
© 2024, IJSRMS All Rights Reserved 29

International Journal of Scientific Research in

Multidisciplinary Studies
Vol.10, Issue.7, pp.29-45, July 2024

E-ISSN: 2454-9312 P-ISSN: 2454-6143

Available online at: www.isroset.org

Research Article

Assessing the Vulnerabilities of Online Digital Mobile Banking Applications

in Nigeria

Grace Bunmi Akintola
1*

1Dept. of Cyber Security, Nigerian Defence Academy, Kaduna, Nigeria

*Corresponding Author: gbogundele@nda.edu.ng

Received: 10/May/2024; Accepted: 11/Jun/2024; Published: 31/Jul/2024

Abstract— In this digitalized era, people prefer conducting their banking transactions and services remotely, anywhere, any day,

and anytime without visiting their local banks physically. This has caused a great increase in the utilization of mobile devices by

users such as Android phones on which mobile bank applications are being installed to carry out financial transactions. Despite

the numerous benefits of using various mobile banking applications, there are huge issues concerning security and privacy

aspects that can be leveraged by malicious hackers such as task hijacking which involves taking over the legitimate user’s

activity to perform further cyber attacks, thereby, causing harm (such as Denial of Service attacks) to the users. Therefore, this

paper focuses on assessing the vulnerabilities of twelve (12) selected Nigerian digital banks’ mobile applications installed on an

Android mobile device using the Ostorlab which is a mobile security testing tool. The selected digital banks’ mobile apps include

Kuda, moniepoint, fundall, carbon, sparkle, vbank, palmpay, opay, mintyn, eyowo, ALAT and Fairmoney banks. A total number

of 32 vulnerabilities were discovered generally while sixteen (16) vulnerabilities were most commonly found across all the

mobile applications. Vbank was discovered to have the maximum number of vulnerabilities with 68.75% while Fundall bank had

the least vulnerabilities with 46.88%.

Keywords— banking, mobile bank application, security, privacy, vulnerabilities, digital banks, Ostorlab

1. Introduction

Banking is described as an industry that controls credit

facilities, cash storage, investments, and various financial

transactions. As a key driver of many economies, it helps in

conveying funds to borrowers with productive investments.

With the appearance of digital technologies, the financial

industry has undergone a dramatic change over the last few

years [1]. On the high demand of customers for a more

customized, flexible, and smooth-running banking

experience, digitalization has become essential for banks to

remain competitive. This evolution has proceeded with the

growth of new products and services, including mobile

banking, online payments, and robot-advisory [2].

The inception of digital banking has revolutionized the

financial services industry, reshaping how banks interact with

customers and conduct business. This transformation is not

merely technological but a fundamental change in the

banking paradigm, affecting customer behavior, business

models, and regulatory landscapes. Digital banking's

significance lies in its ability to enhance accessibility,

efficiency, and innovation in financial services, making it a

critical area of study in contemporary banking and finance

[3].

In Nigeria, digital financial services have profoundly

influenced the economy. Research shows that services such as

mobile banking and point-of-sale transactions have positively

impacted Nigeria's Gross Domestic Product (GDP),

highlighting the economic significance of digital banking

innovations. This impact is especially noteworthy in

developing economies, where digital banking can catalyze

economic growth and financial inclusion [4]. Over the past

decade, the digital revolution has significantly impacted

banking. Digital banking platforms, including mobile

applications and websites, have proliferated, offering

consumers and banks an alternative to traditional brick-and-

mortar branch networks. This technology has emerged as the

primary means through which consumers access financial

services and banks deliver them. [5].

The numerous benefits of adopting digital banks have greatly

influenced the growing number of users of digital banks'

mobile applications for their day-to-day financial transactions

at any time, any day, and anywhere. However, despite the

digital banks’ mobile application usefulness, there’s an

increasing number of security vulnerabilities present in the

digital banks’ mobile apps which can be easily exploited by a

malicious hacker to inappropriately get hold of legitimate

users’ sensitive information, thus, using them to launch further

http://www.isroset.org/
https://orcid.org/0009-0007-3818-3606

Int. J. Sci. Res. in Multidisciplinary Studies Vol.10, Issue.7, Jul. 2024

© 2024, IJSRMS All Rights Reserved 30

cyber-attacks. Therefore, this paper aims to assess the

vulnerability of twelve selected online digital mobile banking

applications (carbon, sparkle, ALAT, FairMoney, Fundall,

palmpay, Opay, Kuda, Vbank, moniepoint, eyowo, and

Mintyn banks) in Nigeria using the Ostorlab security testing

tool in which the obtained results were analyzed to identify

the bank with the highest vulnerabilities to the one with the

least vulnerabilities as well as countermeasures to be applied

and suggesting further works in using other security testing

tools to generate better results.

This research paper is organized into several sections. Section

1 provides an introduction to banking and digital banking.

Section 2 covers related work, including an overview of

digital banks, mobile devices, and applications, and various

techniques for analyzing digital banks' mobile apps. Section 3

details the research methodology, explaining the procedures

involved in adopting the Ostorlab tool to analyze the mobile

applications of twelve selected Nigerian digital banks.

Section 4 discusses the generated results from the analyzed

mobile application files, highlighting identified vulnerabilities

and countermeasures. Lastly, Section 6 concludes the

research with future recommendations.

2. Related Work

2.1 Overview of digital banks

The world has become digitalized, specifically in the banking

sector. It has gradually moved from traditional banking to

digital banking as it makes it easier for people to make all

transactions with their mobile devices instead of the physical

presence of users at the local banks [6]. Another benefit of

adopting digital banking was the comfort it gave in

performing financial transactions at any time [7]. Digital

banking also helps to elevate the banking sectors’ efficiency

and profitability as well as increase the 4Cs which means

Cost, Convenience, Control, and Customer satisfaction which

was its primary goal. Governments are advocating for

cashless, paperless, and faceless transactions in the economy.

Digital payment systems entail key stages: signing up, billing,

selecting a payment method, and confirming payments. The

term "digital" refers to data storage as digital signals,

simplifying banking operations and streamlining transactions.

SMS banking serves as an illustration. Consumers can now

complete tasks at their convenience [8]. It was clearly stated

by [9] several benefits of digital banks from both customer

and business perspectives. Advantages of the usage of digital

banks from the customer’s view include bringing

convenience, improving security, and providing self-services

while advantages from the business view include reducing the

costs of transactions when compared to traditional banks,

ability to easily adapt to changes in the market place, ability

to increase the number of customers through use of bank’s

digital channels and improving customer experience.

Regardless of the innumerable benefits of the usage of digital

banks, there are also disadvantages associated with it [8] and

these include security and privacy issues since there are not

100% safe transactions, thus, making some bank users' views

about digital banking remain unchanged. Another challenge

was the uninformed knowledge of the users about the

implementation and periodical updates of the digital banking

system for improved security of the customer’s transactions

which may sometimes cause sudden disruption of transaction

activity intended to be carried out by customers at a particular

time without warning them. [10]. Another drawback was the

internal barriers as it relates to both bank customers' and

personnel’s level of knowledge about digital transactions in

determining how the expansion of the digital banking system.

Finally, these days, the demand for digitization is rapidly

increasing. However, most banks lack the courage to

implement this strategy immediately.

2.2 Mobile devices and applications

According to [11] mobile device can be simply defined as a

portable computing device, characterized by its small form

factor for easy individual carrying, operates wirelessly, has

local data storage, and features a self-contained power source.

Examples of mobile devices include phones and PDAs

(Personal Digital Assistants) which offer a more affordable

means of accessing the internet anytime, anywhere in

performing various activities despite the higher connection

costs compared to desktop computers. In this era, most

activities are being carried out by the use of mobile phones

such as banking transactions as they are supported by mobile

operating systems which are software that enable

smartphones, tablets, and other devices to execute

applications and programs [12]. Today, there are different

mobile operating systems available, with two of the most

popular being Apple's iOS, utilized by iPhones, and Google's

open-source Android operating system and they allow several

mobile applications to be installed easily on the devices as the

user’s desire. Mobile application is clearly described as a

form of application software specifically crafted to work on

mobile devices like smartphones or tablet computers and

examples of mobile applications include mobile bank apps.

Several benefits of using mobile applications include ease of

use, accessibility, user-friendly, consumption of lesser of

time, and convenience. However, there are challenges to

using mobile applications such as Privacy and data concerns,

difficult for users who are technologically inexperienced to

understand which applications to install and use [13]. Digital

bank mobile application has been one of the most utilized

apps by users across the world as it made it easier to install

mobile apps on mobile phones to perform any form of

transaction and banking services online such as creating a

bank account and making payments.

2.3 Various techniques for analyzing digital banks' mobile

apps

Analyzing the loophole of six different UK digital banks'

mobile applications was focused on using the Androbug tool,

a vulnerability scanner. Among the identified vulnerabilities,

Revolut's mobile application had the maximum number,

whereas Starling's had the fewest [14].

A reverse engineering method was adopted in analyzing

mobile banking applications using available tools. A dataset

of mobile banking applications that offer banking services in

Pakistan was collected for the research. The results indicated

Int. J. Sci. Res. in Multidisciplinary Studies Vol.10, Issue.7, Jul. 2024

© 2024, IJSRMS All Rights Reserved 31

that none of the current tools can implement the entire reverse

engineering process independently. Furthermore, notable

variations in both the time of implementation and the quantity

of files created by each tool when applied to the same file

were observed [15].

Another research was conducted which aimed to analyze the

prevalent usage of digital banking services among bank

customers by employing text mining techniques on a dataset

comprising their feedback. The study encompassed digital

banking data from the ten most utilized private banks and

three state-owned banks, totaling thirteen banks, based on

data from the Banks Association of Turkey spanning from

January 2020 to August 2022. Approximately 1,200,000-

1,250,000 raw data entries were derived from various social

media platforms where customers discussed these banks.

Each bank was individually scrutinized, applying analyses on

word density, creating word cloud visualizations, and

conducting sentiment analyses to gauge customer

perspectives. The study revealed that customers most

frequently mentioned aspects such as the ease of use, utility,

and service fees of digital applications. Consequently, it was

deduced that while there's no consequential difference

between private and public banks in terms of digital services,

private banks excel in terms of utility and innovation. Based

on the analysis, recommendations were formulated for banks

to enhance customer satisfaction and improve the quality of

service delivery in digital banking [16].

A research was created to textual data extracted from 37,460

reviews by users of Nigerian mobile banking applications

ranging from November 2012 to July 2020. Out of a rating of

5, the twenty-two (22) apps in the sample had a 3.5 user

rating. Non-interest bank apps had the maximum average

rating (4.0), while commercial banks with national

authorization had the minimum (3.4). Sentiment analysis

shows that positive sentiment words make up 17.8% of the

corpus, more than double the 7.7% of negative sentiment

words. About 66% of the emotions expressed by users

include 'confidence,' 'eagerness,' and 'joy,' while the rest relate

to 'shock,' 'anxiety,' 'rage,' and 'detestation.' This suggests that

most users are contended with their mobile banking

experience. The main topics in the reviews include feedback

on banks' responsiveness to user complaints, user experience

with app functionalities and updates, and operational failures

with the apps. The results emphasize the importance of banks

promoting awareness of app functionalities, enlightening

users on accessing these features, and acknowledging reports

on time and accurately [17].

The research conducted deals with investigating the adoption

of mobile banking technology by consumers by examining

various factors such as effective commitment, easy

transaction, ease to use, perceived dependability, before and

after benefits, service, system, and information quality, bank

trust, and profitability. The study utilizes a simple linear

regression method with SPSS software to analyze the inter-

relationship between these variables and the acceptance of

mobile banking technology. It explores hypotheses and

identifies the relationships that exist between these

parameters [18]

Using the case study of Saudi Arabia, research was conducted

to analyze, evaluate, and compare the functionality of all

available mobile banking apps in Saudi Arabia for both iOS

and Android platforms. Usability, defined by ISO 9241, was

assessed based on productiveness, competency, and

satisfaction criteria. The study pinpointed and explained the

primary loopholes of these apps in supplying standard

solutions to users. Critical issues were found in-app user

interfaces and functionality, particularly in those frequently

updated. Additionally, weak customer support was noted,

leading to dissatisfaction among customers and undermining

interaction between banks and users. [19]. The effectiveness

of digital banking services offered by a bank in Malaysia was

investigated, specifically focusing on the benefits,

dependability of the banking system, and the effect of the

COVID-19 pandemic. Utilizing the Technology Acceptance

Model (TAM), data was collected through a questionnaire

survey involving 228 bank clients. Results revealed that

perceived usefulness and banking system reliability notably

affected digital banking effectiveness. However, the COVID-

19 pandemic was found to have no significant influence on

the value of digital banking from the perspective of bank

clients. These findings offer a perception of the bank's future

banking strategies and address consumer needs, while also

contributing to an understanding of the Malaysian financial

industry through the lens of a prominent financial institution

[20].

A study on the risks and weaknesses surrounding mobile

banking apps within the Kenyan sector was conducted. It was

realized that despite their convenience, these apps are

susceptible to threats compromising user details and

transactions. The research helps to discover these risks and

loopholes peculiar to Kenyan mobile banking apps and

propose solutions to bolster their security. It pursues mainly

three objectives: evaluating primary vulnerabilities and attack

vectors, assessing common flaws, and recommending tailored

security measures. These include cryptography, two-factor

authentication, and user awareness pieces of training. By

conducting an in-depth analysis and offering practical advice,

the study seeks to aid banking companies and customers in

fortifying the security of their mobile banking experiences in

Kenya [21], A security analysis of five popular e-wallets and

five leading mobile banking apps in Malaysia was conducted.

The analysis was based on security principles recommended

by OWASP under the Mobile Security Testing Guide

(MSTG) and Mobile Security Threats (MST). Static analysis

was performed in which three mobile application-testing tools

were utilized, comprising vulnerability scanning, code

review, and penetration testing. While all apps met security

requirements, their security elements, such as encryption,

security protocols, and app services, varied significantly [22].

A descriptive research approach and desktop research were

adopted to examine growing security threats in mobile

banking applications. It recognized and assessed advanced

systems to lessen these threats and highlighted key open

research issues in the field [23]. Finally, research was done,

focusing on m-banking applications for Android OS,

specifically examining their security, vulnerabilities, threats,

and potential solutions. Two mobile testing frameworks were

Int. J. Sci. Res. in Multidisciplinary Studies Vol.10, Issue.7, Jul. 2024

© 2024, IJSRMS All Rights Reserved 32

used to analyze and benchmark the applications against best

practices. The study identified security weaknesses in the

apps, indicating the necessity for a more thorough security

evaluation in Qatar to enhance user confidence.

Understanding the security opinion is crucial for improving

m-banking security and user awareness [24].

3. Research Methodology

From a comprehensive literature review conducted, several

approaches and techniques have been adopted by researchers

which were used for discovering and analyzing security

vulnerabilities in different mobile applications using various

tools. Therefore, this section discussed the research

methodology, the tool adopted, and the selected Nigerian

online digital banks which were analyzed by the Osorlab

security testing tool.

3.1 Justification of the Adopted Research Method

A quantitative research type was adopted in this paper as it

involves analyzing each digital bank mobile application file

(.apk) for its security vulnerabilities as well as its overall risk

level, and the number of vulnerabilities found in each mobile

app, the quantitative research methodology was selected due

to its easy understanding of the data (results) which are

represented in graphical form and also categorized based on

low, medium and high level of vulnerabilities. Another

advantage of using a quantitative method for the research is

its high level of accuracy [25].

.

3.2 Justification of the selected tool

Ostorlab, one of the best mobile security testing tools that

helps in effectively discovering security loopholes in Android

and iOS devices, was selected for this study. Out of various

mobile security testing tools available, Ostorlab was selected

for this research due to the autonomous security solutions it

gives. It is applicable for scanning security and privacy

issues as well as the components of mobile, web, and API

applications. The benefits of choosing the Ostorlab tool

include its user-friendly interface which makes it easily

accessible to the security tester. It offers fast and actionable

insights and recommendations that can help organizations and

developers quickly take necessary security measures to the

identified vulnerabilities. It provides an expensive range of

security testing techniques for deep scanning of mobile

applications for all potential vulnerabilities, that is,

conducting advanced analysis in terms of loopholes in

dependencies, insecure programming patterns, privacy issues,

and intercepted backend communication in identifying server-

side vulnerabilities. [26]

Step-by-step procedure for using the Ostorlab tool for the

digital bank mobile application analysis

1. Create an account with Ostorlab

2. On the dashboard page, click on the scanning menu on

the left side

3. Click on the new scan

4. On the new scan page, tag the name of the mobile

application at the “asset tab to be analyzed.

5. Select the type of device (Android or iOS) to retrieve the

mobile application file.

6. Click and navigate to the location of the mobile

application file (.apk file)

7. Select scan type to determine the type of analysis to

perform

8. Click on the submit button

After properly using the Ostorlab tool to upload the mobile

application, it took some time for the analysis results to be

submitted to the tester’s registered email used in creating the

account. The obtained results are being analyzed as all

vulnerabilities identified were shown, including their risk

level and recommended solutions. The step-by-step procedure

was repeated for all the selected digital mobile applications to

get the results.

3.4 The Nigerian online digital banks

Out of various Nigerian online digital bank mobile

applications, twelve (12) digital banks were selected based on

the comprehensive review conducted which shows the most

common digital banks used by people to make transactions.

As shown in Table 1, eight different authors talked about the

commonly used digital banks in Nigeria. The symbol “1”

indicates the presence of a particular bank mentioned by each

author.

Table 1: The selected digital banks in Nigeria

Online digital banks [27] [28] [29] [30] [31] [32] [33] [34]

Kuda bank 1 1 1 1 1 1 1 1

Opay 1 1 1 1

Sparkles 1 1 1 1 1 1 1 1

Mintyn 1 1 1 1 1

Palmpay 1 1 1 1

Moniepoint 1 1

Fundall 1 1 1

VBank 1 1 1 1 1 1

FairMoney 1 1 1

Carbon 1 1 1

ALAT 1 1 1 1 1

Rubies 1 1 1

oneBank 1 1 1

Eyowo 1 1 1 1

Gomoney 1 1

Int. J. Sci. Res. in Multidisciplinary Studies Vol.10, Issue.7, Jul. 2024

© 2024, IJSRMS All Rights Reserved 33

Piggyvest 1 1

Smartsaver 1

Cowriewise 1

Alladin 1

SumoTrust 1

JetSeed

Kolopay 1

goMoney 1

Sofri 1

Branch App 1

GTworld App 1

Figure 1 explains the chart's diagram of the listed digital

banks by various researchers as shown in Table 1. Generally,

a total number of 25 digital banks were listed as shown in the

chart, and based on the scale of 0 to 80, twelve (12) banks

were selected because they had the highest number of scales

that is, frequently mentioned by the researchers. The digital

banks with the highest scale include Kuda, Opay, Sparkles,

Mintyn, palmpay, moniepoint, fundall, Vbank, FairMoney,

carbon, ALAT, and Eyowo banks. Kuda and sparkles were

the most common banks mentioned by all the eight

researchers followed by the Vbank mentioned by seven out of

eight researchers followed by Mintyn and ALAT banks

shown by five out of eight researchers. Eyowo and palmpay

banks were mentioned by four researchers. Finally, Fundall,

carbon, and FairMoney were mentioned by three researchers.

Figure 1: Nigerian Digital Banks chart

3.5 The current OWASP Top 10 standard for Mobile

Applications

The Open Web Application Security Project (OWASP) Top

10 standard is a regularly updated report highlighting web

applications' most critical security concerns. Compiled by a

global team of security experts, this report acts as an

'awareness document.' OWASP proposes that all companies

make use of the findings of the Top 10 in their processes to

minimize and mitigate security risks [35].

Viewing particularly about mobile applications, there are the

latest Top 10 OWASP Mobile standards which list common

security vulnerabilities discovered in mobile applications.

This can be used as a framework for assessing various

vulnerabilities in mobile applications. These include:

a. Inappropriate Credential Usage: Malicious hackers can

trick the loopholes in hardcoded credentials and

inappropriate use of confidential information in mobile

applications. Once identified, the vulnerabilities permit

attackers to adopt hardcoded information to obtain illegal

access to the confidential capability of the app.

Additionally, they can misuse validated or stored

credentials, bypassing legitimate access requirements.

b. Inadequate Supply Chain Security: Exploiting mobile app

supply chain weaknesses, a malicious hacker can

manipulate application functionality. For instance,

malicious code may be inserted into the app’s codebase or

alter the code during the build process to establish

backdoors, spyware, or other harmful software. This could

empower the malicious hacker to steal data, surveil users,

or take over the mobile device.

c. Insecure Authentication/Authorization: Once adversaries

identify loopholes in authentication or techniques, they can

exploit these weaknesses in two ways. They may either

falsify or avoid authentication through direct submission of

service requests to the mobile app’s backend server,

avoiding any direct communication with the mobile app.

Alternatively, they can be granted access as a valid user,

pass the authentication mechanism, and then forcefully

view a vulnerable endpoint to carry out administrative

activity.

d. Insufficient Input/Output Validation: Lack of proper

input/output validation reveals the application to critical

attack vectors such as SQL injection, XSS, command

injection, and path traversal. These loopholes may result in

illegal access, manipulating data, code execution, and

compromise of the whole backend system.

e. Unprotected Communication: Most recent mobile

applications make data transfer with one or more remote

servers. During transmission, the data typically passes

through the mobile device’s carrier network and the

internet. If the data is conveyed in plaintext or using a

deprecated encryption protocol, a threat agent snooping on

the wire can obstruct and alter it.

f. Inadequate Privacy controls: Privacy controls safeguard

Personally Identifiable Information (PII) such as names,

addresses, credit card details, email addresses, and IP

addresses, and details about health, religion, sexuality, and

political opinions. To obtain PII, attackers must first breach

another layer of security. Using a trojan, they could

intercept network communication, obtain access to the file

system, clipboard, or logs, or physically obtain the mobile

device and create a backup for analysis.

https://owasp.org/www-project-mobile-top-10/2023-risks/m3-insecure-authentication-authorization.html

Int. J. Sci. Res. in Multidisciplinary Studies Vol.10, Issue.7, Jul. 2024

© 2024, IJSRMS All Rights Reserved 34

g. Insufficient Binary Protections: App binaries can typically

be downloaded from app stores or copied from mobile

devices, making binary attacks relatively easy to set up.

These binaries are susceptible to two major types of

attacks: reverse engineering and code tampering. Reverse

engineering involves decompiling and scanning the app for

valuable information, such as secret keys and

vulnerabilities. Code tampering involves manipulating the

app binary to include malicious code.

h. Security Misconfiguration: Security misconfigurations in

mobile apps can be exploited through various attack

vectors, including insecure default settings, improper

access control, weak encryption, insecure communication,

unprotected storage, insecure file permissions, and

misconfigured session management.

i. Insecure Data Storage: Insecure data storage in a mobile

application creates loopholes that threat actors can utilize

various attack vectors. These vectors include an

unauthorized approach to the device’s file system via

physical or remote means, taking advantage of weak or

non-existent encryption, data transmission interruption, and

using malign apps installed on the device.

j. Insufficient Cryptography: The attack vector for weak

cryptography in a mobile application deals with taking

advantage of vulnerabilities in the cryptographic

mechanisms designed to secure confidential data. Attackers

may use different methods, including cryptographic attacks,

brute force attacks, or side-channel attacks, to take

advantage of weaknesses in encryption algorithms, key

management, or implementation flaws.

4. Results and Discussion

4.1 Description of the identified vulnerabilities in the

digital bank application using the Ostorlab tool

Insecure object Serialization: this is an identified

vulnerability in the bank application. This shows that the

application employs an insecure deserialization scheme for

handling untrusted data. Insecure object deserialization can

lead to arbitrary remote code execution, manipulation of

application logic, and data tampering, including bypassing

access controls. Exploiting deserialization vulnerabilities is

challenging as it requires customizing exploits for targeted

attacks due to the lack of readily available exploits.

Undeclared permissions: This vulnerability involves

applications exposing their utility to other apps by defining

permissions that those apps can request. To enforce

permission, it must first be declared in the

AndroidManifest.xml using the <permission> element before

applying it to components using "android:permission=". If the

application requests permission without clearly stating it, a

malicious app can declare that permission with a normal

protection level, invoke it, and access the protected

component of your application. Furthermore, undeclared

permissions can serve as a security risk, as the authorized

user may be ignorant of the app retrieving confidential

information or system resources. This could proceed to a

breach of privacy or any other security issues, such as an app

viewing the user's location without their consent.

Biometric Authentication bypass: A robust implementation

of mobile biometric authentication ensures that accessing the

application's confidential data requires Face ID or Touch ID

authentication. This secure approach extends beyond mere

fingerprint or face verification for login. It involves encoding

the application's confidential data using biometric data,

adding a layer of protection. This encryption significantly

increases the difficulty for unauthorized individuals to access

or misuse sensitive information. Encrypting data with

biometric authentication becomes crucial in scenarios where

unauthorized parties gain device access, whether through

malware or physical means. Android provides mechanisms to

enforce biometric authentication to secure confidential

information. Biometric authentication has evolved to provide

improved user experience, developer experience, and

improved security. Previous implementation

using FingerprintManager is deprecated and must not be

used. Proper implementation must use

BiometricManager with Biometric Prompt and CryptoObject.

Biometric authentication is done without CyptoObject or a

secret key, making it vulnerable to biometric bypass.

Attribute usesCleartextTraffic set: The

android:usesCleartextTraffic attribute determines whether the

app plans to utilize cleartext network traffic, like cleartext

HTTP. For apps targeting API level 27 or lower, the default

value is "true", while for those targeting API level 28 or

higher, the default is "false". The attribute is not explicitly set

and Android Network security configuration is not defined,

thus, allowing unauthorized users to take advantage of this

loophole to violate the legitimate user’s privacy and security.

Task Hijacking: This is a security vulnerability that allows

malicious apps to take over the tasks of legitimate apps,

tricking users into disclosing secret information or carrying

out unwanted actions. For instance, a malicious app called

Camero was found to be exploiting task hijacking to steal

banking credentials. The app masqueraded as a legitimate

camera app but would launch a fake banking login screen

when users opened their banking apps. Task hijacking is a

serious threat to Android users and businesses alike and has

been identified across all the selected bank applications which

can result in privacy and security issues, targeted by malware,

and has publicly available exploits.

Services declared without permissions: A service is an

application component responsible for executing actions in

the background without requiring user interaction. It can also

expose functionalities to other applications, typically through

calls to Context.bindService() to establish a connection and

interact with it. However, unprotected services can be

requested by other applications, potentially resulting in illegal

access to confidential information or the execution of

privileged actions.

Secret information stored in the application: exposing

secrets, passwords, and API keys can bring forth serious

consequences, such as Loss of confidentiality (unauthorized

individuals gaining access to sensitive information), loss of

integrity (gaining unauthorized access to systems or data,

https://owasp.org/www-project-mobile-top-10/2023-risks/m8-security-misconfiguration.html
https://owasp.org/www-project-mobile-top-10/2023-risks/m9-insecure-data-storage.html
https://owasp.org/www-project-mobile-top-10/2023-risks/m10-insufficient-cryptography.html

Int. J. Sci. Res. in Multidisciplinary Studies Vol.10, Issue.7, Jul. 2024

© 2024, IJSRMS All Rights Reserved 35

potentially leading to the alteration or corruption of that

information), loss of availability (the unauthorized use of

leaked secrets or passwords may result in the denial of access

to legitimate users, leading to a loss of availability of the

affected systems or data), reputational damage (suffering

damage to company’s reputation), legal consequences

(depending on the nature of the leaked information and the

laws in the relevant jurisdiction, the leakage of secrets or

passwords could potentially lead to legal consequences),

overbilling (Leaking API keys could potentially be used by

illegal individuals to access API resources and perform

actions that may incur charges, leading to overbilling).

Use of WiFi API that contains or leaks sensitive PII: The

application utilizes the ACCESS_WIFI_STATE interface and

invokes APIs like getConnectionInfo to retrieve sensitive

information regarding the Wi-Fi access point, such as BSSID,

SSID, and RSSI, as well as device details like MAC address

and IP address. However, this API is prone to abuse, allowing

access to personally identifiable information (PII) such as

unique device identifiers through the device's MAC address,

geolocation data via surrounding Wi-Fi access points, and

tracking of user travel history and social connections by

monitoring users connecting to the same access point. This

can be used by the attacker to perform further attacks,

violating the legitimate user’s privacy and security.

Unimplemented activity class detected: The analysis

identified an activity class declared in the manifest, such as

<activity android:name='ClassName'>, but no corresponding

implementation for this class was found within the

application's codebase. This discrepancy could lead to

runtime errors or dysfunctional behavior during the

application's execution.

Application checks rooted device: The presence of strings

and methods suggest the need to check for rooted or

Jailbroken devices. The absence the Jail-broken or Root

detection is not a vulnerability, but its presence remediates

the impact of certain vulnerability classes or threats.

Ddebug mode disabled: The application is compiled with

debug mode disabled. Debug mode, when enabled, permits

unethical hackers to access the application's filesystem and

attach a debugger to retrieve sensitive data or execute

malicious actions. However, the issue is that the

debuggable attribute is not set and its default value is false.

Backup mode disabled /enabled: Backup mode is a feature

in Android that allows users to backup and restore data and

settings from one device to

Another. By default, Android conducts a complete backup of

applications, encompassing private files stored on the /data

partition. Subsequently, the Backup Manager service transfers

this data to the user's Google Drive account. The issue is that

the allowBackup attribute is set to false.

Exported activities, services, and broadcast receiver’s list:

The list includes all exported components within the

application. Exported components are accessible to external

applications and serve as entry points to the application.

However, there are technical issues in the exported services,

receivers, and activities definitions.

Android Manifest: The manifest file provides important

details about your app to the Android system, which is

necessary before the system can execute any of the app's

code. However, there appears to be a technical issue in the

AndroidManifest.xml file.

Implementation of a WebViewClient: it contains the List of

WebviewClient implementations. The WebView class,

extending Android's View class, facilitates the display of web

pages within your activity layout. Essentially, you can

incorporate a WebView layout in XML layout files and

subsequently load a URL to be presented to the user. The issue

is found in the List of webview implementations.

Calls to native methods: It comprises a list of all method

calls utilizing the Java Native Interface (JNI) to interact with

native code, typically written in C/C++.This issue was the

List of detected Java native methods.

Broadcast receiver’s dynamic registration: One or more

broadcast receivers in the application are dynamically

registered in the code and lack protection by signature

permission in the AndroidManifest.xml file. Additionally, all

dynamically registered receivers are exported. This

vulnerability allows an attacker, using malware, to broadcast

arbitrary data to the exported receiver, potentially triggering

the invocation of various components of the application or

even executing code.

Insecure network configuration setting: Android Network

Security Configuration allows for a declarative setting of the

application's network security. However, the application lacks

a Network Security Config.

Unimplemented service class detected: The analysis

identified a service class declared in the manifest, such as

<service android:name='ClassName'>, but no corresponding

implementation for this class was found within the

application's codebase. This discrepancy could lead to

runtime errors or dysfunctional behavior during the

application's execution.

FileObserver Implementation: It monitors files using

Inotify to trigger an event after files are accessed or modified

by any process on the device, including the application itself.

FileObserver is an abstract class; subclasses need to

implement the event handler onEvent(int, java.lang.String).

Each FileObserver instance can monitor multiple files or

directories. Monitoring a directory triggers events for all files

and subdirectories within it. An event mask specifies the

changes or actions to report, with event-type constants

describing potential changes in the event mask and detailing

occurrences in event callbacks. The technical issue was that

the Application was using the FileObserver API.

Insecure File Provider Paths Setting: The application

utilizes androidx.core.content.FileProvider to expose a file

provider. Within the provider, available files are specified in

the metadata child attribute named android.

Int. J. Sci. Res. in Multidisciplinary Studies Vol.10, Issue.7, Jul. 2024

© 2024, IJSRMS All Rights Reserved 36

Support.FILE_PROVIDER_PATHS. The application uses a

content provider xamarin.essentials.fileProvider that reveals a

file provider android.

Support.FILE_PROVIDER_PATHS configured

in res/xml/xamarin_essentials_fileprovider_file_paths.xml fil

e. The file provider has an external path type that allows the

attackers to access external storage like an SD card.

Attribute requestLegacyExternalStorage Set: The

`android:requestLegacyExternalStorage` attribute allows

access to directories and various types of media files stored in

external storage. However, it is effective only for Android 10

(API level 29). On Android 11 and later versions, the system

disregards the `requestLegacyExternalStorage` flag.

Deprecated API version:
The android:targetSdkVersion attribute specifies the Android

Target API level required by the application. Setting a

low targetSdkVersion may allow the application to run on

older Android versions but could expose users to security

vulnerabilities.

OAuth Account Takeover by hijacking custom schemes:
The vulnerability arises from the application's use of a custom

scheme in the redirect_uri parameter during OAuth

authentication. In a typical OAuth

scenario, redirect_url should be guaranteed to belong to the

client application (identified by client_id) that requests data

from an identity provider (Google, Facebook, Github...).

Using a custom scheme breaks that premise as it can be

claimed by the application on the user's device. Attackers

can bypass user interaction by leveraging certain techniques

like express authentication flow or using OAuth parameters

that are meant to skip the consent prompt if the user gave

their consent before.

Usage of Oauth: The OAuth class has been discovered

within the application during the analysis. This means that

When the configuration of the OAuth service is

compromised, attackers can exploit it to pilfer authorization

codes or access tokens linked to other users' accounts. With a

valid code or token in hand, the attacker gains potential

access to the victim's data.

Use of outdated vulnerable component: async@2.4.0:

CVE 2021-43138: the dependency async with

version 2.4.0 has a security issue.

The issue is identified by CVEs: CVE-2021-43138. CVE-

2021-43138: A vulnerability in Async versions up to 3.2.1 for

3. x and up to 2.6.3 for 2. x (addressed in versions 3.2.2 and

2.6.4) allows a malicious user to gain privileges via the

mapValues() method.

Use of outdated vulnerable component: shelljs@0.8.4:

CVE 2022-0144: the dependency shelljs with

version 0.8.4 has a security issue.

The issue is identified by CVEs: CVE-2022-0144. The

dependency shelljs Found in assets/index.android.bundle has

a security issue (CVE-2022-0144) in which ShellJS is

susceptible to Improper Privilege Management.

Use of outdated vulnerable component: ws@6.1.4: CVE

2021-32640: The dependency ws with version 6.1.4 has a

security issue.

The issue is identified by CVEs: CVE-2021-32640. The

dependency ws Found in assets/index.android.bundle has a

security issue which has A specially crafted value of the Sec-

WebSocket-Protocol header can be utilized to considerably

slow down a WebSocket server.

ELF binaries do not enforce secure binary properties: The

application failed to enforce binary protections like RELRO,

ASLR, No eXecute, and Stack canary, which are crucial

memory protection techniques to guard against memory

corruption exploitation.

Unimplemented receiver Class Detected: The analysis

identified the receiver class declared in the manifest, such as

<receiver android:name='ClassName'>, but no corresponding

implementation for this class was found within the

application's codebase. This discrepancy could lead to

runtime errors or dysfunctional behavior during the

application's execution.

List of JNI Methods: Improper use of the Java Native

Interface (JNI) makes the application vulnerable to security

flaws commonly found in other programming languages, such

as memory corruption.

Table 2, depicts the type of vulnerabilities found in each of

the digital bank applications. Generally, a total number of 32

vulnerabilities were identified in the bank applications using

the Ostorlab tool for the analysis. Still, the specific number of

vulnerabilities found in each bank app was indicated using a

checkmate "” symbol to show the presence of a

vulnerability in a particular bank application. In contrast, the

empty space shows the absence of the vulnerability.

Table 2: The identified security vulnerabilities for the digital mobile bank applications

Security Vulnerabilities Carbon Sparkle Fundall Mintyn Eyowo Fairmoney Moniepoint Vbank Opay Palmpay ALAT Kuda

Insecure Object Serialization            

Undeclared permissions 

Biometric Authentication

bypass

        

Attribute hasFragileUserData

not set.

           

Attribute usesCleartextTraffic

set

         

Task Hijacking            

Services declared without

permissions

      

Secret information stored in        

mailto:async@2.4.0
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-0144

Int. J. Sci. Res. in Multidisciplinary Studies Vol.10, Issue.7, Jul. 2024

© 2024, IJSRMS All Rights Reserved 37

the application

Use of WiFi API that contains

or leaks sensitive PII

         

Unimplemented activity class

detected

   

Application checks rooted

device

           

Debug mode disabled            

Backup mode disabled            

Exported activities, services,

and broadcast receiver’s list.

           

Android Manifest            

Implementation of a

WebViewClient

           

Call to native methods.            

Broadcast receiver’s dynamic

registration

           

Insecure network

configuration setting

        

Unimplemented service class

detected

    

Implementation of a

FileObserver

       

Insecure File Provider Paths

Setting

    

Attribute

requestLegacyExternalStorage

Set

    

Deprecated API version 

OAuth Account Takeover by

hijacking custom schemes

 

Usage of Oauth 

Use of outdated vulnerable

component: async@2.4.0:

CVE 2021-43138

 

Use of outdated vulnerable

component: shelljs@0.8.4:

CVE 2022-0144

 

Use of outdated vulnerable

component: ws@6.1.4: CVE

2021-32640

 

ELF binaries do not enforce

secure binary properties

 

Unimplemented receiver Class

Detected.

 

List of JNI methods 

4.2 The percentage of security vulnerabilities present in

each digital bank mobile application

Viewing Table 3, the number of identified security

vulnerabilities in each digital bank mobile application was

listed as well as their level of percentage. Vbank mobile

application is indicated to be a mobile app with the highest

number of vulnerabilities with 68.75%. Sparkle and Eyowo

bank mobile applications have the second highest number of

security vulnerabilities with 62.5%. fairMoney and ALAT

bank mobile applications have the third highest number of

security vulnerabilities with 59.38%. Carbon also had a high

number of security vulnerabilities with 56.25% while Opay,

Palmpay, Kuda, and Mintyn mobile applications have 51.13%

of security vulnerabilities. Moniepoint bank app has 50% of

security vulnerabilities and lastly, Fundall had the least

number of security vulnerabilities with 46.88%.

Table 3: The percentage of security vulnerabilities present in each digital

bank mobile application

Name of banks Number of identified

security vulnerabilities

Calculated

Percentage

Carbon 18 56.25%

Sparkle 20 62.5%

Fundall 15 46.88%

Mintyn 17 51.13%

Eyowo 20 62.5%

fairMoney 19 59.38%

Moniepoint 16 50%

Vbank 22 68.75%

Opay 17 51.13%

Palmpay 17 51.13%

ALAT 19 59.38%

Kuda 17 51.13%

4.3 The Security Vulnerability level identified in each

digital mobile application

Table 4 shows the identified security vulnerabilities in each

mobile app. For safe space, each bank is represented with

alphabets. A represents Carbon Bank, B represents Sparkle

Bank, C represents Fundall Bank, D represents Mintyn, E

represents Eyowo Bank, F represents Fairmoney Bank, G

represents Moniepoints Bank, H represents Vbank, I

represents Opay, J represents Palmpay, K represents ALAT

and L represents Kuda bank.

The vulnerabilities are classified into different levels of

exposure and how risky they are. These include: High risk

(red color), medium (deep orange), low (light yellow),

potentially (ash color), Hardening (purple), important (light

green), info (blue), secure (dark green), null (white)

High-level: this signifies that the level of risk at which the

identified vulnerabilities can be exploited or exposed on the

digital banks' applications is high. This is symbolized by the

mailto:async@2.4.0

Int. J. Sci. Res. in Multidisciplinary Studies Vol.10, Issue.7, Jul. 2024

© 2024, IJSRMS All Rights Reserved 38

red color. The vulnerabilities categorized as High level

include Insecure File Provider Paths Settings found in Eyowo

and Vbank applications. The vulnerability reveals that the

application exposes a file provider with an insecure path

setting at a high level which indicates security issues (it may

harm the user or application infrastructure) and privacy issues

(may result in intrusion into the user’s private space,

disclosing unauthorized information) in the applications.

OAuth Account Takeover by hijacking custom schemes was

another identified vulnerability found in the FairMoney bank

application and categorized as High. This indicates that the

vulnerability occurs when an application uses a custom

scheme in the ‘redirect_url’ parameter during OAuth

authentication, hence, showing security and privacy issues.

Attackers can bypass user interaction by leveraging certain

techniques like express authentication flow or using OAuth

parameters that are meant to skip the consent prompt if the

user gave their consent before. Use of outdated vulnerable

components: async@2.4.0: CVE 2021-43138 and

shelljs@0.8.4: CVE 2022-0144 found in the Vbamk

application was another identified vulnerability that was

categorized to be high. This means that

dependency async with version 2.4.0 and

dependency shelljs with version 0.8.4 has security issues that

may result in harming the user of the application

infrastructure.

Medium-level: this signifies that the level of risk at which

the identified vulnerabilities can be exploited or exposed on

the digital bank applications is medium (middle level). This is

symbolized by the orange color. The vulnerabilities

categorized to be at medium level include insecure object

serialization found across all the 12 digital bank applications.

The vulnerability shows that all the applications used an

insecure deserialization format that attackers can exploit to

cause remote code execution which may result in

modification of data as it brings up security issues (harming

the user or application infrastructure). Undeclared

permissions were another identified vulnerability found in the

Carbon bank application and categorized to be at medium

level. This means that the custom permission used in

<activity> <service> <provider> <receiver> tags were not

declared in <permission> tag and this may result in privacy

violations or other security issues, such as an app accessing

the user's location without their consent. Biometric

Authentication bypass was also identified as a vulnerability

found in Carbon, Sparkle, Fundall, Mintyn, Eyown, Vbank,

Opay, Palmpay, and ALAT bank applications and categorized

on a medium level. In this vulnerability, biometric

authentication is done without CryptoObject or secretKey,

making it vulnerable to biometric authentication bypass and

resulting in security and privacy violations. Insecure File

Provider Paths Setting was another identified medium-level

vulnerability found in Moniepoint and ALAT bank

applications. The vulnerability reveals that the application

exposes a file provider with an insecure path setting at a high

level which indicates security issues (it may harm the user or

application infrastructure) and privacy issues (may result in

intrusion into the user’s private space, disclosing

unauthorized information) in the applications. The Use of an

outdated vulnerable component: ws@6.1.4: CVE 2021-32640

was identified as a medium-level vulnerability in the Vbank

application. This means that the dependency ws with

version 6.1.4 has a security issue, hence, harming the user

of the application.

Low-level: this indicates that the level of risk at which the

identified vulnerabilities can be exploited or exposed on the

digital bank applications is low (low level). This is

symbolized by the yellow color. The low-level

vulnerabilities include Attribute hasFragileUserData not set

which was found all across the twelve selected bank

applications. This vulnerability implies that the application

does not explicitly set the attribute hasFragileUserData, that

is, it does not allow developers to specify whether their app

contains fragile user data that needs to be protected, raising

privacy issues. Attribute usesCleartextTraffic set was also identified as a

low-level vulnerability found in Carbon, Sparkle, Fundall, Mintyn,

Eyown, FairMoney, Opay, Palmpay, Moniepoint, and Kuda

bank applications. The vulnerability shows that The attribute

specifies whether the app intends to use cleartext network

traffic., hence, making it obvious for the attackers to violate

the privacy and security space of the user since there’s an

absence of a secured network configuration. Task hijacking

was another low-level vulnerability in all the selected digital

bank applications. The vulnerability indicates that the

application cannot protect against task hijacking, allowing

malicious applications on the device to take over its

foreground tasks. It may result in security and privacy issues,

which can be targeted by malware and publicly available

exploits. Attribute requestLegacyExternalStorage Set was

identified as a low-level vulnerability found in Mintyn,

Eyowo, Vbank, and Kuda bank applications. This indicates

that the application sets the requestLegacyExternalStorage

attribute, that is, It provides access to directories and various

types of media files stored in external storage. Which

attackers can take advantage of to harm the user and cause

intrusion of privacy, disclosing unauthorized information?

Lastly, the deprecated API version was identified as a low-

level vulnerability found in the Eyowo bank app. The

application sets the targetSdkVersion attribute which allows

users of older API levels of Android, exposing users to

security vulnerabilities.

Potentially: this implies that the level of risk at which the

identified vulnerabilities can be exploited or exposed on the

digital bank applications is on a potential level and the Ash

color symbolizes this. This category does not indicate

whether the vulnerability level is high, medium, or low but

shows that they have the potential to occur as they need

further investigation. The potentially grouped vulnerabilities

include Services declared without permissions found in

Carbon, Sparkle, Mintyn, Vbank, Opay, Palmpay, and ALAT

bank apps. This shows that The declared services lack global

permissions protection., potentially accessing sensitive

information or performing privileged actions by attackers.

Secret information stored in the application was another

potential identified vulnerability found in Carbon, Sparkle,

Eyowo, FairMoney, Vbank, Opay, ALAT, and Kuda bank

mailto:async@2.4.0
mailto:async@2.4.0

Int. J. Sci. Res. in Multidisciplinary Studies Vol.10, Issue.7, Jul. 2024

© 2024, IJSRMS All Rights Reserved 39

apps. This shows that passwords, tokens, and other sensitive

information are stored in the applications. This can

potentially lead to the breach of confidentiality, Integrity, and

availability of user’s sensitive data. Use of WiFi API that

contains or leaks sensitive PII was identified as a potential

vulnerability found in Carbon, Sparkle, Fundall, Eyowo,

FairMoney, Vbank, Opay, Palmpay, ALAT, and Kuda bank

apps. This means that the applications used WI-FI API known

to contain or leak sensitive PII (Personal Identifiable

Information) used for tracking or monitoring. Backup mode

enabled is also an identified potential vulnerability found in

Sparkle, Fundall, FairMoney, Moniepoint, and ALAT bank

applications. This means that the application is enabling

backup mode, that is, allowing users to backup and restore

data and settings from one device to

Another, thereby, poses privacy threats, in which attackers

can have unauthorized access to user data even on a different

device if handled.

Hardening: this category does not specify whether the

vulnerability level is high, low, or medium but indicates that

the application needs to be further secured through

implementing some security measures, as it poses security

and privacy issues that can be exploited by the attacker. It is

symbolized with Purple color. Vulnerabilities analyzed to be

in the hardening category include unimplemented activity

class detected which was found in Carbon and Sparkle bank

apps. The vulnerability identified was the detected activity

class in the manifest which did not correspond with the code

in the application’s codebase as this can lead to runtime error

or malfunction of the application during execution causing

security issues.

The insecure network configuration setting was also

categorized to be in the Hardening level and was found in

Sparkle, Fundall, Mintyn, Eyowo, FairMoney, Moniepoint,

Vbank, and ALAT bank applications. The vulnerability

indicates that the application either does not clearly state a

network configuration setting or uses insecure settings., that

is, there are no network security settings such as encryption

of traffic, thereby, allowing attackers to have unauthorized

access to user’s sensitive data and intrude their private space.

Another Hardening category was the unimplemented service

class detected in Sparkle, FairMonney, Moniepoint, and Opay

bank applications. The vulnerability identified was the

detected service class in the manifest which did not

correspond with the code in the application’s codebase as this

can lead to runtime error or dysfunctional behavior of the

application during execution causing security issues. Also,

ELF binaries do not enforce secure binary properties in the

ALAT bank application. This means that the application does

not implement binary protections (such as ASLR, NX,

RELRO, and Stack canaries), that is, there’s an absence of

protection techniques to protect and mitigate the risk of

memory corruption vulnerabilities like Buffer Overflow

resulting to security issues. Lastly, “unimplemented receiver

Class Detected” was found in the ALAT bank app which

shows that the detected receiver class in the manifest did not

tally with the code implementation in the application

codebase and this discrepancy can lead to an error during

application runtime.

Secure: this category is symbolized with a navy blue color.

This category indicates some technical issues that may lead to

security breaches even if the application seems to be secured.

The identified issues include Application checks rooted

devices which were found across all the selected bank apps.

This shows that the application checks for the use of rooted or

jail-broken devices. The absence of Jail-broken or Root

detection is not a vulnerability, but its presence remediates

the impact of Certain vulnerability classes or threats. “Debug

mode disabled” was also identified across all the bank apps

which indicates that The application is compiled with debug

mode turned off. The debuggable attribute is not set and its

default value is false, which can be manipulated by the

attackers causing security issues. Finally, the “Backup mode

disabled” attribute was found in Carbon, Mintyn, Eyowo,

Vbank, Opay, Palmpay, and Kuda bank apps. The application

is configured to disable backup mode, which prevents

unauthorized access to sensitive data by preventing the full

backup of applications, including private files saved on the

/data partition. However, the allowBackup attribute is set to

false.

Important: This is symbolized with a green color. It shows

some technical issues that are to be noticed even if the

applications seem safe to use. “Exported activities, services

and broadcast receiver’s list” was identified across all the

selected bank apps as an important category that lists all the

exported components in the application that are available to

third-party applications, giving a means of access into the

application for users. However, the exported activities,

receivers, and broadcast definitions have technical issues that

are flagged as important to view to prevent attackers' code

tampering or manipulation.

Info: This is symbolized with a sky-blue color This category

shows information about the application to the Android

system, indicating some vulnerabilities such as “Android

Manifest” in which the manifest file gives necessary

information to the Android system before it can successfully

run on the device. However, it has one issue in

AndroidManifest.xml, and it is found across the bank apps.

The “Implementation of a WebViewClient” was indicated

across all the bank apps as Info. It contains the list of

WebViewClient implementations of the application, though

the entry is informative, there is a technical issue with the

webview which may result in a security issue. The “Call to

native methods” was identified across all the bank apps which

involve the list of native methods calls, that is, a list of native

Java methods was detected which could cause security issues.

The “Broadcast receiver’s dynamic registration “attribute is

detected across all the bank applications. This indicates that

one or more of the application's broadcast receivers are

actively registered in the code and lack signature protection in

the `AndroidManifest.xml` file., thus, giving attacker access

and broadcast data that is not supposed to be exported to the

public, leading to security issue for the user. Also, the

“Implementation of a FileObserver” was identified in

Sparkle, Mintyn, FairMoney, Moniepoint, Vbank, and Kuda

bank applications. Another vulnerability was the “Usage of

Oauth” found in FiarMoney, which means that when the

Int. J. Sci. Res. in Multidisciplinary Studies Vol.10, Issue.7, Jul. 2024

© 2024, IJSRMS All Rights Reserved 40

configuration of the OAuth service is compromised, attackers

can exploit it to pilfer authorization codes or access tokens

linked to other users' accounts. With a valid code or token in

hand, the attacker gains potential access to the victim's data.

The “List of JNI (Java Native Interface) methods”

vulnerability was found in the Kuda bank application, which

contains the list of JNI methods defined in ELF files and used

by the application. This may lead to security issues if not

properly used rendering the application susceptible to security

flaws of the programming language.

Null: it is symbolized with No Colour (empty space). This

means that no vulnerability is found at all.

Table 4: The level of security vulnerability in each digital bank mobile application

Security Vulnerabilities A B C D E F G H I J K L

Insecure Object Serialization

Undeclared permissions

Biometric Authentication bypass

Attribute hasFragileUserData t set

Attribute usesCleartextTraffic set

Task Hijacking

Services declared without permissions

Secret information stored in the application

Use of WiFi API that contains or leaks sensitive PII

Unimplemented activity class detected

Application checks rooted device

Debug mode disabled

Backup mode disabled

Exported activities, services, and broadcast

receiver’s list.

Android Manifest

Implementation of a WebViewClient

Call to native methods.

Broadcast receiver’s dynamic registration

Insecure network configuration setting

Unimplemented service class detected

Implementation of a FileObserver

Insecure File Provider Paths Setting

Attribute requestLegacyExternalStorage Set

Deprecated API version

OAuth Account Takeover by hijacking custom

schemes

Usage of Oauth

Use of outdated vulnerable component: async@2.4.0:

CVE 2021-43138

Use of outdated vulnerable component:

shelljs@0.8.4: CVE 2022-0144

Use of outdated vulnerable component: ws@6.1.4:

CVE 2021-32640

ELF binaries don't enforce secure binary properties

Unimplemented receiver Class Detected.

List of JNI methods

4.4 The most common vulnerabilities discovered across

all the digital bank’s mobile applications

In a comparison of the OWASP top 10 vulnerabilities in

mobile applications as explained in section 3.5 with the most

common vulnerabilities identified across all the digital bank’s

mobile applications using the Ostorlab tool, it has been

revealed that the vulnerabilities comply with the OWASP

standards.

A total number of 16 vulnerabilities were discovered as

common issues across all the digital bank’s mobile

applications. The vulnerability with the highest degree across

all the banks is task hijacking which is a type of vulnerability

that enables malicious users to take over the tasks of

legitimate apps, tricking users into revealing sensitive

information or performing unwanted actions. This means that

across all the bank mobile applications, there’s a presence and

opportunity for malicious to hijack the legitimate sessions of

the users to perform further attacks if the necessary solution is

not applied. This is followed by the use of WiFi API that

contains or leaks sensitive PII, which is the type of

vulnerability that can be exploited by the attacker to perform

further attacks, violating the legitimate user’s privacy and

security. Insecure object serialization is the third most

prevalent vulnerability found across all mobile applications.

This issue can lead to arbitrary remote code execution,

modification of application logic, and altering of data, such as

bypassing access control mechanisms. If timely

mailto:async@2.4.0
mailto:async@2.4.0

Int. J. Sci. Res. in Multidisciplinary Studies Vol.10, Issue.7, Jul. 2024

© 2024, IJSRMS All Rights Reserved 41

countermeasures are not taken. The fourth highest

vulnerability identified across all bank mobile applications is

the dynamic registration of broadcast receivers. These

receivers are registered dynamically in the code and are not

protected by signature permission in the

`AndroidManifest.xml` file., thus, causing privacy issues for

attackers to leverage on unless the appropriate security

measures are taken. Biometric authentication is the fifth

highest vulnerability which involves performing biometric

authentication without CyptoObject or a secret key, making it

vulnerable to biometric bypass.

The Unimplemented activity class detected is the next

vulnerability in which no corresponding implementation for

the activity class was found within the application's codebase

and this discrepancy could lead to runtime errors or

dysfunctional behavior during the application's execution.

Another identified vulnerability is “Secret information stored

in the application” in which leaking of secrets, passwords,

and API keys can lead to a breach of the CIA (confidentiality,

Integrity, and availability) of user’s sensitive data. The

Exported activities, services, and broadcast receiver’s list is

the next common vulnerability, which involves the exported

components available to third-party applications, allowing

entry points to the application, and can also be manipulated

by the attackers due to identified technical issues. The next

common vulnerability was the list of JNI methods, which

involves improper use of the Java Native Interface (JNI) that

exposes the application to security vulnerabilities common in

other programming languages, such as memory corruption.

The android manifest, application checks rooted device,

Attribute hasFragileUserData t set, call to native methods,

debug mode disabled, Implementation of a WebViewClient,

attribute usescleartextTraffic set, insecure network

configuration, backup mode disabled, implementation of a

fileObserver and Insecure File Provider Paths Setting appear

to be the common vulnerabilities at the low degree.

Figure 2: Most common vulnerabilities identified across all the Mobile
applications

4.5 The overall Risk assessment (rating) of the bank's

mobile applications

Table 5 shows the overall risk ratings of all the selected

digital bank mobile applications after a thorough analysis has

been conducted using the mobile application security testing

tool (Ostorlab). The “target” column indicates the version of

each mobile app downloaded from the Google Play Store.

The “title” column refers to the name of each bank mobile

app that was selected which was twelve in number, “the

platform” column shows that all the apps were Android-based

while the last column shows the overall risk level of each

analyzed bank app. Eyowo, FairMoney, and Vbank mobile

applications were identified to have a High overall risk level,

which indicates that the presence of security vulnerabilities

has a great impact and could easily be exploited if necessary

security measures are not taken, hence, making their users

susceptible to different forms of cyberattacks.

The other nine digital bank mobile applications: Carbon,

Opay, Palmpay, Fundall, Sparkle, Kuda, ALAT, Moniepoint,

and Mintyn banks were rated to be at Medium level, which

means that the impact of the security vulnerabilities present in

the mobile applications, can cause the users to experience

minor injury or loss if it's not mitigated through necessary

security measures.

Table 5: The overall risk rating of the digital bank mobile applications

Target (app version) Title platform Overall Risk Level

com.lenddo.mobile.paylater:9.3.6 (218) Carbon Android Medium

ng. sparkle.Sparkle_android.prod:1.6.15 (160) Sparkle Android Medium

com.fundall.io:3.8 (172) Fundall Android Medium

com.mintfintech.app:1.4.9 (164) Mintyn Android Medium

com.eyowo.android:3.1.20 (3120) Eyowo Android High

ng.com.fairmoney.fairmoney:9.50.0 (445) FairMoney Android High

com.moniepoint.personal:1.6.0 (26) Moniepoint Android Medium

com.vfd.app:3.1.1-10 (101) Vbank Android High

team.opay.pay:7.4.1.217 (7356432) Opay Android Medium

com.transsnet.palmpay:5.5.0 (603292312 Palmpay Android Medium

com.wemabank.alat.prod:4.3.7 (478) ALAT Android Medium

com.kudabank.app:2.00278 (642) Kuda Android Medium

Int. J. Sci. Res. in Multidisciplinary Studies Vol.10, Issue.7, Jul. 2024

© 2024, IJSRMS All Rights Reserved 42

Table 6 illustrates the recommended countermeasures for

each of the identified security loopholes in the digital bank’s

mobile applications. The countermeasures recommended for

the identified vulnerabilities include the implementation of

integrity checks including digital signatures on all serialized

objects for the integrity of data (untampered data) and to

avoid hostile object creation. In the case of undeclared

permissions, all permissions should be well declared in the

manifest file using <permission> element to avoid

unnecessary actions that may be prone to illegal activities,

also, there should be implementation of biometric

authentication with CryptoObject usage to avoid unauthorized

authentication. The hasFragieUserData attribute should be

added to the androidmanifest file of the application and to

ensure best practices for secure network communications

within the mobile app, the usesCleartextTraffic attribute has

been changed to “false”. The issue of task hijacking can be

avoided by ensuring that the application's activities adopt a

randomly generated task affinity in which each activity runs

in a different instance. Permission needs to be clearly stated

as well as using the checkpermission method in the service

methods, which can help in controlling access to services as

requested by the users and also improving the security of the

application. Confidential data of a user should never be

included with the application itself, Rather, secure techniques

for encoding, storing, and obtaining details for your services

should be applied for accessing this information as requested,

thus, minimizing the chances of malicious or illegitimate

users having access to the user’s information or using them to

perform further cybercrime. There should be disabling of

Unnecessary Wi-Fi data collection as well as using privacy-

aware third-party libraries, which significantly improve the

privacy of app users and also ensure compliance with best

practices for data protection. The manifest file in the mobile

application should be inspected to enhance the accuracy of

declared classes as well as verify the existence of the

indicated activity class within the application’s code. The

debuggable attribute should be properly set and its default

value should be “True” while the “android:allowbackup”

attribute should be set to enable or disable mode. The visual

response to the mobile app users needs to be supplied about

the loading status of the webpage in the WebView, improving

the overall user experience. Also, export only those broadcast

receivers that need to be opened by third-party applications

while for others, a permission in the AndroidManifest.xml

file with android:protectionLevel="signature" should be made

to restrict usage to the application setting, hence, preventing

access by third-party applications. It is paramount to confirm

that the mobile app only communicates over encrypted

channels, as well as configure a Network Security

Configuration to disallow clear text traffic and enforce

HTTPS for specified domains, hence, making the application

more resistant to various security threats and ensuring a safer

user experience. The manifest file needs to be inspected for

accuracy in declared classes and verify the existence of the

mentioned service class within the application's code as this

helps in the smooth running of the activities within the

application. There’s a need to maintain a persistent

connection to the FileObserver instance for continuous event

notifications across different live objects, you should

establish a shared reference accessible to all interested parties.

Users need to be more careful about what files they share and

only share files that are necessary and appropriate. In

enhancing the protection of the app and user data on external

storage, it's highly recommended to replace legacy storage

mechanisms with scoped storage that provides better security

and privacy of the app. The “”targetSdKVersion attribute

should be set to a corresponding value of the latest Android

API level, thus, minimizing the risk of vulnerabilities

associated with older Android releases. A secure

authentication mechanism such as OpenID connect (OIDC)

can be adopted which helps in delivering the access token

securely over HTTPS, storing the access token in a safe place

using secure storage mechanisms, and configuring the access

token with appropriate expiration times and scopes. Another

recommendation involves using compilers such as GCC

which enables some options that can help in protecting and

detecting the memory space against some cyber-attacks such

as buffer overflow which can be manipulated by illegitimate

users finally native code in the app should be fortified against

vulnerabilities such as memory corruption.

Table 6: The countermeasures for the identified security vulnerabilities in the mobile applications

Security Vulnerabilities
Countermeasures

Insecure Object Serialization

Only allow Serialized Objects from Trusted Sources, limit serialization to basic types to avoid complexity

and potential security risks, and implement Integrity Checks which include the use of digital signatures on
all serialized objects to ensure their integrity and prevent hostile object creation or data tampering.

Undeclared permissions

There’s a need to understand whether a declaration for permissions is needed in the app or using an

alternative option to support the functionality in the app, hence, a permission should be well stated in the

manifest file using <permission> element.

Biometric Authentication bypass For native Android, Implement biometric authentication with CryptoObject usage.

Attribute hasFragileUserData set The hasFragileUserData flag can be added to the application AndroidManifest.xml file.

Attribute usesCleartextTraffic set

By explicitly setting Android:usesCleartextTraffic to false and defining a comprehensive network security
configuration, you ensure that your Android application adheres to the best tips for secure network

communications.

Task Hijacking
Ensure that your application activities adopt a randomly obtained task affinity and that each activity runs

separately, enhancing security and control over task management.

Services declared without permissions
Permission should be clearly stated as well as using the checkpermission method in the service methods,

which can help in controlling access to services and also improving the security of the application.

Int. J. Sci. Res. in Multidisciplinary Studies Vol.10, Issue.7, Jul. 2024

© 2024, IJSRMS All Rights Reserved 43

Secret Information stored in the application

User’s confidential data should never be included with the application itself. Rather, secure techniques for

encoding, storing, and obtaining details for your services should be applied for accessing this information

as requested. In preventing the risk of overbilling, consider implementing API key pinning or using
authenticated APIs for services with potentially high usage costs. API key pinning helps to restrict the use

of a key to a specific application by requiring a cryptographic signature, and it can be enabled by the
service provider (e.g., Google Maps)

Use of WiFi API that contains or leaks

sensitive PII

Unnecessary Wi-Fi data collection should be disabled as well as using privacy-aware third-party libraries,

which significantly improve the privacy of app users and also ensure compliance with best practices for

data protection.

Unimplemented activity class detected

Inspect the manifest file for accuracy in declared classes and verify the existence of the mentioned activity
class within the application's code. Implement the necessary code for the declared activity or remove it if it

is unnecessary.

Application checks rooted device
Root detection on Android can be conducted using the RootBeer library,which can use to a certain extent

the SafetyNet.

Debug mode disabled The debuggable attribute should be properly set and its default value should be “True”

Backup mode disabled in the app manifest file, the attribute android:allowBackup should be set to enable or disable backup.

Exported activities, services, and broadcast

receiver’s list

This entry is informative

Implementation of a WebViewClient
There should be provision of visual response to the user about the loading status of the webpage in the

WebView, enhancing the overall user experience.

Call to native methods.
The data provided to NewStringUTF must adhere to the Modified UTF-8 format. UTF-16 strings lack zero-

termination.

Broadcast receiver’s dynamic registration

Export only those broadcast receivers that need to be started by third-party applications while for others, a
permission in the AndroidManifest.xml file with android:protectionLevel="signature" should be made to

restrict usage to the application setting, hence, preventing access by third-party applications.

Insecure network configuration setting

Ensure that the mobile app only communicates over encrypted channels, as well as configure a Network

Security Configuration to disallow clear text traffic and enforce HTTPS for specified domains.

Furthermore, there should be implementation of certificate pinning using a custom Certificate Authority
(CA). This involves verifying server certificates against your custom CA to prevent unauthorized

connections, hence, making the application more resistant to various security threats and ensuring a safer

user experience.

Unimplemented service class detected

Inspect the manifest file for accuracy in declared classes and verify the existence of the mentioned service

class within the application's code. Implement the necessary code for the declared service or remove it if it

is unnecessary.

Implementation of a FileObserver

There’s a need to maintain a persistent connection to the FileObserver instance for continuous event

notifications across different live objects, you should establish a shared reference accessible to all
interested parties.

Insecure File Provider Paths Setting

Be cautious about what files you share and only share files that are necessary and appropriate. Don't share

sensitive files or files that contain sensitive information. When using external-path, avoid using permissive
settings like '.' as the path. Use the <grant-uri-permission> tag to control access to shared files.

Attribute requestLegacyExternalStorage Set
In enhancing the protection of the app and user data on external storage, it's highly recommended to replace

legacy storage mechanisms with scoped storage that provides better security and privacy of the app.

Deprecated API version

Consider setting the android:targetSdkVersion attribute to a value corresponding to a recent Android API

level. This can help ensure that the application benefits from security improvements and reduces the risk of

vulnerabilities associated with older Android releases.

OAuth Account Takeover by hijacking custom

schemes

To address these security loopholes, it is suggested not to use the custom scheme in redirecting
authentication tokens. Options like App-to-app integration like Google Identity Services and Facebook

Express Login for Android must be considered.

Usage of Oauth

In ensuring secure authentication using OpenID Connect (OIDC), best practices must be adhered to such as

choosing the correct OAuth 2.0 grant type, delivering the access token securely over HTTPS, storing the
access token in a secured place using secure storage mechanisms, and configuring the access token with

appropriate expiration times and scopes.

Use of outdated vulnerable component:

async@2.4.0: CVE 2021-43138

It is recommended for async to be updated to a version greater than or equal to 3.2.2.

Use of outdated vulnerable component:

shelljs@0.8.4: CVE 2022-0144

It is recommended for shelljs to be updated to a version greater than or equal to 0.8.5

Use of outdated vulnerable component:

ws@6.1.4: CVE 2021-32640

It is recommended for ws to be updated to a version greater than or equal to 7.4.6.

ELF binaries don’t enforce secure binary

properties

Compilers such as GCC should be adopted which enables some options that can help in protecting and
detecting the memory space against some cyber-attacks such as buffer overflow which can be manipulated

by illegitimate users.

Unimplemented receiver Class Detected.

Inspect the manifest file for accuracy in declared classes and verify the existence of the mentioned receiver

class within the application's code. Implement the necessary code for the declared receiver or remove it if it
is unnecessary.

List of JNI methods
To fortify native code against vulnerabilities such as memory corruption, it's imperative to adhere to Secure

Coding best practices.

mailto:async@2.4.0
mailto:async@2.4.0

Int. J. Sci. Res. in Multidisciplinary Studies Vol.10, Issue.7, Jul. 2024

© 2024, IJSRMS All Rights Reserved 44

5. Conclusion and Future Scope

Despite various benefits obtained from adopting digital

mobile applications in Nigeria by users in this digital era

which helps to reduce stress in performing different financial

transactions anywhere and anytime, the comprehensive

analysis conducted has revealed that there are a high number

of vulnerabilities discovered in them. This has also been

revealed by viewing the current OWASP Top 10 standard for

Mobile Applications and comparing it with the most

commonly identified vulnerabilities across all the twelve

selected digital mobile applications using the Ostorlab tool.

The digital mobile banks were selected based on the review

of eight different researchers who talked about the most

commonly used digital banks in Nigeria. The selected digital

banks include Carbon, sparkle, kuda, fairmoney,moniepoint,

ALAT, Vbank, palmpay, Opay, eyowo, fundall, and mintyn

banks.

A total number of 32 vulnerabilities were discovered across

all the selected digital banks while a total number of 16

vulnerabilities were the most common vulnerabilities and

these include task hijacking, use of WIFI that contains or

leaks sensitive PII, insecure object serialization, broadcast

receiver, biometric authentication bypass, Unimplemented

activity class detected, secret information stored in the

application, exported activities services and broadcast

receiver’s list, list of JNI Methods, android manifest,

application checks rooted device, Attribute

hasFragileUserData set, Call to native methods, debug mode

disabled, Implementation of a FileObserver, attribute

usesCleartextTraffic set, insecure network configuration

setting, backup mode disabled, Implementation of a

WebViewClient and insecure File Provider Paths Setting.

The analysis reveals that the Vbank mobile application, also

known as VFD, exhibits the highest vulnerability count,

totaling 22, representing 68.75%., eyowo and sparkle mobile

apps have a total number of 20 vulnerabilities with 62.5%,

fairmoney, and ALAT banks have a total number of 19

Vulnerabilities each with 59.38%, carbon mobile app has a

total number of 18 vulnerabilities with 56.25%, Mintyn,

Opay, and Palmpay banks have a total number of 17

vulnerabilities with 51.13%, Moniepoint bank has a total

number of 16 vulnerabilities with 50% while fundall total

number of 15 vulnerabilities with 46.88%. The overall risk

rating shows that Vbank (VFD). Eyowo and fairmoney banks

were categorized at a high level while ALAT, kuda, sparkle,

carbon, mintyn, opay, palmpay,fundall, and Moniepoint

banks were categorized to be at a medium level. This clearly

stated that that none of the mobile apps was found to be

vulnerability-free and the one with the least vulnerabilities is

fundall bank with 46.88%.

Having viewed through the analyzed results, therefore, it is

very essential for users to be aware of the vulnerabilities in

digital mobile applications and take necessary precautions

such as having regularly updated versions of the digital bank

mobile apps they are using to lessen the susceptibility rate of

the app to the malicious users. User’s confidential data such

as the username and password should not be stored on the

application as malicious attackers can make use of it when the

particular Android mobile device gets stolen or lost to

perform further cybercrime and can periodically change use

strong passwords. Also, the network security configuration

setting should contain an encryption method in which the

traffic of data can be secured from malicious hackers and

users should also reduce their level of total dependency on the

digital bank mobile application for all forms of transactions.

Therefore, further research works can be conducted in the

area of adopting different mobile application security testing

tools for deep analysis of more digital bank mobile apps to

obtain better results and proffering more solutions and

countermeasures that both users and application developers

can adopt to minimize the tendency of malicious hackers

hijacking the mobile or performing other cybercrimes with

them through various means.

Data Availability

All details about the analysis report of each digital mobile

application using Ostorlab are available on request.

Conflict of Interest

The author affirms that there is no undue influence with any

party regarding the publication of this work.

Funding Source

None

Authors’ Contributions

The author completed the entire work independently.

Acknowledgments

I sincerely thank God Almighty for His divine guidance,

which illuminated my path and inspired my work.

Additionally, I extend my gratitude to the International

Journal of Scientific Research in Computer Science and

Engineering for their invaluable feedback and constructive

suggestions, which have remarkably increased the clarity and

visibility of my research efforts.

References

[1] M. Chauhan, G. Barapatr, A. Ghatge, R. Sabale, and P. S., "E –

Authentication for Secure Net Banking," International Journal of

Scientific Research in Computer Science and Engineering, Vol.10,

Issue.1, pp.15-18, 2022.

[2] L. Garba, S. Ningi and A. Ahmed, "Impact of Website Design and

Customer Technology Adoption on Customers Loyalty in the

Nigerian Banking Industry," World Academic Journal of

Management, Vol.11, Issue.4, pp.42-47, 2023.

[3] L. Wu, D. Yu, and Y. Lv, "Digital banking and deposit:

Substitution effect of mobile applications on web services,"

Finance Research Letters, Vol.56, Issue.104138, pp.1-5, 2023.

[4] O. C. Ofodile, O. Odeyemi, C. C. Okoye, W. A. A. T. Oyewole, O.

B. Adeoye and Y. J. Ololade, "DIGITAL BANKING

REGULATIONS: A COMPARATIVE," Finance & Accounting

Research Journal, Vol.6, Issue.3, pp.346-371, 2024.

[5] N. Koont, "The Digital Banking Revolution: Effects on

Competition and Stability," SSRN, Vol.1, Issue.1, pp.1-123, 2023.

Int. J. Sci. Res. in Multidisciplinary Studies Vol.10, Issue.7, Jul. 2024

© 2024, IJSRMS All Rights Reserved 45

[6] S. P. Vilhena and R. D. Navas, "21THE IMPACT OF COVID-19

ON DIGITAL BANKING," Journal of Entrepreneurial

Researchers, Vol.1, pp.21-42, 2023.

[7] S. Khan, R. Soni and K. J. Somaiya, "A study on Adoption of

Digital Banking Services using Structured Equation Model," Positif

Journal, Vol.22, Issue.11, pp.126-148, 2022.

[8] V. K. Sindhi, "Digital Banking in India: A Literature Review,"

INTERNATIONAL JOURNAL FOR INNOVATIVE RESEARCH IN

MULTIDISCIPLINARY FIELD, Vol.9, Issue.3, pp.103-106, 2023.

[9] L. A. Bueno, T. F. A. C. Sigahi and R. Anholon, "Digital Banks in

Brazil: Struggling to Reach the Breakeven Point or a New

Evolution Wave?," FinTech , Vol.2, Issue.3, pp.374-387, 2023.

[10] E. M. Sasea and M. S. Sakmaf, "DIGITAL BANK LEGAL

CHALLENGES: SECURITY PROTECTION AND LEAKAGE

OF CUSTOMER PERSONAL DATA," Awang Long Law Review,

Vol.6, Issue.1, pp.245-250, 2023.

[11] O. Alaba, O. Abass and E. Igwe, "Mobile Learning via Mobile

Devices in Nigeria Higher Education: Usage Analysis Based on

Utaut Model," The Journal of the Southern Association for

Information Systems, Vol.9, Issue.1, pp.64-80, 2022.

[12] S. Sale, J. Godbole and V. Humbe, "New Emerging Trend in

Payment System Special Reference to Electronic," World Academic

Journal of Management, Vol.11, Issue.1, pp.01-04, 2023.

[13] M. Junker, M. Bo¨hm and H. Krcmar, "Advantages and

disadvantages of mobile applications for workplace health

promotion: A scoping review," PLOS ONE, Vol.19, Issue.1, pp.1-

22, 2024.
[14] P. Falade and G. Ogundele, "Vulnerability Analysis of Digital

Banks’ Mobile Applications," NDA Journal of Military Science

and Disciplinary Studies, Vol.1, Issue.1, pp.44-55, 2022.

[15] S. W. Asher, S. Jan, G. Tsaramirsis, F. Q. Khan, A. Khalil and M.

Obaidullah, "Reverse Engineering of Mobile Banking

Applications," Computer Systems Science & Engineering, Vol.38,

Issue.3, pp.266-278, 2021.

[16] B. S. OKATAN and H. ÇAM, "Analysis of customer reviews for

digital banking applications with text mining," Gümüşhane

University Journal of Science, Vol.14, Issue.1, pp.45-50, 2023.

[17] B. S. Omotosho, "Analysing User Experience of Mobile Banking

Applications in Nigeria: A Text Mining Approach," CBN Journal

of Applied Statistics, Vol.12, Issue.1, pp.77-108, 2021.

[18] J. Zhu and M. Wang, "Analyzing the Effect of People Utilizing

Mobile Technology to Make Banking Services More Accessible,"

Frontiers in Public Health, Vol.10, pp.1-9, 2022.

[19] S. Alhejji, A. Albesher, H. Wahsheh and A. Albarrak, "Evaluating

and Comparing the Usability of Mobile Banking Applications in

Saudi Arabia," Information, Vol.13, Issue.12, pp.1-14, 2022.

[20] E. K. Ghani, M. M. Ali, M. N. R. Musa and A. A. Omonov, "The

Effect of Perceived Usefulness, Reliability, and COVID-19

Pandemic on Digital Banking Effectiveness: Analysis Using

Technology Acceptance Model," Sustainability, Vol.14, Issue.18,

pp.1-16, 2022.

[21] G. N. Wainaina, D. K. Kiyeng and N. Masese, "Enhancing Security

Measures for Mobile Banking Applications: A Comprehensive

Analysis of Threats, Vulnerabilities, and Countermeasures in

Kenya Banking Industry," International Journal of Computer

Applications Technology and Research, Vol.12, Issue.8, pp.99-112,

2023.

[22] M. A. Hassan, Z. Shukur and M. Mohd, "A Penetration Testing on

Malaysia Popular e-Wallets and m-Banking Apps," International

Journal of Advanced Computer Science and Applications, Vol.13,

Issue.5, pp.692-703, 2022.

[23] D. O. Orucho, F. M. Awuor, C. Ratemo, and C. Oduor, "Security

threats affecting user-data on transit in mobile banking

applications: A review," International Journal of Computer

Engineering Research, Vol.9, Issue.1, pp.1-11, 2023.

[24] S. A. Al-Delayel, "Security Analysis of Mobile Banking

Application in Qatar," arXiv preprint arXiv:2202, pp.1-7, 2022.

[25] A. A. Ruth, O. F. Bukie and A. A. Ariyo, "Information Systems

Research Methodologies: A Systematic Review on Cloud

Adoption, Usage and Performance," International Journal of

Scientific Research in Computer Science and Engineering, Vol.11,

Issue.5, pp.1-15, 2023.

[26] S. Mazouzi, "Known Exploitable Vulnerabilities: Catching them

all," 24 May 2024. [Online]. Accessed 24 May 2024.

[27] T. Abiola, "10 Best Digital Banks in Nigeria: Usability, Features,

Pros and Cons," 08 August 2023. [Online]. Accessed 08 August

2023.
[28] Editorial, "Top digital banks in Nigeria (2024)," 09 April 2024.

[Online]. Accessed 09 April 2023.

[29] U. Anaga, "UNVEILING THE BEST ONLINE BANKS IN

NIGERIA 2024," 01 January 2024. [Online]. Accessed 01 January

2024.

[30] Business, "Reviving Savings Culture through Digital Banking," 09

April 2024. [Online]. Accessed 09 April 2024.

[31] O. Willemin, "Best Digital Banks in Nigeria in 2022: Fees,

Usability, Features, and More," 09 April 2024. [Online]. Accessed

09 April 2024.

[32] Top5Editor, "Top 5 Best Virtual Banks in Nigeria (2024): Banking

Made Seamless and Secure," 09 April 2024. [Online]. Accessed 09

April 2024.

[33] S. Akintaro, "Here are 10 digital banks licensed by the CBN to

operate as microfinance banks in Nigeria," 09 April 2024. [Online].

Accessed 09 April 2024.

[34] J. Okwise, "Top 10 Best Online Banking Apps in Nigeria (Mobile

App 2023)," 17 July 2023. [Online]. Accessed 09 April 2024.

[35] D. F. Priambodo, G. S. Ajie, H. A. Rahman, A. C. F. Nugraha, A.

Rachmawati and M. R. Avianti, "Mobile Health Application

Security Assessment Based on OWASP Top 10 Mobile

Vulnerabilities," in 2022 International Conference on Information

Technology Systems and Innovation (ICITSI), Bandung, Indonesia,

2022.

AUTHORS PROFILE

Grace Bunmi Akintola She earned a

B.Tech in Computer Science with a

specialization in Cyber Security from the

Federal University of Technology Minna,

situated in Niger State, Nigeria, in 2016.

Afterward, MSc in Computer Forensics

and Cybersecurity was pursued from the

University of Greenwich, London, United

Kingdom, and graduated in 2021. These educational

experiences have endowed her with a comprehensive

understanding of cybersecurity principles, best practices, and

forensic techniques. Currently, she serves as an Assistant

Lecturer in the Department of Cyber Security at the Nigerian

Defence Academy (NDA) in Kaduna, Nigeria. In this role,

she has been actively involved in educating and impacting

future cybersecurity professionals, fostering a cybersecurity

awareness culture, and conducting field research. Her

commitment to academic excellence is reflected in her

continuous pursuit of knowledge and my dedication to her

students. She is interested in research, scholarly writing, and

other fields in cybersecurity, such as Network security,

forensics, AI security, penetration testing, and others.

