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Abstract: In this paper, we d iscuss mixed type i.e. summat ion-integral type operators having the Baskakov basis function in 

summation and integration both. Especially, we consider here the linear combination o f modified Baskakov operators to get 

better order of approximation. We find central moments and some other basic results for these operators, and obtain the Inverse 

and Saturation results with better approximation. 
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I. INTRODUCTION 

 

In the year 1996, Gupta-Srivastava [3] and Sinha et al. [5] 

estimated the rate of convergence for these operators  for 
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is Baskakov basis function. 

These operators   (   ) are termed  as modified Baskakov 

operators. To get better approximat ion in simultaneous 

approximation, we extend this study by taking linear 

combination   (     ) of the operators     
(   )  as  

described in Agrawal-Mohammad [1]  such as 
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integers. Now, let   
[   )  {   [   ) | ( )|  

             } and the norm of     on this space is 

defined by  ‖ ‖
          

| ( )|   . It  can easily be  

verified that for       
[   ) , the operators (1.2) are well 

defined. 

       We take kernel of    as follows 
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Then we have our operators (1.1) with kernel  
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It is clear that      (   )   . In this paper, we study 

simultaneous approximation properties for the operators 

  (     )  defined by (1.2) i.e . the approximation of 

derivative of function     by the corresponding order 

derivatives of operators      (     ). The inverse theorem 

infers the nature of smoothness of functions from its order 

of approximation and the saturation theorem provides upper 

bounds on the possible approximation order. In this paper 

these results are proved for   (     )  in simultaneous 

approximation using the technique of Steklov Mean. 

 

II. AUXILIARY RESULTS 

 

In this section we obtain some basic results necessary to 

prove our main results. 

Lemma1.  If fo r            the     order moment is 

defined as 
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and for      , there is the recurrence relation 
(     )      

( )
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for all   [   )  Further, order of     
( )  is of 

 ( 
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⁄

), where [ ]  is the greatest positive integer. 

         

          Proof of this lemma is left on forthcoming 

researchers. 

  

Corollary 2.1: Let         Moreover, let    (   )  be 

fixed. Then for every positive integer    , there exists a 

constant     independent of   such that 
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Lemma2. If         then for     [   )  and 
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Lemma3. There exists polynomial       ( ), independent of 

  and  , s.t. 
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Theorem 2.1: For      [   ) , if  
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exists at a 

fixed point   (   ) then for   being sufficiently large 

and a certain polynomial  (       ) in   of degree at  the 

most   
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         The proof of th is lemma can be seen in earlier 

studies. 

 

Theorem 2.2 : If for     [   ),   
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  exists and is continuous on (       )  
(   )      then for sufficiently large   , we have  
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Here      
(     )      

(       )  and 

 ( 
(   )

      )  is the modulus of continuity on the 

interval   (       ) . 

 

Its proof also can be seen in earlier studies for these 

operators. 

 

III. MAIN RESULTS 

 

 In this section we show the inverse and saturation 

estimates as in [3] [4] for the linear combination o f 

modified Baskakov operators in the theory of simultaneous 

approximation. 

 

Inverse Theorem 

Theorem 3.1: If       and       [   ) , the 

following statements hold the assertion: ( )  (  )    
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  where    ̅         is the Steklov mean of  (      ) 

corresponding to  ̅. 
      Now, by using Lemma 3, we have 
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where    is a constant. Next  y Taylor’s expansion  of   ̅, 
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It holds for sufficiently s mall values of    , Therefore 

from (3.1) and Steklov 

Mean, we have 

         

( )
(  ̅        ) 

   { 
  (   )  

        (    

   (      ))       ( ̅        )} 
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by the definition of Zygmund class     (           
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of a function, we get  
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      Thus to prove our inverse theorem, we have shown 

the validity of (3.1) under the hypothesis  ( ). 

 

Saturation Theorem 
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In order to show ( )  (  )   we have to prove that (   )  
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