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Abstract- Biodiesel production from Microalgae has received collective attention as one of the alternative energy sources. 

Growth kinetic models are needed to provide an understanding of microalgal growth so that cultivation conditions can be 

optimized. This review focused on overview of the present growth kinetic models for microalgae cultivation. The existing 

models were compiled and considering a light factor. There is a requirement for appropriate assimilation of light and 

temperature in the growth model.  
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I. INTRODUCTION 

 

For photoautotrophic microalgae in nutrient saturation 

conditions, light is a critical factor for photosynthetic 

activity. Growth of microalgae limits due to insufficient 

light [1, 2]. Microalgae require a specific light level in 

order to extent the maximum growth rate, referred to as a 

saturated light level. If light intensity is far above the 

saturation level, the growth will be inhibited by light 

(known as photo inhibition). If light intensity is below the 

saturation level, the growth will be limited by light (called 

light limitation). For example, in outdoor mass culture 

systems (cultivation systems with high concentrations of 

microalgae), microalgae growth is limited due to light 

scattering by a thick top layer where increase areal 

productivity of microalgae occurs [3]. Algae biomass 

productivity is the result of photosynthesis and 

endogenous respiration. Expecting the rate of these 

mechanisms during outdoor cultivation is difficult because 

algae growth is affected by several factors for example 

temperature, light intensity, pH, dissolved oxygen 

concentration and nutrient availability [33].  

 

II. RELATED WORK 

 

The growth kinetic models considering the effect of light 

plays the key role for the design of photobioreactors and 

outdoor ponds to optimize the performance. In this paper 

the growth kinetic models reflecting the single factor of 

the light intensity are summarized. The models in this 

group have simple structures with two or three parameters 

and easy to implement [4]. These models have often been 

applied in lab-scale studies. The Tamiya model is an 

eminent theoretical model as well as the most widely 

applied model, which is similar to a Monod type model in 

describing the effect of light on microalgae growth [5]. In 

that model, the growth rate is interrelated to the incident 

light intensity with two parameters μmax (maximum 

specific growth rate) and KI (saturation constant with 

respect to the light intensity). When the incident light 

intensity (I) is lower than KI, the growth is limited by light 

according to first order kinetics. When light intensity (I) is 

far above KI, the growth is independent of light and μ 

approaches to μmax [6].  The Tamiya model was describing 

the growth of Euglena gracilis under laboratory conditions 

using fluorescent lamps (about 0-550 μmol photon m
-2

 s
-1

) 

with kinetic parameters of μmax as 0.06 h
-1

 and KI as 178 

μmol photon m
-2

s
-1

. Under continuous illumination of 

fluorescent light, the growth of Spirulina platensis 

followed the Tamiya model with the KI = 0.2 klx (about 

124 μmol photon m
-2

 s
-1

) and μmax = 2.0 day
−1

 [7]. Tamiya 

model was able to accurately explain the growth rate of 

Chlorella vulgaris in the circulating photo bioreactor 

under different incident light intensities [2]. Several 

empirical models have been developed by van Oorschot 

[8], Bannister [9], and Chalker [10]. Van Oorschot [8] 

used a Poisson function (1-e-I/KI) describing light-

limitation. The Webb model is a commonly used model 

for predicting photosynthetic rates in literature [11]. 

Bannister et al. adopted the same structure of the Tamiya 

model with integration of a shape parameter (m) 

depending on the algae species [9].  Jassby and Platt 

investigated eight kinetic models to describe the 

population of marine phytoplankton and reported a 

hyperbolic tangent model was the best fit to their data [12]. 

Hyperbolic tangent function is the most popular 

mathematical form to explain the photosynthetic activity 

as a function of light intensity [10].  The relationship 

between the algae growth rate and incident light intensity 

assuming that photosynthetic activity is the only limiting 

mechanism of microalgae growth [13]. To determine the 

best expression of microalgae growth rate, several 

expressions including the Poisson, hyperbolic tangent and 

Tamiya models and established that the hyperbolic tangent 

http://www.isroset.org/
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function was the best mathematical expression for 

Chorella littorale growth kinetics under the incident light 

intensity ranging from 2.3 to 1060 μmol photon m
−2

s
−1

 [13]. 

On the other hand, Martinez et al. compared the Tamiya 

and Poisson models and concluded that the Poisson model 

provided a better fit to the experimental data of Chorella 

pyrenoidosa under the incident light intensity of 400-2000 

lux [14]. The difference of the experimental conditions 

such as illumination range and algae species make it 

challenging to compare different studies. There is minimal 

self- shading by the microalgae cells. Light attenuation is 

generally observed in microalgae cultivation systems 

which typically have high algae concentrations for biofuel 

production. For light attenuation, an average light intensity 

or absorbed light intensity has been adopted. The average 

light intensity (or absorbed light intensity) is determined 

by the light path, culture density and incident light 

intensity. This represents the average light absorption of 

algae cells in the system [15]. Bechet et al. observed that 

average light intensity influence not be the appropriate 

parameter to represent light intensity because it does not 

account for heterogeneity of light intensity received by 

individual cells in the system and its effect on the overall 

algae growth [16]. Tamiya model was improved with the 

average light intensity and introduced an exponent (n) in 

the formula [17]. That is similar to Bannister's shape 

parameter. This model was often applied in the 

optimization of the photobioreactors for both indoor and 

outdoor culture [18, 19]. On the other hand, the Ogbonna 

model is similar to a linear formula and the model includes 

a cell concentration (X) and reactor volume (V) to 

justification for the impact of cell concentrations on the 

light attenuation [20]. This model uses the non-illuminated 

volume fraction to integrate the effect of dark zones on 

growth. In outdoor culture systems, however, microalgae 

can experience photoinhibition during the mid-day peak 

light period. To reduce the energy cost from artificial 

illumination, outdoor mass culture systems have been 

adopted. Some models consist of both light limitations and 

photo inhibition. 

  

III. RESULTS AND DISCUSSION 

 

The models developed by Aiba [21], Lee et al. [22], Steele 

[23] and Bernard and Remond [24] have a relatively less 

complex formula with two or three parameters. 

Particularly, the Steele model is widely used and is able to 

describe the effects of light-limitation using I / Iopt and 

photo inhibition using an exponential expression (exp (1 − 

I / Iopt)) [25, 23, 26]. Platt et al. also used the exponential 

expression by expanding the Webb model to include the 

effects of photoinhibition at high irradiances [27]. The 

structure of the Aiba, Lee, Talbot, and Bernard and 

Remond models is similar to the Andrews model’s 

structure, which incorporated an inhibition term (expressed 

as a function of light intensity) in the denominator. 

Different light intensities were used in these models: 

incident light intensity (I) in the Aiba model, average light 

intensity (Iav) in the Lee model, normalized incident light 

intensity (I / Iopt) in the Talbot model and both I and I/Iopt 

in the Bernard and Remond model. Several models with 

more complex formulas have also been proposed. Rubio et 

al. introduced a mechanistic model to account for 

photadaptation, photoinhibition and the flashing light 

effect [28]. This model assumes that photosynthesis occurs 

in the photosynthetic unit (PSU, a minimum unit leading 

to the generation of NADPH and ATP), and PSUs are 

based on a metabolic control of energy consumption 

through an enzyme-mediated process such as Michaelis-

Menten-type kinetics. In addition, this model uses a square 

root dependence on irradiance to explain photoinhibition. 

Among other complex models, the modified Grima model 

[29] and Muller-Feuga model [30] are commonly applied 

to estimate the growth rate of algae. Grima et al. [29] and 

Garcia-Malea et al. [31] improved the Grima model to 

account for photoinhibition on the microalgae growth by 

modifying the parameters of microalgal affinity for light 

(IK) and n as a function of incident light intensity (I). 

These models are able to describe the effect of 

photoinhibition, light-limitation, and light attenuation. On 

the other hand, the Muller-Feuga model introduced three 

parameters, including the minimum light intensity for 

survival (Ie), optimum light intensity to achieve the 

maximum growth rate (Iopt), and average light intensity 

(Iav). This model described the effect of light-limitation 

using (Iav / Iopt − Ie/Iopt) in the nominator and the effect of 

photoinhibition using (Iav / Iopt − Ie / Iopt)
2
 in the 

denominator. Martinez et al. compared the model's 

prediction of García-Malea et al. [31] and Muller-Feuga 

[30] for the growth of Synechocystis sp. They concluded 

that the Muller-Feuga model was able to give a closer 

estimation than the Garcia-Malea model because the 

Garcia-Malea model could not predict the reduction in 

growth rate of Synechocystis species at high irradiance. 

Chlorella pyrenoidosa shows maximum growth rate. 

 
Table 1. Microalgal growth kinetic models for a function of light intensity: Values of μmax and KI 

S. no. 

 

Algae species Values of different parameters References 

μmax KI 

1 Spirulina platensis 

 

2.0 d−1  

 

9.2 klx S. Huang et al.  

1986. 

2 Euglena gracilis 

 

0.06 h−1  

 

178.7 μ mol photon m−2 s−1 S. Chae et al. 

2006. 

3 Chlorella vulgaris 

 

0.040 h−1 

 

2.8 mW L−1 D. Sasi et al. 2011 

4 Chlorella pyrenoidosa 0.116 h−1  

 

1011 lx M.E. Martínez,  

(1997) 93–98. 

5 Chlorococcum littorale 0.134 h−1  95.8 μmol photon m−2 s−1 N. Kurano et al. 2005 
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Table 2. Microalgal growth kinetic models for a function of light intensity: Values of different parameters 

 

 

6 Chlorella pyrenoidosa 

 

0.076 h−1  

 

708 lx M.E. Martínez et al 1997 

7 Chlorococcum littorale 

 

0.116 h−1  

 

114 μmol photon m−2 s−1 N. Kurano et al. 

2005. 

8 Chlorella pyrenoidosa  

(at 25 °C) 

 

2.48 d−1 

 

5.7 μE m−2 d−1 

 

N. Kurano et al. 

2005 

9 Chlorococcum littorale 

 

0.115 h−1  

 

150 μmol photon m−2 s−1 N. Kurano et al. 

2005 

13 Chlorococcum littorale 

 

0.134 h−1  

 

Iopt = 505 μmol photon m−2 s−1 N. Kurano et al. 

2005 

14 Cryptomonas 976/67 

 

1.37 d−1 at 26 °C 

 
 

NA 

A. Ojala 

 (1993)  

15 Cryptomonas 976/62 

 

0.72 d−1 at 21 °C  

 

Iopt b 100 μmol photon m−2 s−1 A. Ojala,  

 (1993)  

S. no. 

 

Algae sp. μmax Values of different parameters References 

1 Spirulina platensis 

 

2.06 × 10–5 s−1  Ik = 160 μE m−2 s−1  

n = 1.49 

A. Concas 2013 

2 Phaeodactylum tricornutum 0.075 h−1  

 

Ik = 120 μE m−2 s−1 

n = 2.02 

R.L.L. Ribeiro et al.  2009  

3 Chlorella pyrenoidosa 

 

 

NA 

K = 0.8 kg mol−1 

X = 0.01905 kg m−3 

V = 0.00075 m3 

Imax = 0.13 mol kg−1 d−1 

N. Kurano et al. 

2005 

4 Spirulina platensis 

 

5.4849 h−1  KI = 959.2 W m−2  

Ki,L = 0.5817 m2 W−1 

H.Y. Lee et al. 1987 

 

5  Spirulina platensis 

 

 

 

NA 

KI = 177.9 m2 W−1 h−1  

KiL = 0.1083 m2 W−1 h−1 

H.Y. Lee et al. 1987 

 

6 Porphyridium cruentum 

 (at 30 °C) 

 

1.06 d−1  

 

Iopt = 350 μmol photon  m−2 s−1  

β = 2.06  

D. Dermoun 

 1992. 

7 Chlorella pyrenoidosa 

 

2.0 d−1 Iopt = 275 μE m−2 s−1 α = 0.05 D. Dermoun 

 1992. 

8 Phaeodactylum tricornutum 

 

0.063 h−1  

  

Ik = 94.3 μE m−2 s−1 

Ki,L = 768.4 μE  m−2 s−1 

a = 3.04  

b = 1.209  

c = 514.6 

F.G. Acién-Fernández,  

1998. 

9 Phaeodactylum tricornutum 

 

 0.063 h−1  

 

Ik = 94.3 μE m−2 s−1 

Ki,L = 3426 μE  m−2 s−1 

a = 3.04  

b = 1.209  

c = 514.6  

E.M. Grima et al. 

1999 

10 Phaeodactylum tricornutum 

 

0.00385 h−1  

  

Ik = 94.3 μE m−2 s−1 

Ki,L = 2000 μE m−2 s−1 

a = 3.04  

b = 1.209  

c = 514.5 

R.L.L. Ribeiro, A.B. 

Mariano,  

(2008)  

11 Haematococcus pluvialis 

 

0.11 h−1 

 

a = 2.32 

b = −0.00008 μE m−2 s−1 

c = 98.7 μE m−2 s−1 

d = 0.034 

R.L.L. Ribeiro, A.B. 

Mariano,  

(2008) 

12 Porphyridium cruentum 1.415 d−1  

  

Iopt = 385 μE m−2 s−1 

Ie = 3.5 μE m−2 s−1 

A. Muller-Feuga et al. 2003 

13 Chorella sp.  

(light limitation) 

0.12 h−1 α′ =91 μE m−2 s−1 

k = 0.24 

A. Muller-Feuga et al. 2003 
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IV. CONCLUSION AND FUTURE SCOPE 

 

Growth of microalgae is affected by various factors. 

Several growth kinetic models have been developed to 

describe the rate of microalgae growth. In this paper, light 

factor model was considered. Appropriate concern of co-

limiting factors, suitable mixing of light and temperature, 

incorporation of species diversity in the growth model. 

There are numerous models considering multiple factors. 

The uses of the models considering multiple factors are 

limited due to their complex mathematical forms. This 

paper identified several challenges in the development of 

algae growth models. Following conclusions have been 

drawn: 

 Forthcoming research should focus on developing a 

constraint for model selection based on the 

understanding of microalgae growth under different 

environmental conditions.  

 The light intensity and temperature expressions do not 

consider temporal variations in sunlight intensity and 

culture temperature. These elements play a crucial 

role in outdoor mass cultivation.  

 Future research must provide a better mathematical 

expression of light by considering light attenuation 

and temporal variation of light intensity if natural light 

is used.  

 

V. NOMENCLATURE 

a Fitting constant 

b  Fitting constant 

c Fitting constant  

d Fitting constant 

Cn Algae nitrogen content per unit algal dry weight 

Cnmax  

 

Maximum algal nitrogen content or nitrogen content of the functional substance per unit algal 

dry weight  

Cp  Algal phosphorus content per unit algal dry weight 

f(Iav) A function of average light intensity 

f(T) A function of temperature 

I Incident light intensity  

Iav Average irradiance in the culture  

Ic Light intensity at the center measured from one direction with light shining from both 

direction  

Ie Average irradiance at the energy compensation point  

Iin Light intensity at the front with shining from one side  

Ik Microalgal affinity for light  

Imax Maintenance rate  

Iopt I at μ = μmax 

Iout Light intensity at the back with shining from one side 

K Proportionality constant which is similar in meaning to growth yield 

Ka Attenuation constant 

Kc Curve fitting constant  

KI Photo saturation constant 

Ki Inhibition constant  

Ki, CO2 Inhibition constant of CO2  

Ki,L Photoinhibition constant  

Ki,OC Sodium acetate inhibition constant of cell growth   

KS,nu Monod half-saturation constant of limiting nutrients  

KS Monod half-saturation constant  

KS, CO2 Monod half-saturation constant of CO2  

KS, N Monod half-saturation constant of nitrogen 

KS,OC Monod half-saturation constant of sodium acetate  

KS,P Monod half-saturation constant of phosphorus  

k Parameter 

kd Consumption rate of photosynthesis products per unit dry weight of the functional substance 

m Shape parameter 

n  Exponent  

p Length of light path inside the photobioreactor  

Pho photosynthetic rate  

Phomax Light saturated photosynthesis rate 

Q Nutrient cell quota  
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QN N Cell quota 

Qmax Maximum nutrient cell quota for algal existence  

Q max,N Maximum N cell quota for algal existence  

Q max,P Maximum P cell quota for algal existence  

Q min Minimum nutrient cell quota for algal existence 

Q min,N Minimum N cell quota for algal existence 

Q min,P Minimum P cell quota for algal existence  

QP P cell quota  

S Nutrient concentration  

SCO2 Carbon dioxide concentration in the medium  

SN Nitrogen concentration in the medium  

Snu Limiting nutrient concentration  

SOC Sodium acetate concentration  

SP Phosphorus concentration in the medium  

T Temperature  

Tref Reference temperature (20
°
C) 

V Liquid volume in the reactor 

VF Illuminated volume fraction of the reactor 

X Cell concentration  

x  Carbon subsistence quota  

xe* Steady state fraction of functional activated PSUs under continuous illumination 

vc Yield coefficient of the functional substance from the storage substance 

α Initial slope of the light response curve  

α' Parameter  

αCmax Maximum affinity for growth at carbon dioxide limiting condition  

αPmax Maximum affinity for growth at phosphorus limiting condition  

ϴ Temperature coefficients for growth 

ϕ Quantum efficiency  

μ Specific growth rate  

μc,max Maximum of synthesis rate of the storage substance per unit dry weight of the functional 

substance 

μmax Maximum specific growth rate  

μ max, min The most limiting nutrient's maximum growth rate  

μm1 Maximum value for μ  

μm2 Specific growth rate at the absence of nutrient in the culture medium  

μm3 Specific growth rate at high nutrient concentration in the culture medium  

μ′max Hypothetical maximum growth rate at infinite Q  

μ′max, min Hypothetical maximum growth rate at infinite Q for the most limiting nutrient  

μ*max Maximum growth rate at the maximum value of Q 
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