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Abstract-In this study, the effect of Hall currents and rotation on the onset of convection in a porous medium layer saturated by 

an electrically conducting ferromagnetic fluid heated from below using linear stability analysis is investigated. Darcy law for 

the ferromagnetic fluid is used to model the momentum equations for a porous medium. The employed model incorporates the 

effects of polarization force and body couple. The coupled partial differential equations governing the physical problem are 

reduced to a set of ordinary differential equations using normal mode technique. These equations are solved analytically for 

stress- free boundaries and numerical results are computed by obtaining approximate solutions using Galerkin method using 

the software Mathematica for the case of stationary convection. It is found that the magnetic field and magnetization have a 

stabilizing effect as such their effect is to postpone the onset of thermal instability; whereas Hall currents are found to hasten 

the same. The medium permeability and rotation hastens the onset of convection under certain conditions. 

 

Keywords- Hall currents, rotation parameter, ferromagnetic fluid , medium permeability,  medium porosity.  

 
I.  INTRODUCTION 

 

Ferrohydrodynamics deals with the mechanics of fluid motions influenced by strongforces of magnetic polarization. 

Ferromagnetic fluids are electrically non-conducting colloidal suspensions of solid ferromagnetic particles in a non-electrically 

conducting carrier fluid like water, kerosene, hydrocarbon, etc. These fluids behave as a homogeneous continuum and exhibit a 

variety of interesting phenomena. The polarization force and the body couple are the two main features that distinguish 

ferromagnetic fluid from ordinary fluid. Ferromagnetic fluids are not found in nature but are artificially synthesized. Soon after 

the method of formation of ferromagnetic fluids in the early or mid 1960s, the importance of ferrohydrodynamics was realized. 

During the last half century, research on magnetic liquids has been very productive in many fields. Strong efforts have been 

undertaken to synthesize stable suspensions of magnetic particles with different performances in magnetism, fluid mechanics 

or physical chemistry. An authoritative introduction to this fascinating subject has been discussed in detail in the celebrated 

monograph by Rosensweig [1]. This monograph reviews several applications of heat transfer through ferromagnetic fluids. 

One such phenomenon is enhanced convective cooling having a temperature dependent magnetic moment due to magnetization 

of the fluid. This magnetization, in general, is a function of magnetic field, temperature and density of the fluid. In this 

analysis, it is assumed that the magnetization is aligned with the magnetic field. Convective instability of a ferromagnetic fluid 

for a fluid layer heated from below in the presence of uniform vertical magnetic field has been considered by Finlayson [2]. He 

explained the concept of thermomechanical interaction in ferromagnetic fluids. Thermo-convective stability of ferromagnetic 

fluids without considering buoyancy effects has been investigated by Lalas and Carmi [3], whereas Shliomis [4] analyzed the 

linearized relation for magnetized perturbed quantities at the limit of instability. 

 

 The medium has been considered to be non-porous in all the above studies. There has been a lot of interest, in recent years, in 

the study of the breakdown of the stability of a fluid layer subjected to a vertical temperature gradient in a porous medium and 

the possibility of the convective flow. The stability of flow of a fluid through a porous medium taking into account the Darcy 

resistance was considered by Lapwood [5], Wooding [6], Sunil [7] and many others. However, the flow of a fluid through a 

homogeneous and isotropic porous medium is governed by Darcy’s law. A macroscopic equation describing incompressible 

flow of a fluid of viscosity μ, through a macroscopically homogeneous and isotropic porous medium of permeability 
1k , is 

well-known Darcy’s equation, in which the usual viscous term in the equations of fluid motion is replaced by the resistance 

http://www.isroset.org/
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

is the filter velocity of the fluid. The thermoconvective instability in a ferromagnetic fluid saturating a 

porous medium of very large permeability subjected to a vertical magnetic field has been studied using the Brinkman model by 

Vaidyanathan [8], and indicated that only stationary convection can exist. In the presence of strong electric field, the electric 

conductivity is affected by the magnetic field. Consequently, the conductivity parallel to the electric field is reduced. Hence, 

the current is reduced in the direction normal to both electric and magnetic field. This phenomenon is known as Hall effect. 

Sharma and Gupta [9] have studied the effect of rotation on the thermal convection of micropolar fluid in the presence of 

suspended particles. 

 

In the present paper, the effect of Hall currents and the rotation on thermal stability of ferromagnetic fluid heated from below 

saturating a porous medium in the presence of horizontal magnetic field has been investigated numerically in the porous 

medium. 

 

II. RELATED WORK 

 
An infinite, incompressible, electrically non-conducting thin ferromagnetic fluid, bounded by the planes 0z and dz 

saturating a porous medium is considered to include the effect of Hall currents. This layer is heated from below so that uniform 

temperature gradient 










dz

dT
  is maintained. A uniform horizontal magnetic field  0,0,0HH 


 , vertical rotation 

 ,Ω,Ω 00
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 and  gravity force  ggg  ,0,0


pervade the system. This fluid layer is flowing through an isotropic and 

homogeneous porous medium of porosity   and medium permeability 
1k .  

 

 
 

Let  u,v,wq BtegTp e


 and  ,,,,,,,,,  denote the fluid pressure, density, temperature, thermal coefficient of 

expansion, gravitational acceleration, resistivity, magnetic permeability, electron number density, charge of an electron, time, 

magnetic induction and fluid (filter) velocity, respectively. The equations expressing the conservation of momentum, mass, 

temperature, and equation of state of ferromagnetic fluids through saturating porous medium are 
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
  pertinent to a ferromagnetic fluid is the magnetic stress. In 

the equation (1), the term  


v02  represent the Coriolis acceleration and the term 
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  represents the 

centrifugal force (which is of very small magnitude).The Gauss divergence equation and the magnetic induction equation in the 

presence of Hall currents yield 
0 H


                                                                                                                                                                          (5)
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The density equation of state is  

  00 1 TT                                                                                                                                                                  (7) 

Here   is the thermal expansion coefficient,    is the temperature at reference point. The magnetic field, magnetization, and 

magnetic induction are related by 

 MHB


 0                                                                                                                                                                          (8) 

We assume that the magnetization is aligned with the magnetic field, but allow a dependence on the magnitude of the magnetic 

field and temperature so that 

 THM
H

H
M ,



                                                                                                                                                                        (9) 

The equation of state specifying M


 by two thermodynamic variables only TandH   


is necessary to complete the system. In 

the present study, we consider magnetization to be independent of the magnetic field intensity so that )(TMM 


 only. As a 

first approximation, it is assumed that 

  00 1 TTMM  


                                                                                                                                                         (10) 

The basic state is given by 

        )(,1,,0,0,0 00 zMMzzzTTzp,pq 


                                                                      (11) 

The stability of the basic state is analyzed by superimposing infinitesimal perturbations to the physical quantities describing the 

system and   let    wvuqhhhhMp zyx ,,  and ,,,,,


  denote the perturbations in density, pressure p , magnetization 

M


, temperature T , magnetic field  )0,0,0(HH 


and filter velocity q


 (zero initially), respectively. The change in 

magnetization M  and density  caused by the perturbations    and     in temperature and concentration, are given by 

 0MM                                                                                                                                                                           (12) 

 0                                                                                                                                                                             (13) 

Then the linearized perturbation equations for ferromagnetic fluid under Boussinesq approximation are
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of current density.  
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III. METHODOLOGY  
 

Analyzing the disturbance into normal modes, we assume that perturbation quantities are of the form: 
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where  xk and yk  are wave numbers along x-and y-directions, respectively,   2
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,,  is the Prandtl number, 
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v
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 is the magnetic Prandtl number, 
2

1
1

d

k
p   is the 

dimensionless medium permeability. 

 

Galerkin procedure 
A single term Galerkin technique is applied to solve system of equations (20)-(24).The trial solutions satisfying the 

dimensionless boundary conditions, 

1  and  0at   0,0,0,0,02  zzKDZDXXWDW  .                                                                  (25)

2324343243 ,,2,2,2 ttKttttZtttXtttW    .                                                                   (26) 

 

The trial solutions given in equation (26) are the minimal polynomials satisfying the boundary conditions given by equation 

(25).Now performing the standard Galerkin procedure (Finlayson [10]) for system of differential equations (20)-(24). 

Substituting the trial solution (26) in differential equations (20)-(24) and calculating the residual by using the boundary 

conditions (25), we have  
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The Stationary Convection 
When instability sets in stationary convection, the marginal state will be characterized by      Equations (27)-(31) reduced 

and constitute a system of linear algebraic equations. Following the procedure adopted by Nield and Kuznetsov [11] we have 

the following equation for the monotonic instability boundary, 
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IV.    RESULTS AND DISCUSSIONS 

 

Graphs have been plotted between the modified Rayleigh number R

 

and magnetic field parameter Q , Hall current parameter 

M  and medium permeability parameter P for various values of wave number .8,4,2a In figure (2), Rayleigh number R is 

plotted against  medium permeability  P and it is found that the medium permeability always hastens the onset of convection 

for all wave numbers as the Rayleigh number decreases with an increase in medium permeability parameter. In figure (3), 

Rayleigh number R  is plotted against magnetic field Q  
depicting thereby the stabilizing effect of the magnetic field. In figure 

(4), Rayleigh number R  is plotted  against the wave number a  depicting   that  medium permeability hastens the onset of 

convection for small wave numbers  near 1x  as the Rayleigh number decreases with an increase in medium permeability 

parameter and postpones the onset of convection for higher wave numbers as the Rayleigh number increases with an increase 

in medium permeability parameter,  whereas in  figure (5) Rayleigh number R is plotted against the Hall current showing 

thereby that Hall currents have a destabilizing effect on the thermal convection. 
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            Figure 2.Variation of R1 and P for fixed                                                    Figure 3.Variation of R1 with Q1 for fixed  

            P = 50, θ = 45°, M = 10, Q1 (= 10, 20,…, 60)                                            M = 0.1, Q1 = 10, θ = 45°, and P (= 1, 2,…, 6)   
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 

                                                                                                                                                            
Figure 4.Variation of R1 and a for a fixed                                       Figure 5.Variation of R1 with Q1 for fixed 

M = 100, Q1 = 10, θ = 45°, for a (= 0.1, 0.5, 1,…, 4)                                P = 50, θ = 45°, M = 10, Q1 (= 10, 20,…, 60) 

                                              
V. CONCLUSION AND FUTURE SCOPE 

 

The effect of various parameters such as magnetic field, Hall currents, magnetization, medium permeability and rotation has 

been investigated analytically as well as numerically. The main results from the analysis of the paper are as follows. 

● In order to investigate the effects of magnetic field, Hall currents, magnetization and 

medium permeability, we examine the behavior of 
dQ

dR

  

, 
dM

dR  and 
dp

dR  analytically. 

● It is found that Hall currents have a destabilizing effect whereas magnetic field and 

magnetization have a stabilizing effect on the system. Figures 3 and figure 5 support the 

analytic results graphically. The reasons for stabilizing effect of magnetic field and destabilizing effect of Hall currents are 

accounted by Chandrasekhar [12].  

 

● For M , the medium permeability always hastens the onset of convection for all wave numbers as the Rayleigh number 

decreases with an increase in medium permeability parameter whereas for 1M the medium permeability hastens the onset 

of convection for small wave numbers as the Rayleigh number decreases with an increase in medium permeability parameter 

and postpones the onset of convection for higher wave numbers as the Rayleigh number increases with an increase in medium 

permeability parameter. The effect of various parameters such as magnetic field, Hall currents, magnetization, medium 

permeability and rotation could be extended for the salinity gradient i.e solute parameter even in the porous medium. 
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