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Abstract— This paper presents a novel approach to solving Multi-Objective Geometric Programming Problems (MOGPP) using 

a Logarithmic Penalty Function (LPF) method. We introduce a transformation technique that converts the original multi-

objective geometric programming problem into an equivalent single-objective problem. The proposed method is shown to 

satisfy Karush-Kuhn-Tucker (KKT) conditions, ensuring optimality of the solutions. Numerical examples are provided to 

demonstrate the effectiveness of the approach in comparison to existing methods. The proposed method shows improved 

convergence and solution quality across a range of test problems. 
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1. Introduction 
 

Multi-objective optimization is crucial in various real-world 

applications where decision-making involves conflicting 

objectives. Geometric programming, with its emphasis on 

inequalities and power functions, is a powerful mathematical 

framework for modelling many engineering and economic 

systems. However, addressing multi-objective geometric 

programming (MOGP) problem remains challenging due to 

the complexity of the handling multiple objectives 

simultaneously. 

 

This paper will examine the following multi-objective 

geometric programming problem: 

 

 Find  

 so as to  

min: (x)=            1  

subject to   (P0) 

               2  

                                  3 

where  for all k and t are positive real numbers and  

and  are real numbers for all i, k, t, j. 

= number of terms present in the  objective function.  

= number of terms present in the  constraint.  

 

The multi-objective geometric program described above 

includes p minimization objective functions, m inequality 

constraints, and n strictly positive decision variables. 

 

2. Related Work  
 

Geometric programming problems (GPP) have been a subject 

of interest and application across various disciplines for over 

seven decades. The initial efforts to model GPP within the 

framework of nonlinear optimization can be traced back to 

the work of [1], who laid the foundational groundwork. 

Subsequently, [2] extended this work, proposing a specific 

algorithm aimed at solving GPP. 

 

Since then, GPP has found applications in a wide range of 

fields, each contributing to its theoretical development and 

practical implementation. In the realm of communication 

systems, for instance, [3] explored its implications, while in 

engineering design, [4] applied GPP principles. Similarly, [5] 

delved into resource allocation problems, [6] tackled circuit 

design challenges, [7] addressed project management 

concerns, and [8] examined inventory management issues, all 

within the context of GPP. 

 

However, when dealing with multiple objectives within the 

GPP framework, the problem transitions into the domain of 

Multi-Objective Geometric Programming Problems 

(MOGPP). Within the literature, two predominant solving 

approaches emerge: the fuzzy GPP method and the weighted 

mean method. [9] contributed to the former. 

 

Despite the breadth of research, tackling optimization 

problems, particularly constrained ones, remains challenging. 

To address this, the penalty function method emerged as a 

pivotal approach. Originating from Zangwill's seminal work 

in 1967, this method integrates constraints into the objective 
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function by incorporating penalty terms, thereby ensuring 

adherence to constraints. Subsequent studies by [10] 

demonstrated the efficacy of this approach, highlighting zero-

duality gaps between optimization problems involving invex 

functions and their Lagrangian dual problems. 

 

Building upon this foundation, researchers further refined the 

penalty function method. [11] enhanced the Courant-Beltrami 

penalty function, while [12]) extended its applicability to 

conic convex programs [13] proposed penalty function 

approaches for linear bilevel multi-objective problems, 

expanding the method's utility. 

 

Additionally, the logarithmic penalty function method 

emerged as a robust tool for addressing nonlinear 

programming problems. Another study introduced a 

logarithmic penalty function approach tailored to handle 

irregular features in optimization problems, albeit limited to 

equality constraints. In the context of multi-objective 

geometric programming, the logarithmic penalty function 

method has garnered attention due to its versatility and 

applicability across various domains. However, challenges 

such as parameter selection and sensitivity to objective 

function scaling persist [14]. 

 

To address these challenges, researchers have proposed 

innovative methodologies. For instance, a generalized 

logarithmic penalty function method for smooth nonlinear 

programming problems involving invex functions, 

showcasing its effectiveness compared to alternative 

approaches was initiated by [15]. 

 

Despite these advancements, further research is warranted to 

explore the full potential of penalty function methods in 

addressing multi-objective geometric programming problems. 

Drawing inspiration from prior works, our approach 

combines multi-objective functions with the logarithmic 

penalty function method, emphasizing the need for tailored 

parameterization to the original geometric programming 

problem. 

In this paper, we propose a logarithmic penalty function 

method to tackle MOGP problem efficiently. 

 

3. Theory/Calculation 
 

3.1 Preliminary definitions. 

Definition 1:  is a pair to optimal solution of MOGPP 

(1) if there does not exist another feasible solution  such 

that.  

 at least 

one j. 
 

Definition 2:   is a weakly pare to optimal solution of 

MOGPP (1.1) if there does not exist another feasible solution 

 such that   
 

Definition 3: A continuous function p :  →R satisfying the 

following conditions: 

(a) p(x) = 0 if x is feasible (in other word, if (x) ≤ 0)  

(b) p(x) > 0 otherwise (in other word, if (x) > 0) 

Is said to be a penalty function for constrained optimization 

problem. 

 

Conventionally, a penalty function approach introduced by 

Zang will work for both equality and inequality constraints 

was popularly known as absolute value penalty function, it is 

of the following form: 

p(x) = +                       4 

 

Note that: (x) =max{0, (x)} and (x) =0 (equality 

constraints),  

 

3.2 The logarithmic penalty method  

A constrained optimization problem can be converted into a 

single unconstrained problem in single-objective 

programming or into a sequence of unconstrained problems 

for multi-objective optimization using a penalty function. By 

adopting the logarithmic penalty function proposed by 

Hassan and Baharum, we modified the Courant–Beltrami 

penalty function for equality constraints into the following 

form 

 ²               5 

 

for inequality constraints, the modified Courant– Beltrami 

penalty should be constructed as follows: 

              6 

 

This leads to the following logarithmic penalized 

optimization problem for multi-objective fractional 

programming(P); 

                              

       7 

The solutions to the minimization problem (P0) can be fully 

described in terms of the minimizers of the logarithmic 

penalty function when the penalty parameter exceeds a 

certain appropriate threshold. For a sufficiently large value of 

c, and under appropriate assumptions on the functions in (P0), 

a KKT point minimizes the auxiliary function (x) if and 

only if it also minimizes the optimization problem (P0). 

 

4. Experimental Method/Procedure/Design 

 

4.1 Kuhn–Tucker multiplier for logarithmic penalty 

function 

In any nonlinear optimization problem, the Karush–Kuhn–

Tucker (KKT) conditions represent the first-order necessary 

criteria for optimality, provided that certain constraint 

qualifications are met. However, Courant–Beltrami penalty 

function may not be differentiable at a point ) = 0 for 

some . But for the constrained optimization problem 

both objective function and constraints may be partially 

differentiable on  while at the same time the penalized 

problem is not, being differentiability is not among the 

properties of . Therefore, some additional 

hypothesis may be imposed on the constraint function  , 

i.e. if the constraint  has continuous first-order partial 
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derivatives on , for this reason [ )]  admit the same. 

Therefore, 

 

[ )]² =2[ )]  )                                            8 

 

Where r is the multi-variable indexes.  

Considering Equation (1.8), if p(x) :  →  is a 

logarithmic penalty functions and the constraints  has 

continuous first-order partial derivative on ,then 

 

=                9 

 

From (9), we can define Kuhn–Tucker multiplier as follows: 

   =               10 

 

Theorem 1: Let  be the optimal solution in the problem( ) 

and assume that any suitable constraint qualification in (2.0) 

be satisfied at . Then there exists a Lagrange multiplier 

∈   such that; 

∇ ( )+ ∇ ( ) =0,  11                                

(i) ( )  ≤  0,      

(ii)    ( )=0,j∈J,                                                            

(iii)   ≥ 0                            

 (iv)     

 

The conditions (11) are necessary for a local minimum of 

problem. The conditions are called Kuhn-Tucker conditions. 

The Kuhn tucker conditions satisfy the necessary and 

sufficient conditions for local optimum point to be a global 

optimum point. 

 

4.2 The logarithmic   penalty method for a geometric 

optimization problem 

 The general formation of a multi-objective geometric 

programming problem MOGPP can be expressed as; 

         

      ( ) 

Subject_to;  

 
Where , and  are the objective functions, 

 are the constraint functions, and  are the non-zero 

vector of decision variables. i.e  

To transform the constraints multi-objective problems into an 

unconstrained form, we consider the generalize logarithmic 

penalty function for equality and inequality constraints 

introduce by Hassan and Baharum, (2019a). The generalize 

logarithmic penalty function defined as: 

 

  

 where  

We construct a scalar objective function by combining the 

multiple objectives: Transforming a constrained optimization 

to a single unconstrained problem by using weighted sum 

method: 

            12 

 

Subject to;  
  

  

This leads to the following logarithmic penalized 

optimization problem for multi-objective geometric 

programming ( ); 

           13 

 

By updating the parameter , the sequence solution will 

approach the Pareto optimal set of the original multi-objective 

geometric optimization problem.  

                    

The penalty function algorithm involves solving a sequence 

of unconstrained sub problems to converge to the constrained 

optimum. The algorithm iteratively minimizes the penalized 

objective function while adjusting the penalty parameter. 

 

 Algorithms  

Step 1: Initialization  

• Choose an initial guess ∈   

• Set an initial value for the penalty parameter,   

Step 2: Iterative Optimization Process  

1. Define the Penalized Objective Function:  

• For each iteration , define the penalized objective 

function:  

2. Solve the Unconstrained Problem:  

• Minimize the penalized objective function  using 

fmincon in Matlab.  

3. Check Constraints:  

• Evaluate the constraints at the current solution: ( )  

4. Update Penalty Parameter:  

• If any constraints are violated (i.e., if any ( ) > ): 

 * Increase the penalty parameter by  set  

 

 • If all constraints are satisfied:  

* Optionally decrease the penalty parameter to allow 

exploration of more feasible regions. 

5. Convergence Check: 

• Determine if the algorithm has converged by checking if 

changes in the solution or objective values are below a 

predefined threshold. If convergence is achieved, stop the 

process. 

Step 3: Output Results 

• Once convergence is reached, return the optimal solution  

and its corresponding objective values. 

 

5. Results and Discussion 
 

5.1 Numerical examples. 

Example 1: To illustrate the proposed model, we consider the 

following problem which is also used by Ojha and Biswal 

(2010).  

 Min: (x)=4  

Max: (x)=  

subject to  
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Now the problem can be written as:  

Min: (x)=4  

Min: (x)=  

subject to  

 

 

 
Now, we construct the unconstrained multi-objective 

geometric programming based on logarithmic penalized 

optimization problem as in Equation (2.4) 

 
 Where  
 , . 

Therefore, we are to find a pareto optimal for the following 

unconstrained objective functions: 

 

         (4.1) 

Where  

Now (4.1) will be solved using LPF approach.  

 

For the weights w1 = w2 =0.5 

 
 

By applying algorithm with a termination scalar .  

• a starting point  =(1,1,1,1).  

• a penalty parameter =1  

• a scalar β =10. In each iteration we calculate the minimum 

(4.2) depending on the current c value. Every optimal 

solution is a starting point in the next iteration. The loop will 

stop when violation is smaller than ϵ.  

 

All calculations are done in MATLAB using fmincon 

minimization function. It can be seen in the Table1 and 

Figure 1 as the parameter increases the solution converge at c 

= ( ), where the constraints satisfied and algorithm 

terminate. 

Finally At iteration 6 the solution converges and satisfy (2.1) 

KKT condition at  =(5.0800,  2.6841 , 7.3339,  5.7455) with 

lagranges multiplier μ=[1.4271,   7.2199] which is the pareto 

optimal solutions points of the given MOGPP for the weight 

 = 0.5 and     = 0.5 and optimal values are =87.9873,  

=0.0100. 

 

Table 1: Solution for    = 0.5 and     = 0.5, using the logarithmic penalty function approach. 

Iterations        
0 1 1.1836    0.5048 1.2794  0.2265 15.3525  1.3083 

1 10 4.1888   2.1650   5.8585   4.2315 70.3018   0.0188 

2 100 4.8974  2.5774  7.0359   5.4615 84.4307  0.0113 

3 1000 5.0611  2.6697 7.2962 5.7139 87.5537  0.0101 

4 10000 5.0817   2.6812  7.3287  5.7448 87.9432  0.0100 

5 100000 5.0839  2.6824   7.3319   5.7481 87.9833  0.0100 

6 1000000 5.0800    2.6841 7.3339  5.7455 87.9873  0.0100 

 

 

 
Figure 1: Convergence Plot 

 
Table 2: The solution from the numerical approach 

        
0.1 0.9 5.0834   2.6822  7.3335   5.7477 87.9873 0.0100 

0.2 0.8 5.0831   2.6827 7.3323  5.7477 87.9867   0.0100 

0.3 0.7 5.0837   2.6827   7.3322   5.7481 87.9861   0.0100 

0.4 0.6 5.0839   2.6826   7.3321   5.7482 87.9862   0.0100 

0.5 0.5 5.0800 2.6841  7.3339 5.7455 87.9873 0.0100 

0.6 0.4 5.0838  2.6824  7.3318   5.7480 87.9824 |  0.0100 

0.7 0.3 5.0832  2.6825  7.3322   5.7475 87.9815 |  0.0100 

0.8 0.2 5.0835   2.6825   7.3316   5.7477 87.9806 |  0.0100 

0.9 0.1 5.0836   2.6823   7.3316   5.7477 87.9797 |  0.0100 

 

5.2 Comparison with Weight Mean Method  

As shown in Tables 3, The comparison highlight that all 

methods provided valid solutions, the logarithmic penalty 

function’s ability to yield a slightly better result indicate its 

potential for further exploration in similar optimization 

problems. 
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Table 3: Comparison of Solutions with weighted mean method 

 Variables Combine Objective Values 

Weights Weight Mean Method Logarithmic Penalty Function method Weighted 

Mean 

LPF Method 

          Z P 

0.1 0.9 5.08405 2.68255 7.33231 5.74836 5.0834 2.6822 7.3339 5.7477 8.80776 8.8072 

0.2 0.8 5.08405 2.68255 7.33231 5.74836 5.0831 2.6830 7.3323 5.7477 17.60555 17.6053 

0.3 0.7 5.08405 2.68255 7.33231 5.74836 5.0837 2.6827 7.3322 5.7481 26.40333 26.4031 

0.4 0.6 5.08405 2.68255 7.33231 5.74836 5.0839 2.6826 7.3321 5.7482 35.20111 35.2007 

0.5 0.5 5.08405 2.68255 7.33231 5.74836 5.0839 2.6825 7.3321 5.7482 43.99888 43.9983 

 

The comparison highlight that all methods provided valid 

solutions, the logarithmic penalty function’s ability to yield a 

slightly better result indicate its potential for further 

exploration in similar optimization problems. The logarithmic 

penalty function approach provided solutions that were 

equivalent to those obtained using the weighted mean 

method, demonstrating high accuracy. The approach showed 

faster convergence. making it more efficient for large-scale 

problems. The penalty function approach effectively handled 

constraint violations, ensuring feasible solutions throughout 

the optimization process. 

 

6. Conclusion and Future Scope  
 

In this paper, we presented a novel logarithmic penalty 

function approach for solving multi-objective geometric 

programming problems. The proposed method transforms the 

original MOGP problem into an equivalent single-objective 

problem and applies a logarithmic penalty function to handle 

constraints effectively. 

 

We proved that the proposed approach satisfies the KKT 

conditions, ensuring the optimality of the solutions. 

Numerical examples demonstrated the effectiveness of our 

method across a range of problem complexities. Comparisons 

with existing methods showed that our approach consistently 

achieves optimal solutions while maintaining competitive 

computational efficiency. 

 

Future work could focus on extending this approach to handle 

more complex constraints and exploring its applicability to 

real-world engineering and economic problems. 

 

Data Availability  

The research is based on LPF  and numerical simulation has 

provided all the data needed for clarity. 

 

Study Limitations: None 

 

Conflict of Interest 

All Authors declare that they do not have any conflict of 

interest. 

 

Funding Source: None 

 

Authors’ Contributions  

All authors reviewed and edited the manuscript and approved 

the final version of the manuscript. 

 

Acknowledgements 

None 

 

References 
 
[1] T. Antczak, “The l1 penalty function method for non-convex 

differentiable optimization problems with inequality constraints”, 

Asia-Pacific Journal of Operational Research, Vol.27, No.5, 

pp.559–576, 2010. 

[2] R., Azari, S. Garshasbi, “Multi-objective optimization of building 

envelope design for life cycle environmental performance”, Energy 

and Buildings, Vol.126, No.2, pp.524–534, 2016. 

[3] M. Chiang, “Geometric programming for communication systems”, 

Foundations and Trends® in Communications and Information 

Theory, Vol.2, No.2, pp.100–154, 2005. 

[4] R. Creese, “Geometric programming for design and cost optimization 

2nd edition”, Springer Nature, 2022. 

[5] R. J. Duffin, E. L. Peterson, C. Zener, “Geometric programming: 

theory and application”, 1
st
 Edition, 1967. 

[6] E. Ernst, M. Volle, “Generalized courant–beltrami penalty functions 

and zero duality gap for conic convex programs”, Journal of 

Natural Sciences, Vol.17, No.4, pp.945–964, 2013. 

[7] M. Hassan, A. Baharum, “Modified courant-beltrami penalty 

function and a duality gap for invex optimization problem”, 

International Journal for Simulation and Multidisciplinary Design 

Optimization, Vol.10, No.10, pp.12-18, 2019. 

[8] S. Islam, “Multi-objective geometric programming problem and its 

applications”. Yugoslav journal of operations research, Vol.20, 

No.2, 2016. 

[9] Y. Karimian, A. Mirzazadeh, S. H. Pasandideh, M. Namakshenas,. 

“A geometric programming approach for a vendor managed 

inventory of a multiretailer multi-item epq model”. RAIRO-

Operations Research, Vol.54, No.5, pp.1401–1418, 2020. 

[10] A. S. H. Kugele, W. Ahmed, B. Sarkar, “Geometric programming 

solution of second degree difficulty for carbon ejection controlled 

reliable smart production system”. RAIRO-Operations Research, 

Vol.56, No.2, pp.1013–1029.14, 2022. 

[11] J. Le Ny, G. J. Pappas, “Geometric programming and mechanism 

design for air traffic conflict resolution”. In Proceedings of the 

American control conference, Vol.5, No.1, pp.3069–3074, 2010. 

[12] A. K. Ojha, K. Biswal, “Multi-objective geometric programming 

problem with weighted mean method”, Journal of Operations 

Research, Vol.7, No.2, pp.10-15, 2010. 

[13] V. M. Preciado, M. Zargham, “Optimal resource allocation for 

network protection: A geometric programming approach”, IEEE 

Transactions on Control of Network 15 Systems, Vol.1, No.1, 

pp.99–108, 2014. 

[14] W. I. Zangwill, “Non-linear programming via penalty functions”, 

Management science, Vol.13, No.5, pp.344–358, 1967. 

[15] C. Zener, “A mathematical aid in optimizing engineering designs”, 

Proceedings of the National Academy of Sciences, Vol.47, No.4, 

pp.537–539, 1961.  
 

 

 

 



Int. J. Sci. Res. in Multidisciplinary Studies                                                                                           Vol.10, Issue.11, Nov. 2024   

© 2024, IJSRMS All Rights Reserved                                                                                                                                           131 

AUTHORS PROFILE  

Walid HassanJibrin earned his BSc., and currently studying 

M. Sc., in in Mathematics from YUMSUK Kano in 2014, and 

2024, respectively. He is currently working as a Lecturer in 

Department of Basic Science and Remedial studies from 

Kano State polytechnic, Kano since 2015. His main research 

work focuses on Operations Research. He has 10years of 

teaching experience and 2 years of research experience. 

 

Mansur Hassan earned his Bsc., from BUK Kano, M. Sc., 

from Jordan University of Science and Technology and Ph.D 

from University Sains Malasia. in Mathematics from in 2007, 

2011, and 2017, respectively. He is currently working as a 

Senior Lecturer in Department of Mathematics from 

YUMSUK, Kano since 2013. He has published more than 10 

research papers in reputed international journals and 

conferences including IEEE and it’s also available online. His 

main research work focuses on Operations Research. He has 

11 years of teaching experience and 8 years of research 

experience. 

 

Kabiru Suleiman earned his Bsc, Msc and PhD Mathematics 

from UDUS Sokoto in 1995, 2003 and 2010 respectively. He 

is currently working as a an Associate Professor in 

Department of Mathematics f YUMSUK, Kano State, since 

2020. He is a member of TRCN since 2003, He has 17 years 

of teaching experience in Secondary Schools and Tertiary 

institutions combined and 14 years of research experience. 


