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Abstract—Numerous systems in nature grow or decay over time, with many exhibiting cycloidal or S-shaped trajectories. 

Competing effects within any predator-prey system may lead to oscillatory and even chaotic trajectories. Natural systems 

including solar cycles and even ethanol production curves exhibit an S-curve trajectory during the growth cycle. 

Traditionally, differential equations are required to analyse the dynamics of a large system of distributed particles. An 

alternative method for describing growth paths in natural systems applies a single modulated discrete-domain recurrence 

relation to emulate the shape of growth or decay trajectories. The model requires a known initial condition and a growth 

target value for the particular physical system. Addition of a modulating term within the recursion model enables wave 

action within growth cycles, without impacting numerical simulation stability. A recurrence relation is developed to 

simulate the known growth and decay characteristics in real systems such as hurricanes, tornados, ethanol production 

during fermentation, coronavirus growth, solar cycle count and sunspot dynamics, to mention a few. Simulation by 

recursion of growth curves for the above-mentioned natural systems each show S-shape appearance, suggesting that 

systems with limiting growth may also submit to trajectory predictability. Growth curves for any physical systems that 

evolve from a minimum to a maximum value are amenable to analysis by the recurrence method. 

 

Keywords—Simulation, Dynamics, Recurrence, Nature, Growth, Decay 

 

I.  INTRODUCTION  

 

Motion of particles or objects in physical systems including 

biology, chemistry, physics and earth sciences usually 

follow predictable and stable dynamic trajectories. A large 

system of particles or objects could also behave non-

linearly, depending the interaction between driving 

mechanisms and the system’s response. Complex and non-

linear interactions require more complex analysis to solve 

growth, decay and cyclical dynamic behaviour. 

 

Growth may be described as an increase in a discrete 

sample value or count number between successive time 

intervals in a natural dynamic system. An observation that 

S-shaped curves describe growth in numerous natural 

systems is of considerable interest. The evolution of growth 

from an initial low value to a limiting value indicates that 

such systems may be governed by a common descriptive 

procedure. Establishing an underlying mathematical 

treatment for growth trajectories in different natural 

systems would be significant. 

 

Modelling the dynamic motion of a system of inter-

connected or distributed particles in nature traditionally 

involves solutions derived from ordinary differential 

equations (ode). A closed-form solution of an ode’s usually 

means a stable and well-defined trajectory of motion. Non-

linear interactions may result in chaotic oscillations and 

solutions that do not follow smooth trajectories.   

In systems where growth is limited, a stable attractor or 

fixed-point solution can be expected. For stable or limiting 

growth, an ode may be converted to a difference equation 

or a recurrence relation. A recurrence relation can be 

evaluated numerically to produce a set of discrete-time 

values or counts, suitable for rapid graphing and easy 

visualization of the system’s trajectory. Application of a 

recurrence relation to numerically solve an ode requires 

both formulation and use of initial conditions. In addition, 

recursion permits forward prediction of a system’s 

trajectory in the discrete domain.  

 

Many physical systems exhibit growth and decay curves 

that are bounded or asymptote to a value in time. Existence 

of growth curves with a common shape in both 

microscopic and macroscopic systems would suggest an 

underlying commonality in nature. Notwithstanding, 

growth in nature’s systems is controlled by complex effects 

such as temperature variations, chemical reactions, 

biological competition and solar radiation. 

 

In this paper, Section I contains the introduction, Section II 

contains related work, Section III outlines the methodology 

used in the paper to derive recursion equations for growth 

modelling, Section IV details examples which apply the 

methodology of recurrence to simulate physical and 

biological systems in nature, Section V describes results 

and discussion of the research, and Section VI contains a 

conclusion with reference to future research directions. 

mailto:alexander.harrison@newcastle.edu.au
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II. RELATED WORK 

 

An objective of the research is the development of a 

mathematical relationship to simulate trajectories in natural 

systems that exhibit S-curve growth. Since the 1980s, 

analysis of growth has been researched from various 

perspectives. Logistic maps for predator-prey models using 

recurrence relations have been investigated in the past [1]. 

Calculus of variations have been used to derive optimal 

start curves for long elastic belts where an S-shaped 

velocity curve minimizes dynamic forces and elastic wave 

amplitudes [2,3]. 

 

Van Geert has researched developmental change in 

children’s learning, describing basic principles of growth 

as a measured gain in value in discrete time [4]. In relation 

to gradients of growth, basic calculus defines a difference 

between two closely-separated values on a curve as the 

curve’s gradient, slope or derivative. The 18th century 

mathematician Euler derived what is known as the “Euler 

Method” to numerically solve the initial value problem for 

a first-order ode [5].  

 

Coupling basic concepts of growth with a numerical 

simulation method is researched in this paper for various 

systems in nature [6]. The coupling method enables rapid 

analysis of growth trajectories using graphical visualization 

of the solution. While recurrence relations are known as a 

powerful mathematical tool, their application to studying 

growth dynamics has only been examined by a limited 

number of researchers.  

 

III. METHODOLOGY AND DERIVATIONS 

 

A proposed methodology for studying growth mechanisms 

in nature involves the adaptation of the recursion method 

to simulate changes in system values, such as population 

or density. A first-order recurrence relation describes 

growth as a sequence of numbers in discrete time T, i.e., 

NT+1 = NT + k where NT is a current value, k is a number, 

and NT+1 is the next value at the next discrete interval. 

Using an initial value N0 at T = 0 permits calculation of the 

next values of the sequence, i.e., N1 = N0 + k, N2 = N1 + k 

= N0 + 2k, and so on. 

 

The Euler method shows that if k = dN/dt, a solution of a 

first-order ode for any curve N(t) can be recursively 

iterated using the equation NT+1 - NT = dN/dt, where the 

difference in the time step ((T+1) – T) = .  In general, a 

discrete sample interval would be unitary, so  = 1 and k is 

just the curve’s gradient at the point (N(t), t). 

 

In relation to growth, when dN/dt = k, recursion produces 

arithmetic growth. When dN/dt = λN, recursion produces 

geometric growth with λ > 1, or geometric decay if λ < 1. 

 

In nature, most processes multiply faster than linear. 

During growth, losses may occur, limiting unbounded 

growth to some value P. A loss factor g = (1 – N/P) is used 

to modify k, so that for geometric growth k = gN. 

Accordingly, k  0 as N  P, i.e., the slope dN/dt 

approaches zero as N approaches an upper population P. 

Similarly, when N = 0, k = 0, indicating that the curve’s 

gradient dN/dt has is zero slope. Hence, dN/dt = gN 

behaves as an S-curve, also known as a Verhulst curve [6]. 

 

Applying the above analysis to the growth problem, a new 

difference equation is written as: 

 

 ,                                      (1) 

 

with a form suitable for sequence generation and graphical 

presentation using recursion. Wave activity in real systems 

can be accommodated by adding a new modulation term 

MT to (1), i.e., MT = A∙sin(ωT)∙exp(-bT) + C, where A and 

C are dimensionless values, ω and b have their usual 

physical meaning. Inserting a modulating term affects the 

recursion calculation, thereby modifying the sequence and 

the graphical trajectory of growth. From (1), a single 

difference equation including modulation is then described 

by: 

 

                                            (2) 

 

or more concisely, 

 

                                               (3) 

 

where γ = ( ) and  = ± /P. Clearly, (3) has a squared 

term indicating the selection of its coefficients will 

critically determine stability [7]. In some fields of research 

such as chaos and non-linear dynamics, (3) is referred to as 

a logistic map [8]. 

 

Numerous situations occur in nature where time delays 

affect growth. As discussed previously, May researched 

time delay effects in populations where competition and 

predator-prey interactions occur between species. 

 

Adding a time delay  to the loss factor in (1) results in a 

new loss factor g = (1 – NT-φ /P). When  = 0, no delay 

exists in the population loss factor. For integer  ˃ 0, the 

general equation (3) becomes a delay recursion relation: 

 

                                      (4). 

 

A discrete delay in one sample requires the parameter  = 

1, and in this case (4) becomes a single delay problem in 

which oscillations and chaotic stability are possible. 

Selecting a value of  =2 in (4), together with particular 

control parameters, produces a potentially unstable double-

delay equation that allows the simulation of complex 

cyclic systems, including solar cycles, as discussed in 

following sections. Usually when a double delay is 

introduced to produce long period oscillatory behaviour 

similar to solar cycles, the outcome may be stable or 

chaotic. 
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IV. APPLICATION AND EXAMPLES 

 

Parameters  and P shown in (1) are experimentally 

determined to produce a trajectory which correlates with 

actual count samples from a naturally occurring system. A 

selection of examples showing bounded and cyclic growth 

are now described. Graphs depicting measured count 

values for tornados, hurricanes, ethanol production and 

coronavirus growth are simulated by recursion. 

 

For example, variations in the trajectory of coronavirus 

require the use of a non-zero MT term in (2). In following 

sections, sunspot count over one cycle is shown to follow 

growth and decay according to (1), however employing a 

double-delay in (4) produces solar cycle oscillations that 

correlate with measurements over an 11-year interval. 

Careful selection of appropriate initial conditions is 

necessary for stable simulation. 

 

A. Hurricanes and Tropical Storms 

Hurricane and tropical storm count emanating from the 

Atlantic Ocean is widely available through organizations 

including the National Oceanic and Atmospheric 

Administration (NOAA). In December 2012, Doggett 

discussed the 2012 hurricane season in perspective, based 

on Air-Worldwide data. A graph of tropical storm count 

from 2012 compares with simulation by (1) for 

experimentally selected parameters β = 1, λ = 0.65, P = 

11.3 and  = 0.14. For hurricanes, correlation occurs for 

β = 1, λ = 0.65, P = 6.2, MT = 0 and = 0.07. Figure 1 

shows simulated tropical storm and hurricane trajectories 

using (1), overlaid on recorded counts published online by 

spc.noaa.gov and air-worldwide.com. 

 

 
Figure 1. Tropical storm (upper curve) and hurricanes (lower 

curve) for 2012 North Atlantic Ocean weather, compared to 

simulation curves using (1). 

 

B. Tornado Count in USA, 2019-2020 

Tornado count provided by NOAA for 2019 and 2020 are 

graphed in Figure 2. A recursive simulation curve 

generated by (1) shows a reasonable fit to 2019 recorded 

data for parameters β = 1, λ = 0.85, P = 1402, = 26, 

whereas for 2020, β = 1, λ = 0.6, MT = 0 and = 50. 

Recursion predicts a final count tally of 1020 for 2020, for 

the given initial values. Recursive modelling shows that 

actual measured tornado count is followed closely by the 

predictive curve with the selected parameters. Figure 2 

show some variability attributed to reported tornado count. 

Early in any tornado season, an initial value placed in the 

simulation permits a prediction of the final P value. 

 

Unlike regression curve fitting, simulation forward-

predicts a trajectory using only a few initial data points. 

The general shape of the curve is defined by an initial 

condition and its growth parameter, thus setting the curve 

shape. 

 

 
Figure 2. Tornado count from NOAA records compared to model 

trajectory from (1). 

 

C. Ethanol Growth during Fermentation 

Curves for ethanol generation in a sugar-yeast mix are 

widely available in the literature. Guadalupe et. al. 

published measurements related to ethanol generation 

during beer production and summarized the general curves 

expected for ethanol yield [9]. 

 

An almost infinite set of ethanol production curves exist 

due to the various brewing techniques. Alcohol production 

curves depend on pressure, temperature, sugar type, water 

and material purity, and yeast type. In general, yeast 

numbers multiply as sugars are converted to alcohol, in 

accordance with general published curves. The cited 

reference indicates that all measurements of alcohol 

production, when normalized against each other, generally 

follow similar trajectories to one another. 

 

Figure 3 illustrates a simulation curve for beer ethanol 

production, based on (1). Alcohol percentage (%w/w) 

plotted against discrete hourly intervals correlate with the 

simulation model for parameters experimentally set to λ = 

0.53, β = 1, P = 3.3, MT = 0 and N0 = 0.047. 
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Figure 3. Curve for ethanol production in beer. 

 

D. Coronavirus Count for USA 2020 

Coronavirus Covid-19 growth curves during 2020 are 

examined for the USA due to its large number of cases. 

Figure 4 shows cumulative coronavirus cases compared to 

simulation curves using (2). Harrison indicates that 

infection levels of 10%, 14% and 18% in the population 

were common in past pandemics [10]. 

 

Virus propagation trajectories were plotted by setting 

equation (2) parameters to correlate with initially reported 

growth counts from Worldometers.com. A simulation of 

the cumulative value of counts over time allows a forward 

projection by the model, relative to recorded counts. 

Parameters for the 14% infection curve are experimentally 

determined for initial recorded case numbers, using β = 1, 

λ = 0.09, P= 46 (in millions), N0 = 0.01 and a sine 

modulation of MT = 0.2∙sin(2πT/15)∙e^(-T/100) + 0.0125. 

Given a US population of 330 million people, the target 

populations for 10%, 14% and 18% infection levels for the 

entire population correspond to P = 33, 45 and 60 million, 

respectively. Covid-19 data for China modelled with 

logistic maps is of interest and applicable to the study [11]. 

 

 
Figure 4. Coronavirus count for USA, compared to the model 

using equation (2), for three possible infection rates. 

Modulation provides the mechanism for adding wave 

activity to simulate growth oscillations, while P shifts the 

infectable target population in (2). From November 2020, 

the trajectory of cases surged closer to the 18% simulated 

infection curve after society restrictions were eased, 

resulting in MT values λ = 0.125, c = 0.13 and N0 = 0.05.  

 

E. Sunspot Count during Solar Cycles 

Previously, four examples of the application of (1) and (2) 

have been discussed, where naturally occurring processes 

exhibit a saturated or limiting growth count. For the four 

previous examples of growth in nature, recursive 

simulations are shown to match experimentally measured 

values when initial conditions are set for each type of 

natural system. However oscillatory growth and decay 

cycles in nature are treated by introducing a time delay to 

(3), forming (4) as a solution for recursive simulatiom. 

 

Solar cycles or sunspot count over an 11-year period are 

now examined using a selected solar cycle 21 (1976-

1987). Sunspot counts for this period are published at 

justinweather.com. A plot of sunspot count for each year 

in solar cycle 21 shows that the single equation (1) is 

piece-wise valid for a growth (+λ) and decay (-λ) using the 

equation-pair: 

 

                               5(a) 

 

                              5(b) 

 

Equation 5(a) describes the growth in sunspot count for 

cycle 21, with the initial condition β = 1, λ = 1.3, ε = 1/P = 

1/250 and  rising towards 250 over the 

discrete range (years) 0 < T < 12. 

 

The simulation curve for 5(a) is shown on Figure (5) by 

the left-side dashed curve. Equation 5(b) describes the fall 

or decay in sunspot count for the trailing part of solar 

cycle 21, shown by the long-dashed line on the right side 

of the graph. An initial condition for 5(b) is 250, 

falling to zero over the same discrete range 0 < T < 12. 

 

Separate curves produced by 5(a) and 5(b) are shown 

individually in Figure 5, along with measured sunspot 

counts during cycle 21. A single pulse-like curve for solar 

cycle 21 is indicated from recorded measurements of 

sunspot count. A pulse is modelled for one solar cycle by 

applying a mathematical product of two independent 

simulations defined by 5(a) and 5(b): 

 

)/250                                            (6). 

 

Comparing sunspot counts for cycle 21 on the graph of 

Figure 5 with the piece-wise product method allows a 

tractable simulation of solar cycle 21. 

 

Simulation of multiple solar cycles is more challenging. 

Equation (4) is capable of producing oscillatory behaviour, 

including, long-cycle chaotic oscillations for delay  > 1. 

http://www.justinweather.com/
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Figure 5. Sunspot count compared to the piece-wise model 

results using 5(a) and 5(b), showing a graph of their simulation 

product of the general model based on (1) and (6). 

 

When describing delay effects for   2, the second last 

iteration of the recurrence calculation affects the current 

value, termed a double delay, meaning the underlying ode 

is of second order. A delay product  in the 

logistic map (4) produces long periodic oscillations.  

 

Simulation of multiple solar cycles requires (4) with φ= 2, 

N0 = 15.9, λ = 1.5 and β = 0.27. The combined variables 

are γ = 1.77, ρ = 1.5/P and P = 210, the peak sunspot count 

in cycle 22. A 23-year peak variance is simulated using the 

modulation function MT = 0.1*NT (1-cos( T-2)/46). 

 

Figure 6 shows the graph of actual measured and 

simulated sunspot count during solar cycles 22 to 24. 

Close inspection the model graph shows non-repeating 

counts typical of second order effects and slightly chaotic 

instabilities. 

 

 
Figure 6. Reported sunspot count for three solar cycles peaking in 

1992, 2003 and 2014, including a graph of delay by (4) that 

simulates oscillation in sunspot count for cycles 22 to 24. 

 

V. DISCUSSION OF RESULTS 

 

Recursion relations apply to both bounded and cyclic 

growth in natural systems. A single recurrence equation 

generates a sequence of numbers that simulate measured 

counts or growth values, demonstrated using examples 

from nature. Calculated values may be readily plotted to 

show a simulated growth trajectory, suggesting the method 

has useful application to forward prediction. 

 

More generally, the shape of recursion curves is 

parametrically adjustable, enabling experimental matching 

to measured values of a system. With only a few initial 

values, a recursion can generate a family of curves that 

predict trajectories for slightly different initial conditions. 

In most growth systems, only the variables λ and P are 

required to define a curve trajectory, since β is usually 

unity, except in (2). 

 

In situations where the final target population or count P is 

not known, λ values known from similar systems together 

with some initially measured counts on the trajectory, are 

used to generate a curve that is forward projected to limit 

P. The procedure was used in Figure 2 where six values 

published for 2020 tornado count requires a λ =0.6, 

resulting in a forward prediction to a final tornado count of 

1020 known for the year 2020.  

 

The paper has demonstrated that natural processes such as 

growth or sample count of organisms, cyclones, storms, 

solar flares and sunspot activity can be simulated and 

easily graphed, allowing inspection of trajectory evolution. 

A single equation describing growth of an entity with an 

upper limit P can be applied to numerous natural systems 

as illustrated in Section 2. Equation (2) requires an initial 

value and two trajectory-forming variables λ and β, to 

define a curve that simulates measured values. 

 

Coronavirus case numbers reported for the USA total 14 

million on 1-December-2020, with a daily count of 

143,188. Reported data suggests that if the infection rate 

were only 10%, a count of 116,300 cases/day would be 

indicated., whereas a 14% infection curve in Figure 4 more 

realistically follows the case data for the original strain to a 

target of 45 million cases. Wave action observed in virus 

case numbers is accommodated by a sinusoidal modulation 

function added to (2) and (3). For coronavirus curves, an 

amplitude of 0.2 applies to early 2020 data. From 

December 2020 the amplitude is 0.3.  

 

Sunspot activity and its modelling has been examined. 

Sunspot count is generally predicable over an 11-year 

period. Analysis shows that a general expression can be 

developed to describe the sunspot count numbers. In solar 

cycle 21 (1976-1987) the peak count recorded in 1981 by 

various institutions was between 245 and 250. During 

cycles 22, 23 and 24, sunspot peaks reached 210, 180 and 

130 counts (in 2014), respectively. 
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An 11-year peak sunspot count shows variation, simulated 

using the modulation method in (4). Use of a modulating 

function MT within the recursion suggests a slightly 

unstable or chaotic process affecting solar cycle dynamics. 

Table 1 provides the experimentally determined set of 

parameters that enable simulation of selected systems that 

exhibit S-shaped growth trajectories and cyclic behaviour. 

Included is the piece-wise method used to describe sunspot 

growth simulation, based on 5(a) and 5(b), where two 

initial conditions are required to predict both the growth 

and decay curves in (6). Parameters for sunspot cycles 22 

and 24 were experimentally set to ensure long-period 

stable oscillations. 

 
Table 1. List summarizing the range of parameters in (1) to (6) 

for the various examples in nature. 

System λ β N0 P 

T. Storms 0.65 1 0.14 11.3 

Hurricanes 0.65 1 0.07 6.2 

Tornados  0.6 1 50 1020 

Ethanol  0.53 1 .047 3.3 

Covid 14%P 0.09 1 0.02 33x10^6 

Covid 18%P 0.09 1 0.05 60x10^6 

Sunspot 5(a) 1.3 1 23 250 

Sunspot 5(b) 1.3 1 250 250 

Cycle 22-24  1.5 0.27 15.93 210 

 

A single recurrence equation can define a natural process 

and its dynamics, once the initial conditions are 

established. Applying parameters with typical values near 

those in Table 1 allows a quick and approximate selection 

of a starting point for simulation of similar systems in 

nature with limited growth. Further research will uncover 

numerous other diverse systems with growth trajectories 

that can be defined by the single equation. 

 

VI. CONCLUSIONS AND FUTURE SCOPE 

 

Specific examples of bounded and cyclic growth cycles in 

nature have been described by a single recursion equation. 

A modified Euler Method using initial conditions and 

parameter values like those in Table 1 generate a sequence 

of numbers that, when graphed, match growth cycles from 

six example systems in nature. Selection of parameters for 

recursive simulation has been discussed. Equations (2) and 

(4) provide a unique descriptor of a growth trajectory in a 

natural system. Modulation of the recurrence relation 

allows wave action to perturb the model, enhancing 

correlation with measured growth trajectories. 

 

An example of a complex pulse-like trajectory in nature 

has been modelled by combining a pair of single growth 

and decay equations. Whenever oscillatory behaviour is 

measured in nature, a time-delay term in (4) generates 

stable oscillatory solutions, such is the case with sunspot 

count over three solar cycles. Undoubtedly, numerous 

other natural growth systems are amenable to similar 

recursion analysis to visualize and predict trajectories. 

Simulation of solar cycle 22 – 24 presents stable solutions 

within a very narrow band of parameters. Equation (4) 

contains a time delay which can cause inherent instability 

and chaotic behaviour, susceptible to explosive and chaotic 

oscillations when only a small variation in parameter 

values occur. An understanding of stability manifolds in 

non-linear mechanics assists the researcher in finding the 

stable points for recursion simulations. More research is 

required to find alternative methods for selecting 

parameters relevant to other natural systems. 

 

Unlike regression fitting methods, a single recursion 

equation enables both a curve fit and a forward prediction 

capability for discrete data points. Once an initial 

condition and a few count numbers are known, projections 

can be developed leading to a final or target count. 

 

Methods that produce a forward prediction of trajectory, 

based on initial conditions for a natural system’s state, are 

invaluable when analyzing trends and limits of or decay. 

Predicting a final outcome of growth from a potentially 

dangerous event such as coronavirus spread and hurricane 

prediction is essential when attempting to prepare for an 

emergency in society. 

 

Limitations exist in the method that can be improved. For 

example, a simulated curve may or may not exactly follow 

actual data along an S-curve path towards an upper or 

limiting count. At present, parameters in Table 1 represent 

a good guide for simulating similar natural regimes. In the 

case of coronavirus growth, each country has its own 

dynamics and initial conditions. Model parameters for 

other countries need to be developed to permit simulation 

agreement and forward prediction of growth curves. 

 

Future research should address the above-stated 

limitations, such as the development of an algorithm that 

perturbs the simulation to calculate an outcome above and 

below the initial experimental point or count value. A 

convergence to the actual measured value would result, 

with the output representing the shape parameters for the 

system with particular initial conditions. 
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