detection rate. The test dataset underwent 15 training

sessions, each involving the creation of a new network. After

each training session, the network outputs were exported to

the workspace where the selected threshold was applied to

compute the accuracy value.

 Table 5: The Accuracy Values of the Trained TestData (KDD CUP’99) with

the chosen Threshold

The

selected

threshold

(µ)

 (0.95592)

Number

of

training

sessions

Computed Results

using the selected

threshold

Accuracy

value (%)

1 (1794.9/1800) X 100 99.71667

2 (1800/1800) X 100 100

3 (1794.9/1800) X 100 99.71667

4 (1800/1800) X 100 100

5 (1794.9/1800) X 100 99.71667

6 (1800/1800) X 100 99.94444

7 (1800/1800) X 100 100

8 (1800/1800) X 100 100

9 (1800/1800) X 100 100

10 (1800/1800) X 100 100

11 (1794.9/1800) X 100 99.71667

12 (1794.9/1800) X 100 99.71667

13 (1799.0/1800) X 100 99.99444

14 (1794.9/1800) X 100 99.71667

15 (1798.9/1800) X 100 99.93889

The overall average represents the accuracy detection

rate =

 99.71667 + 100 + 99.71667 + 100 + 99.71667 + 99.94444

+ 100 + 100 + 100 + 100 + 99.71667 + 99.71667 +

99.99444 + 99.71667 + 99.93889

 15

 Accuracy rate (%) = 99.87852%

Using the ANN model, an accuracy detection rate of

99.87852% was achieved, demonstrating a high effectiveness

in detecting Botnet attacks. To further validate these results,

several parameters were considered:

a) Correct Rate (0.99877): This rate is calculated as the

ratio of correctly classified samples to the total classified

samples. It indicates a high accuracy in detecting Botnet

Int. J. Sci. Res. in Computer Science and Engineering Vol.12, Issue.4, Aug. 2024

© 2024, IJSRCSE All Rights Reserved 89

attacks, with a value close to 1, affirming the model's

effectiveness.

 {Correct Rate} = 0.99877

b) Error Rate (1.2222 × 10⁻³): This is derived from dividing

the number of incorrectly classified samples by the total

classified samples. A lower error rate signifies fewer

errors in detection, indicating high model performance.

{Error Rate}= 1.2222 × 10
-3

c) Last Correct Rate (0.99877): This reflects the last

recorded performance of the classifier, calculated as the

ratio of correctly classified samples to the total classified

samples.

d) Last Error Rate (1.2222 × 10⁻³): This represents the last

recorded error rate, calculated as the ratio of incorrectly

classified samples to the total classified samples.

e) Inconclusive Rate (0): This value is obtained by dividing

the number of nonclassified samples by the total number

of samples. A rate of 0 indicates no unclassified samples,

proving the model's ability to classify all data.

f) Classified Rate (1): Calculated as the ratio of classified

samples to the total number of samples. A value of 1

indicates that all samples were classified accurately.

{Classified Rate} = 1

g) Sensitivity (0.9999992): Sensitivity measures how well

the model identifies true positives. It is calculated as the

ratio of correctly classified positive samples to the sum of

true positive and false negative samples.

{Sensitivity} =

h) Specificity (0.99999993): Specificity assesses how well

the model identifies true negatives. It is calculated as the

ratio of correctly classified negative samples to the sum of

true negative and false positive samples. {Specificity}=

i) Positive Predictive Value (0.9999995): This is calculated

as the ratio of correctly classified positive samples to the

total positive classified samples.

j) Negative Predictive Value (0.9999992): This is obtained

by calculating the ratio of correctly classified negative

samples to the total negative classified samples.

To further validate the effectiveness of the accuracy rate in

detecting botnet attacks using the Artificial Neural Network

(ANN) model, a Confusion Matrix was utilized. The

Confusion Matrix is a tool designed to evaluate the

performance of a classification model by providing a detailed

overview of its accuracy and error rates [53]. It allows for a

comprehensive interpretation of how well the classification

model performs by comparing the predicted values with the

actual values.

The Confusion Matrix for the test data is shown in Figure 10,

illustrating how the true class labels are plotted against the

predicted class labels obtained from the trained model. The

matrix results are displayed diagonally, indicating a 100%

accuracy rate with no misclassification of data. This results in

a True Positive Rate (TPR) of 100% and zero false negatives.

Specifically, the Confusion Matrix confirms the accurate

classification of:

a. Predicted class “A” (Back attack)

b. Predicted class “B” (Neptune attack)

c. Predicted class “C” (Smurf attack)

d. Predicted class “D” (Normal traffic)

Each class was correctly classified with no errors,

demonstrating the high effectiveness of the neural network

model in detecting and classifying botnet attacks

Figure 10: confusion matrix plot of test data (KDD CUP’99)

4.9 The graphical plots results of the UNSW_NB15

trained test data
The same procedures used for processing the KDD CUP’99

dataset were applied to the UNSW_NB15 dataset. This

included importing the data into MATLAB, transposing,

creating a network using nntool, training, and simulating to

obtain network outputs. The network outputs were analyzed

using performance plots, training state plots, and regression

plots.

Figure 11 illustrates the graphical plots obtained from training

the data with the ANN model:

1) Figure 11a: The regression plot at epoch 15 shows a

performance of 0.60213 for the trained dataset, 0.64928

for the validation plot, 0.58472 for the testing data, and an

overall result of 0.60742 for general training. These values

indicate that the performance of the ANN model on the

UNSW_NB15 dataset is moderate but not as high as the

results from the KDD CUP’99 dataset.

2) Figure 11b: The training state plot reveals a validation

check of 6, a gradient convergence at 0.047409, and a

control parameter (μ) of 1e-05 at epoch 15, which is close

to zero.

3) Figure 11c: The performance plot indicates that validation

of the trained data stopped at iteration 9 and remained

steady with a very low mean square error (MSE), close to

zero, reflecting the model’s effectiveness on this dataset,

though not as high as in the KDD CUP’99 dataset.

Int. J. Sci. Res. in Computer Science and Engineering Vol.12, Issue.4, Aug. 2024

© 2024, IJSRCSE All Rights Reserved 90

 Regression Plot(11a)

Training State Plot(11b)

Performance Plot (11c)

Figure 11: graphical plots interpretation of the Train data (UNSW-NB15

dataset)

To further assess the performance of the model on the

UNSW_NB15 dataset, the accuracy of the trained data was

evaluated using the Classification Learner app in MATLAB,

following the same process applied to the KDD dataset. The

confusion matrix provides a detailed understanding of the

performance results. As shown in Figure 11, the overall

accuracy of the model on the training data was 92.2%.

Specifically, 92.2% of DoS attacks were correctly classified,

while 7.8% were misclassified (false negative rate). For

normal traffic, 92.5% was accurately classified, with 6.5%

incorrectly classified (false negative rate). These results

demonstrate the effectiveness of the model on the

UNSW_NB15 dataset.

Figure 12: confusion matrix plot results for train-data (UNSW-NB15)

Table 6 presents a comparison of the results obtained from

the designed ANN model with those from various studies

using different algorithms and datasets. The designed ANN

model achieved an accuracy of 99.87852% with the KDD

CUP’99 dataset and 96% with the UNSW_NB15 dataset.

These results are compared with those from Qazi [54], who

used CNN (Convolutional Neural Networks) and RNN

(Recurrent Neural Network) algorithms on the CICIDS-2018

dataset, achieving an average accuracy of 98.90%, an F-

measure of 99.03, a precision of 98.64%, and a recall of

99.15%.

Additionally, the ANN model's accuracy results for the KDD

dataset (99.87852%) and UNSW_NB15 dataset (96%) are

compared with those obtained by Bhavsar[55], who

developed the Pearson-Correlation Coefficient -

Convolutional Neural Networks (PCC-CNN) algorithm for

evaluating three datasets: NSL-KDD, CICIDS-2017, and

IOTID20, achieving a detection accuracy of 99.89% and a

low misclassification rate of 0.001.

The proposed ANN model is also compared with the results

from Ayantayo [56], who employed Early-fusion, late-fusion,

and late-ensemble learning models using feature fusion with

fully connected deep networks to analyze the UNSW-NB15

and NSL-KDD datasets. This approach yielded an accuracy

of 86.81%, a recall of 86.80%, and a precision of 86.86%. In

contrast, the proposed model achieved 99.87852% accuracy

with the KDD CUP’99 dataset and 96% accuracy with the

UNSW_NB15 dataset.

Finally, a comparison is made with the results from

Srinivasan [57], who used an Extreme Learning Machine

(ELM), Support Vector Machine (SVM), and Convolutional

Neural Network (CNN) with the Ensemble Classifier

Algorithm with Stacking Process (ECASP) to analyze the

Cyber Clean Center (CCC) dataset. This method achieved

Int. J. Sci. Res. in Computer Science and Engineering Vol.12, Issue.4, Aug. 2024

© 2024, IJSRCSE All Rights Reserved 91

94.08% accuracy, 86.5% sensitivity, 85.68% specificity, and

a 78.24% F-measure. The proposed ANN model

outperformed these results, highlighting its effectiveness.

This shows that the proposed model performed better in terms

of its accuracy results on the two datasets applied.

Table 6. Comparison of performance results of the existing related works

with the proposed model

Author(s) Applied

Methods

(algorithms)

classifier

Name of

Dataset (s)

employed

Performance

(Accuracy)

Results

[54] CNN and RNN CICIDS-2018 The model

achieved an

average accuracy
of 98.90%, an F-

measure of 99.03,

a precision of
98.64%, and a

recall of 99.15%.

[55] Pearson-

Correlation
Coefficient -

Convolutional

Neural Networks
(PCC-CNN)

NSL-KDD,

CICIDS-2017,
and IOTID20

Similar accuracies

of 98%, 99%, and
98% from the

KNN and CART

models across
three datasets

were achieved.

However, the
proposed PCC-

CNN model
demonstrated

superior

performance with

a detection

accuracy of

99.89% and a low
misclassification

rate of 0.001.

[56] Early-fusion, late-

fusion, and late-
ensemble

learning models

using feature
fusion with fully

connected deep

networks

UNSW-NB15

and NSL-KDD

The model

achieved an
accuracy of

86.81%, recall

(86.80%), and
86.86% precision.

[57] Extreme Learning

Machine (ELM),

Support Vector
Machine (SVM),

and

Convolutional
Neural Network

(CNN) with the

proposed
Ensemble

Classifier

Algorithm with
Stacking Process

(ECASP).

Cyber Clean

Center (CCC)

dataset

the method

achieves 94.08%

accuracy, 86.5%
sensitivity,

85.68%

specificity, and
78.24% F-measure

This paper Artificial Neural
Network (ANN)

using Levenberg-

Marquardt Back
propagation

algorithm

KDD Cup’99
datasets

&

UNSW_NB15
dataset

99.87852% was
achieved using the

selected threshold

and 100% was
achieved using the

confusion matrix

plot for the KDD

dataset while a

96% accuracy

value was
obtained using the

UNSW_NB15

dataset.

5. Conclusion and Future Scope

The successful implementation of the Artificial Neural Network

(ANN) model, which involved meticulous adherence to all

procedural steps, demonstrates its effectiveness in detecting and

classifying botnet attacks from normal traffic based on accuracy

results. This effectiveness is attributed to the meticulous

collection and extraction of features from the KDD CUP’99 and

UNSW_NB15 datasets using Python (PyCharm software). The

model was trained on 70% of the datasets and tested in

MATLAB 2021a, with the results validated using a confusion

matrix. The ANN model achieved an accuracy of 99.87852%

using the selected threshold and 100% using the confusion

matrix for the KDD dataset, with a very low false rate close to

zero. For the UNSW_NB15 dataset, the model achieved a 96%

accuracy rate. The study focused on DoS attack types in both

datasets, specifically selecting Back, Neptune, and Smurf attacks

from the KDD dataset and only Dos attacks in the

UNSW_NB15 dataset which produced high-performance

results.

Since the level of cyber-attacks and mode of operation by the

malicious hackers change from time to time (such as zero-day

attacks), which sometimes cannot be easily identified by

already existing detection techniques and models, therefore,

future research should explore more dynamic and accurate

network models or frameworks for real-time identification of

various cyber-attacks, thus, lessening their impacts on

organizational and private networks.

Another aspect that future research work should focus on is

evaluating different datasets or attack class types from the

KDD CUP’99 and UNSW_NB15 datasets to determine their

performances using the proposed model as well as testing

them on other developed algorithms.

Data Availability
All details about the processing of the training and testing

data for the two datasets for the proposed network model are

available on request

Conflict of Interest

The author asserts that no party has exerted undue influence

on the publication of this work.

Funding Source

None

Authors’ Contributions

The author independently completed the entire work..

Acknowledgments

I am deeply grateful to God Almighty for His divine

guidance, which has illuminated my path and inspired my

work. Furthermore, I would like to express my gratitude to

the International Journal of Scientific Research in Computer

Science and Engineering for their invaluable feedback and

constructive suggestions, which have significantly enhanced

the clarity and visibility of my research efforts.

Int. J. Sci. Res. in Computer Science and Engineering Vol.12, Issue.4, Aug. 2024

© 2024, IJSRCSE All Rights Reserved 92

References

[1] Forti and S. Héroux, “Limited usefulness of firm-provided

cybersecurity information in institutional investors’ investment

analysis,” Information and Computer Security, vol. 31, Issue 3, pp.

108-123, 2023.

[2] M. R. Kadri, A. Abdelli, J. B. Othman and L. Mokdad, “Survey

and classification of Dos and DDos attack detection and validation

approaches for IoT environments,” Internet of Things, vol. 25,

Issue101021, pp. 1-44, 2024.

[3] H. P. S and J. R, “A Survey on the Applications of Machine

Learning in Identifying Predominant Network Attacks,”

International Journal of Scientific Research in Computer Science

and Engineering, vol. 11, Issue 5, pp. 16-22, 2023.

[4] G. Onuh and P. Owa, “Implementation of Slowloris Distributed

Denial of Service (DDOS) Attack on Web Servers,” International

Journal of Scientific Research in Computer Science and

Engineering, vol. 10, Issue 2, pp. 11-15, 2022.

[5] S. Srinivasan and P. Deepalakshmi, “ENetRM: ElasticNet

Regression Model based malicious cyber-attacks prediction in real-

time server,” Measurement: Sensors, vol. 25, Issue 100654, pp. 1-

10, 2023.

[6] P. Bisht and M. S. Rauthan, “Machine Learning and Natural

Language Processing Based Web Application Firewall for

Mitigating Cyber Attacks in Cloud,” International Journal of

Scientific Research in Computer Science and Engineering, vol. 11,

Issue 3, pp. 01-15, 2023.

[7] L. D’hooge, M. V. Wauters, F. D. Turck and B. Volckaert,

“Investigating Generalized Performance of Data-Constrained

Supervised Machine Learning Models on Novel, Related Samples

in Intrusion Detection,” Sensors, vol. 23, Issue 4, pp. 1-39, 2023.

[8] D. Pecioski, V. Gavriloski, S. Domazetovska, and A. Ignjatovska,

“An overview of reinforcement learning techniques,” in 2023 12th

Mediterranean Conference on Embedded Computing (MECO),

Budva, Montenegro, 2023.

[9] K. A. Okewale, I. R. Idowu, B. S. Alobalorun and F. A. Alabi,

“Effective Machine Learning Classifiers for Intrusion Detection in

Computer Network,” International Journal of Scientific Research

in Computer Science and Engineering, vol. 11, Issue 2, pp. 14-22,

2023.

[10] D. Gibert, J. Planes, C. Mateu and Q. Le, “Fusing feature

engineering and deep learning: A case study for malware,” Expert

Systems With Applications, vol. 207, Issue 117957, pp. 1-18, 2022.

[11] S. Kayikci and T. M. Khoshgoftaar, “Blockchain meets machine

learning: a survey,” Journal of Big Data, vol. 11, Issue 9, pp. 1-29,

2024.

[12] M. H. Thwaini, “Anomaly Detection in Network Traffic using

Machine Learning for Early Threat,” Data & Metadata, vol. 1,

Issue 34, pp. 1-16, 2022.

[13] S. Sheng and X. Wang, “Network traffic anomaly detection method

based on chaotic neural network,” Alexandria Engineering Journal,

vol. 77, pp. 567-579, 2023.

[14] H. Liu and H. Wang, “Real-Time Anomaly Detection of Network

Traffic Based on CNN,” Symmetry, vol. 15, Issue 6, pp. 1-21, 2023.

[15] F. Hu, S. Zhang, X. Lin, L. Wu, N. Liao and Y. Song, “Network

traffic classification model based on attention mechanism and

spatiotemporal features,” EURASIP Journal on Information

Security, vol. 1, Issue 6, pp. 1-25, 2023

[16] I. H. Ji, J. H. Lee, M. J. Kang, W. J. Park, S. H. Jeon and J. T. Seo,

“Artificial Intelligence-Based Anomaly Detection Technology over

Encrypted Traffic: A Systematic Literature Review,” Sensors, vol.

24, Issue 3, pp. 1-30, 2024.

[17] W. Hu, L. Cao, Q. Ruan, and Q. Wu, “Research on Anomaly

Network Detection Based on Self-Attention Mechanism,” Sensors,

vol. 23, Issue 11, pp. 1-17, 2023.

[18] K. Lu, “Network Anomaly Traffic Analysis,” Academic Journal of

Science and Technology, vol. 10, Issue 3, pp. 65-68, 2024.

[19] Z. Dang, Y. Zheng, X. Lin, C. P. Q. Chen and X. Gao, “Semi-

Supervised Learning for Anomaly Traffic Detection via

Bidirectional Normalizing Flows,” arXiv, vol. 1, pp. 1-14, 2024.

[20] S. Zehra, U. Faseeha, H. J. Syed, F. Samad, A. O. Ibrahim, A. W.

Abulfaraj and W. Nagmeldin, “Machine Learning-Based Anomaly

Detection in NFV: A Comprehensive Survey,” Sensors, vol. 23,

Issue 11, pp. 1-26, 2023.

[21] S. Padhiar and R. Patel, “Performance evaluation of botnet

detection using machine learning techniques,” International

Journal of Electrical and Computer Engineering (IJECE), vol. 13,

Issue 6, pp. 6827-6835, 2023.

[22] M. Al-farttoosi and H. Abdulkader, “Botnet Mobile Detection

Using Machine & Deep Learning Techniques,” in 2022 Iraqi

International Conference on Communication and Information

Technologies (IICCIT), Basrah, Iraq, 2022.

[23] M. Swami, A. Yadnik, A. Jagtap, K. Bhilare and M. Wagh,

“BOTNET DETECTION USING VARIOUS MACHINE

LEARNING ALGORITHMS: A REVIEW,” International

Research Journal of Engineering and Technology (IRJET), vol. 09,

Issue 12, pp. 125-132, 2022.

[24] C. Joshi, V. Bharti and R. K. Ranjan, “Botnet Detection Using

Machine Learning Algorithms,” in Proceedings of the International

Conference on Paradigms of Computing, Communication and Data

Sciences, Singapore, 2021.

[25] J. Forough, “Anomaly Detection and Resolution for Edge Clouds,”

in Machine Learning for Anomaly Detection, Sweden, IEEE, 2024,

pp. 11-25.

[26] S. A. Hussein and S. R. Répás, “Enhancing Network Security

through Machine Learning-Based Anomaly Detection Systems,”

International Journal of Intelligent Systems and Applications in

Engineering, vol. 12, Issue 215, pp. 1929-1935, 2024.

[27] M. Landauer, S. Onder, F. Skopik and M. Wurzenberger, “Deep

learning for anomaly detection in log data: A survey,” Machine

Learning with Applications, vol. 12, Issue 100470, pp. 1-19, 2023.

[28] M. ALI, M. S. M. F. MUSHTAQ, SULTAN, M. S., and I.

ASHRAF, “Hybrid Machine Learning Model for Efficient Botnet

Attack Detection in IoT Environment,” IEEE ACCESS, vol. 1,

Issue 1, pp. 1-19, 2024.

[29] J. Ashraf, M. Keshk, N. Moustafa, M. Abdel-Basset, H. Khurshid,

A. D. Bakhshi and R. R. Mostafa, “IoTBoT-IDS: A novel statistical

learning-enabled botnet detection framework for protecting

networks of smart cities,” Sustainable Cities and Society, vol. 72,

Issue 103041, 2021.

[30] C. G. Cordero, E. Vasilomanolakis, A. Wainakh, M. Mühlhäuser,

and S. N. Tehrani, “On Generating Network Traffic Datasets with

Synthetic Attacks for Intrusion Detection,” ACM Transactions on

Privacy and Security, vol. 24, Issue 2, pp. 1-39, 2021.

[31] E. P. VALENTINI, G. P. R. FILHO, R. E. D. GRANDE, C. M.

RANIERI, L. A. P. JÚNIOR and R. I. MENEGUETTE, “A Novel

Mechanism for Misbehavior Detection in Vehicular Networks,”

IEEE, vol. 11, pp. 68113-68126, 2023.

[32] A. Z. Umar and Y. Galadima, “Detecting Anomalies In Network

Traffic Using a Hybrid of Linear-based and Tree-based Feature

Selection Approaches,” in International Conference on Computing

and Advances in Information Technology (ICCAIT 2023), Ahmadu

Bello University, Zaria, Nigeria, 2023.

[33] S. Choudharya and N. Kesswani, “Analysis of KDD-Cup’99, NSL-

KDD, and UNSW-NB15 Datasets using Deep Learning in IoT,” in

International Conference on Computational Intelligence and Data

Science (ICCIDS 2019), Rajasthan, India, 2020.

[34] S. More, M. Idrissi, H. Mahmoud and A. T. Asyhar, “Enhanced

Intrusion Detection Systems Performance with UNSW-NB15 Data

Analysis,” aligorithms, vol. 17, Issue 64, pp. 1-16, 2024.

[35] T. A. S. Srinvias, A. D. Donald, M. Sameena, K. Rekha and I. D.

Srihith, “Unlocking the Power of Matlab: A Comprehensive

Survey,” International Journal of Advanced Research in Science,

Communication and Technology (IJARSCT), vol. 3, Issue 1, pp. 20-

31, 2023.

[36] Y. SAHLI, “A comparison of the NSL-KDD dataset and its

predecessor the KDD Cup’99 dataset,” International Journal of

Scientific Research and Management (IJSRM), vol. 10, Issue 4, pp.

832-839, 2022.

[37] I. Dutt, S. Borah and I. K. Maitra, “Pre-Processing of KDD’99 &

UNSW-NB Network Intrusion Datasets,” Turkish Journal of

Int. J. Sci. Res. in Computer Science and Engineering Vol.12, Issue.4, Aug. 2024

© 2024, IJSRCSE All Rights Reserved 93

Computer and Mathematics Education, vol. 12, Issue 11, pp. 1762-

1776, 2021.

[38] M. Gelgi, Y. Guan, S. Arunachala, M. S. S. Rao, and N. Dragoni,

“Systematic Literature Review of IoT Botnet DDOS Attacks and

Evaluation of Detection Techniques,” Sensors, vol. 24, Issue 11,

pp. 1-37, 2024.

[39] O. Valenzuela, A. Catala, D. Anguita and I. Rojas, “New Advances

in Artificial Neural Networks and Machine Learning Techniques,”

Neural Process Letters, vol. 55, Issue 1, pp. 5269-5272, 2023.

[40] S. Hartanto, “The Impact of Smurf Attack on Web Server in

Communication Network and its Preventions,” International

Journal of Sustainable Applied Sciences (IJSAS), vol. 1, Issue 1,

pp. 35-46, 2023.

[41] M. B. Anley, A. Genovese, D. Agostinello and V. Piuri, “Robust

DDoS attack detection with adaptive transfer learning,” Computers

& Security, vol. 144, Issue 103962, pp. 1-10, 2024.

[42] M. M. Abualhaj, A. A. Abu-Shareha, M. O. Hiari, Y. Alrabanah,

M. Al-Zyoud and M. A. Alsharaiah, “A Paradigm for DoS Attack

Disclosure using Machine Learning Techniques,” (IJACSA)

International Journal of Advanced Computer Science and

Applications, vol. 13, Issue 3, pp. 192-200, 2022.

[43] J. H. Yousif and H. A. Kazem, “Prediction and evaluation of

photovoltaic-thermal energy systems production using artificial

neural network and experimental dataset,” Case Studies in Thermal

Engineering, vol. 27, Issue 101297, pp. 1-13, 2021.

[44] W. Ahmed, A. Chaudhary, and G. Naqvi, “Role of Artificial Neural

Networks in AI,” Neuro Quantology, vol. 20,. Issue 13, pp. 3365-

3373, 2022.

[45] Y. D. Jian Liu, Y. Liu, L. Chen, Z. Hu, P. Wei and Z. Li, “A

logistic-tent chaotic mapping Levenberg Marquardt algorithm for

improving positioning accuracy of grinding robot,” Scientific

Reports, vol. 14, Issue 9649, pp. 1-15, 2024.

[46] M. K. Hasan, A. A. Habib, S. Islam, N. Safie and B. Pandey,

“DDoS: Distributed denial of service attack in communication

standard vulnerabilities in smart grid applications and cyber

security with recent developments,” Energy Reports, vol. 9, Issue

10, pp. 1318-1326, 2023.

[47] C. G. Udomboso and O. O. Ilori, “A DERIVED

HETEROGENEOUS TRANSFER FUNCTION FROM

CONVOLUTION OF SYMMETRIC HARDLIMIT AND

HYPERBOLIC TANGENT SIGMOID TRANSFER

FUNCTIONS,” Journal of Science and Technology, vol. 40, Issue

1, pp. 27-37, 2022.

[48] T. Y. Li, H. Xiang, Y. Yang, J. Wang and G. Yildiz, “Prediction of

char production from slow pyrolysis of lignocellulosic biomass

using multiple nonlinear regression and artificial neural network,”

Journal of Analytical and Applied Pyrolysis, vol. 159, no. Issue

105286, 2021.

[49] I. Dubdub, “Pyrolysis Study of Mixed Polymers for Non-

Isothermal TGA: Artificial Neural Networks Application,”

Polymers, vol. 14, Issue 2638, pp. 1-10, 2022.

[50] A. A. R. A.-c. Omar, B. Soudan and A. Altaweel, “A

comprehensive survey on detection of sinkhole attack in routing

over low power and Lossy network for internet of things,” Internet

of things, vol. 22, Issue 100750, 2023.

[51] E.-M. Nikolados, A. Wongprommoon, O. M. Aodha, G. Cambray

and D. A. Oyarzún, “Accuracy and data efficiency in deep learning

models of protein expression,” Nature communications, vol. 13,

Issue 7755, pp. 1-12, 2023.

[52] T. F. Monaghan, S. N. Rahman, C. W. Agudelo, A. J. Wein, J. M.

Lazar, K. Everaert and R. R. Dmochowski, “Foundational

Statistical Principles in Medical Research: Sensitivity, Specificity,

Positive Predictive Value, and Negative Predictive Value,”

Medicina, vol. 57, Issue 503, pp. 1-7, 2021.

[53] L.-E. Pommé, R. Bourqui, R. Giot and D. Auber, “Relative

Confusion Matrix: Efficient Comparison of Decision Models,” in

2022 26th International Conference Information Visualisation (IV),

Vienna, Austria, 2022.

[54] E. U. H. Qazi, M. H. Faheem and T. Zia, “HDLNIDS: Hybrid

Deep-Learning-Based Network Intrusion Detection System,”

Applied Sciences, vol. 13, Issue 4921, pp. 1-16, 2023.

[55] M. Bhavsar, K. Roy, J. Kelly and O. Olusola, “Anomaly-based

intrusion detection system for IoT application,” Discover Internet

of Things, vol. 3, Issue 5, pp. 1-23, 2023.

[56] A. Ayantayo, A. Kaur, A. Kour, X. Schmoor, F. Shah, I. Vickers,

P. K. and M. M. Abdelsamea, “Network intrusion detection using

feature fusion with deep learning,” Journal of Big Data, vol. 10,

Issue 67, pp. 1-24, 2023.

[57] S. Srinivasan and D. P, “Enhancing the security in cyber-world by

detecting the botnets using ensemble classification based machine

learning,” Measurement: Sensors, vol. 25, Issue 100624, pp. 1-7,

2023.

AUTHORS PROFILE

Grace Bunmi Akintola earned a B.Tech in

Computer Science with a specialization in

Cyber Security from the Federal University of

Technology Minna, Niger State, Nigeria, in

2016. She then pursued an MSc in Computer

Forensics and Cybersecurity from the

University of Greenwich, London, United

Kingdom, graduating in 2021. These

educational experiences have provided her with

a comprehensive understanding of cybersecurity principles, best

practices, and forensic techniques. Grace is a member of the Nigeria

Computer Society (NCS), the umbrella organization for all

Information Technology Professionals, Interest Groups, and

Stakeholders in Nigeria. Currently, she serves as an Assistant

Lecturer in the Department of Cyber Security at the Nigerian

Defence Academy (NDA) in Kaduna, Nigeria. In this role, she is

actively involved in educating and impacting future cybersecurity

professionals, fostering a cybersecurity awareness culture, and

conducting field research. Her commitment to academic excellence

is reflected in her continuous pursuit of knowledge and dedication to

her students. Grace is interested in research, scholarly writing, and

various fields in cybersecurity, such as network security, forensics,

AI security, penetration testing, and more.

