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Abstract— Many applications in health, medicine, finance store their information in relational database. Users cannot 

precisely work with structured query languages like SQL unless they have strong prior knowledge in this field. Also SQL 

is difficult to expertise for non­technical users. Hence a long­standing goal is to allow the users to interact with database 

with natural language. The reason for Voice­Driven bot is it can also be an assistive technology for visually impaired 

people.  

The system involves 3 main phases : Speech to text, Text to SQL queries and Text to speech. In the First phase,the input is 

received as voice signals which will be used to predict the text from the audio file. Then in the second phase, SQL queries 

are generated from the text using encoder­ decoder mechanism and pick the one which is valid and less complex to fetch 

the results. The model is trained using the Spyder dataset which makes the model aware of relations between the tables. 

After that, the results are converted to complete sentence and delivered back as a voice reply to the user. The natural 

language query from the user is converted to text using Speech recognition. Deep Learning is used to train the neural 

networks on large scale data of questions and answers.Bridge model finds the table names, column names and the 

conditional operators. SQLite Database is used to fetch the results based on the generated query 
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1. INTRODUCTION 

 

The objective of the system is to design a bot which 

answers the user query by converting the natural language 

into SQL query automatically. Speech Recognition system 

and natural language processing have given rise to 

powerful voice-based interfaces. The system consists of 

three modules: Speech to text, Text to SQL queries and 

Text to speech. The first module is to convert the user 

query from speech to text. It is done using the Mozilla 

DeepSpeech model. In the following module the text is 

used to generate the SQL query using the encoder­decoder 

mechanism. And the last module is to convert the text back 

to speech. Here, the results are fetched from SQLlite 

database and google API is used for converting the end 

results to voice.  

 

The report is organised as follows: Section 1 contains 

Introduction which gives an overall outline about the NLP 

based query retrieval, voice bot based solutions and 

objective of the model, Section 2 contains the related work 

carried before the beginning of the work, Section 3 

provides the  diagrammatic representation and the 

functionalities of each and every module is clearly 

explained, section 4 gives the detailed design level aspect 

of the entire model and the algorithm of each module and 

the training process and testing, Section 5 describes how 

the entire system is implemented and is used to analyse the 

certainty of success and failure with the help of the result 

obtained and a deep analysis on the performance of the 

given model is done, Section 6 concludes the overall and 

future works.  

 

2. RELATED WORK 

 

Parsing Natural language query to fetch results involves 

the task of translating the NL utterance into text. The 

conversion of speech into text and NLP based database 

querying techniques are widely explored in this section. 

 

2.1   End-to-End Speech Recognition using RNN 
The paper by Dario Amodei et al., [3]  discussed the Deep 

Speech 2: End-to-End Speech Recognition in English and 

Mandarin. Here, Recurrent neural network trained to ingest 

speech spectrograms and generate text transcriptions. This 

method involves 11 layers including many bidirectional 

recurrent layers and convolutional layers. CTC loss 

function was used to train the model. A very high 

¬performing recognizers are created for two very different 

languages, English and Mandarin, required essentially no 

expert knowledge of the languages. But training involves 

very high end system which will be hindrance when one 

try to develop the model for their native languages. 

 

2.2   Speech Recognition System 

The paper by Pranab Das et al., [7] provides a Speech 

Recognition System which converts a voice into a text. 

This system consists of five modules. They are, Receiving 

http://www.isroset.org/
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Voice Input, Sampling, Vectorization, Acoustic Model and 

Predicting words by Language Model. First, the received 

voice from the microphone will be in the form of one 

dimensional waves. To turn the received waves into 

number, the height of the wave at the equally spaced points 

are recorded. Then the input to the decoder will be 20 

millisecond audio chucks. It will try to figure out the letters 

corresponding to the input. Having memory of the previous 

predictions, the valid words are identified. It will reduce 

the data loss by imposing weighted value to the data 

regions. So that the data which are about to loss can be 

reduced .The drawback here is this model makes use of 

MFCC algorithm. Since MFCC low robust to Noise 

signals, all inputs are altered by noise signal, if at least one 

frequency is distorted. 

 

2.3   BERT based model for SQL generation 

 The paper by Tong Guo et al., [10] gives a detailed 

explanation about a simple methods BERT ¬based model 

for solving text ¬to ¬SQL problem. It is observed that 

some of the table content matches some words in question 

string and some table header may match some words in 

question string. Here, encoding of two addition feature 

vector is carried for the deep model. It is trained using the 

mask language model loss and the next¬ sentence loss. 

And then it is fine¬ tuned for specific tasks like text 

classification, text matching and natural language 

inference. Here, BERT as the representation layer. It gives 

very high accuracy on WikiSQL dataset which includes 

only simple queries. It fails to create querieswhich includes 

multiple tables. 

 

2.4   Syntax Tree based model for SQL generation 
The paper by Tao Yu, et al., [9] provides a Syntax Tree 

based model for Natural language processing-based 

database querying. Using syntax tree-based model, 

generating a complex SQL query with multiple clauses, 

selections and sub queries are efficiently possible. In this 

model, each SQL token is predicted with the help of 

grammar rules and SQL generation path history. Totally 

nine modules are existing in SQL token prediction. They 

are, IUEN module, KW module, COL module, OP module, 

AGG module, Root/Terminal module, AND/OR module, 

DESC/ASC/LIMIT module and HAVING module. The 

self-developed module working strategy says that If the 

SQL generation path history’s last prediction is HAVING 

clause, then there is a chance for aggregate functions 

(SUM(), COUNT(), AVG(), MIN(), MAX(),..) takes place 

next. As a result, it achieves 12.3 percentage total 

improvement compared to previous models and 22 

percentage accuracy. The model will degrade the 

correctness of predicted SQL query since the context of the 

input is not taken into an account. 

 

2.5 Bridging Textual and Tabular Data In cross 

Domain semantic parsing for SQL generation 

The paper by Xi Victoria Lin  et al., [11] explained the 

Bridging Textual and Tabular Data for Cross Domain Text 

to SQL Semantic Parsing. Here, Question Schema 

Serialization and Encoding is carried out for Metadata 

Features extraction which is done using BERT and LSTM. 

Then Bridging is carried out which acts as a anchor text to 

link value mentions in the question with the corresponding 

DB fields. Finally Schema Consistency Guided Decoding 

is carried out where SQL query is generated based on the 

SQL syntax constraints. It fails to give compositional 

generalization and the application of BRIDGE in other 

tasks are yet to be identified. It gives the accuracy of 71% 

on Spyder dataset. 

 

2.6   Dependency Graph for SQL Generation 

The paper by Xiaojun Xu  et al., [12] discussed 

synthesized SQL queries from natural language without the 

use of reinforcement learning. In this, sketch¬ based 

approach is employed where sketch contains a dependency 

graph so that one prediction depends only on the previous 

predictions not on the entire one. To denerate the where 

class, sequence¬ to ¬set and column attention mechanism 

is employed. The former is to predict an unordered set of 

constraints and the later is to capture the dependency 

relationship. The main aim is to avoid sequence¬ -to --

sequence model where SQL query order does not matter. 

This achieves the accuracy of 74.1% when tested with 

Wiki SQL dataset. But it is noticed that this approch is not 

effective when the query gets complex and it involves 

many table and joins. 

 

3. SYSTEM DESIGN 

 

The system consists of three modules. The first module is 

to convert the user query from speech to text. It is done 

using the Mozilla DeepSpeech model. In the following 

module the text is used to generate the SQL query using 

the encoder­decoder mechanism. And the last module is to 

convert the text back to speech. Here, the results are 

fetched from SQLlite database and google API is used for 

converting the end results to voice. 

 

3.1   SPEECH TO TEXT MODULE 

 The natural language query spoken by the user is received 

as put for the module and stored in the audio file. For 

processing them to text, it requires the following stages. 

They are Sampling, Vectorization, Decoder using Acoustic 

and Language Model. 

 

3.1.1   Dataset for Speech Recognition: 

 The deepspeech model is trained with 3816 hours of 

transcribed audio. The model also includes around 1700 

hours of transcribed WAMU (NPR) radio shows. For 

further training, the dataset is created by recording the 

Natural Language query from users and storing them as 

audio files. 300 audio files along with their ground truths 

are used for training. 

 

3.1.2   Sampling 

 Initially we perform sampling on the audio files where 

continuous signal is converted to discrete signals using the 

heights of the signal at the equally spaced points. Here 

sample rate, bits per sample and channel number are 

considered. 
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Figure 1 Architecture Diagram 

 

3.1.3   Vectorization 
Feature extraction is done using Mel Frequency Cepstral 

Coefficients (MFCC). Vectorization is performed on the 

sampling output and a NumPy buffer array is obtained. At 

this stage only the useful signals will be retained since 

redundant and unwanted information is eliminated using 

the blocking mechanism. This array will be passed as a 

input to the decoder. 

 

3.1.4   Decoder 

 Decoding is carried out with the help of acoustic and 

language model. Acoustic model contains statistical 

representations of each distinct sounds that makes up a 

word. It is a RNN model which involves 5 hidden layers 

with 3 non recurrent layers, 1 recurrent layer and 1 output 

layer. Language model provides the context to distinguish 

the sounds or the word that sounds similar by performing 

probability distributions. By means of probability 

distributions it will assign probability to a sequence of 

words. Therefore, with the help of acoustic model and 

language model the decoder will predict the appropriate 

text. The NL query in the text format corresponding to the 

audio given is converted to text using the generated model. 

3.2   TEXT TO SQL MODULE  

The user query in text format obtained from the speech-to-

text module is processed in Word Embedding, Link 

Embedding, Object Creation and Decoder to generate the 

SQL query. 

 

3.2.1   Dataset for Query Classification 

The training of this module is carried out using the Spyder 

dataset which contains 10,181 questions and 5,693 unique 

complex SQL queries involving 200 databases with 

multiple tables across 138 different domains. 

 

3.2.1   Word Embedding 

The text obtained from previous module is cleaned for 

further processing. Stop words are removed and tokenized. 

Word embedding helps to identify the aggregate function. 

If the query contains aggregate function, it further predicts 

the type of aggregate function with the help of 

classification models. Classification model is trained using 

the binary table which includes features as columns and 

NL queries as rows. After predicting the type of query link 

embedding was performed.  

 

3.2.2   Link Embedding  

Link embedding helps to identify level of complexity by 

identifying the number of tables involved to generate 

query. Classification model is trained using the binary 

table which includes features as columns and NL queries 

as rows. After predicting the type of query link embedding 

was performed. 

 

3.2.3   Object Creation using Bridge Model 

Then Bridge model gives the raw information regarding 

the table and column names and it identifies the 

conditional operators with the help of database schema. In 

Bridge model, Encoding is carried out for Meta-data 

Feature’s extraction which is done using BERT and 

LSTM. Then Bridging is carried out which acts as a anchor 

text to link value mentions in the question with the 

corresponding DB fields. 

 

3.2.4   Decoder 

Using the output of Bridge model, decoder conditionally 

append the SQL tokens using the grammar rule to generate 

the query in the proper format. The SQL query generated 

from the NL query will be the output of this module. 

 

3.3   TEXT TO SPEECH MODULE 

This module converts the results fetched from the database 

into the speech format which will be the final output of the 

model. 

 

3.3.1   Database Creation 

The obtained SQL query is used to fetch the results from 

the SQLlite database. Database is created with sample 

entries which is used to fetch results. The results are 

fetched in the tuple format. They are converted to string to 

perform speech conversion.  
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Google Text to Speech API commonly known as the gTTS 

API is used to convert the resultant string into speech 

format. The wave file of the NL query result obtained from 

gTTS API is the final output of the system. 

 

4. METHODOLOGY 

 

The detailed design of the model and algorithm of various 

modules are given in this chapter. 

 

4.1    SPEECH TO TEXT USING DEEPSPEECH 

MODEL 

Transcribing to text from the speech input provided by the 

user is explained in this section. 

 

4.1.1   Sampling 

The audio file containing NL queries, obtained from the 

user will be in the mp3 format. Then the audio will be 

sampled with the sampling rate of 16kHz. The bit rate is 16 

so that 16 bits will be used to store the values of each 

sample. The number of channels is set as mono. 

Parameters are tuned using PyDub library. 

Algorithm 1: Sampling of NL queries 

Step 1: Convert the audio file to .mp3 format. 

Step 2: Set sampling rate to 16kHz 

Step 3: Set bits/sample to 16 bits 

Step 4: Set the channel number to 1 

Step 5: Measure the height of signal and convert the 

speech to discrete value 

Step 6: Store the results in .wav format 

 

4.1.2   Training the pre­trained model 

Acoustic Model already developed by Mozilla is used to 

predict the phonetics. It is trained with around 68 hours of 

audio along with their transcripts. It mostly includes 

American English which doesn't give the desired accuracy 

for the Indian users. To improve the accuracy the model is 

further trained with the Indian English audio files. 

 

Audio files are obtained from different users and stored in 

a folder. Sampling is performed for all audio files. CSV 

files are created which includes 3 columns. They are 

location of audio files, size of the file and ground truth. For 

training, validation and testing, the data-set is split into 

three CSV files as train.csv, dev.csv, test.csv. 

 

Algorithm 2: Creation of dataset 

Step 1: Collect the voice input from different users 

Step 2: Store all audios in single folder 

Step 3: Find the size of the audio files 

Step 4: Create the CSV file which have location of audio 

files, size of audio files and ground truth of audio files 

as columns. 

Step 5: Split the CSV into train,dev and test 

 

Acoustic model is trained using the deep earning 

mechanism which is composed of 5 layers of hidden 

units.The first three layers are not recurrent. At each time 

step, the non-recurrent layers work on independent data. 

The fourth layer is a recurrent layer with two sets of hidden 

units. One set has forward recurrence while the other has 

backward recurrence. The fifth (non-recurrent) layer takes 

the forward units as inputs. The output layer predicts the 

character probabilities for each time step. 

 

Training of acoustic model is initialized by providing the 

location of the checkpoints of the pre-trained model so that 

the training is continued on the already trained model of 

Mozilla. Further the location of binary files of the language 

model, train.csv, dev.csv and test.csv is given learning rate 

is set to 0.0001 which seems to give the better accuracy. 

After training, the model is stored in .pb format. It is 

converted to .pbmm format which is memory mapping 

format to predict the user inputs with great efficiency. 

 

Algorithm 3: Training the pre-trained Model 

Step 1: Perform sampling on all audio files 

Step 2: Perform vectorization for feature extraction using 

MFCC. 

Step 3: Provide the location of checkpoints of acoustic 

and language model. 

Step 4: Train the pre­trained model with learning rate of 

0.0001. 

Step 5: After training, store the model in .pbmm format 

The model obtained after training is loaded and predictions 

are made. The buffer array type is set as type16 since the 

bit rate during sampling is 16 bits. It is tested with different 

audio files. To know the better accuracy and loss of the 

trained model it is tested only with NL queries. Audio from 

the user is sampled and stored in .wav format.The wave 

file is then read to create a NumPy buffer array. The buffer 

is a byte array since pre-trained model expects 16-bit int 

array. Model is created with trained acoustic and language 

model along with the parameters. The NumPy buffer is 

given to the decoder which will predict the end result with 

the help of acoustic and language model. 

 

4.2   SPEECH TO TEXT USING EXISTING MODEL 
Natural language questions alone is extracted from the 

Spyder dataset and converted them to CSV format. CSV 

file is given as input to PYTTSX (offline Python Text to 

Speech library) to get output as speech format (Audio file) 

of NL questions. The output audio file is considered as 

source file to measure the performance of various API’s. 

These API’s includes Google Speech API, Pocketsphinx 

API, Wit.ai API. The created audio file is passed as input 

into these API’s for Speech Recognition and the results are 

stored in separate CSV file. The csv file obtained is used to 

calculate the performance measures. 

 

Algorithm 4: Performance measure of existing API’s 

Step 1: Extract NL queries from Spyder dataset and store 

in CSV file 

Step 2: Convert NL queries to audio files using PYTTSX 

Step 3: Convert audio files to text in 3 different API’s 

Step 4: Store the results in CSV and compare the results 

with transcripts 

Step 5: Calculate the accuracy of each API 
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4.3   CLASSIFICATION OF NL QUERIES 

Classification of natural language query to identify the 

type of query, aggregate functions and complexity. SQL 

queries obtained from spyder dataset is used to build the 

binary table. All the SQL queries with SUM(), COUNT(), 

AVG(), MIN(), MAX() are considered aggregate queries 

and the rest is considered simple queries. If the given query 

is identified as aggregate, they are further classified to 

identify the type of aggregate function. For that, Binary 

table is created with natural language query as rows and 

valuable tokens as columns. Then to identify the level of 

complexity, SQL queries obtained from spyder data-set is 

used to build the binary table. Queries involving single 

table and multiple tables are classified for identifying the 

tables using different classification algorithms. Several 

supervised learning algorithms are used to identify the best 

model of all. 

 

4.3.1   Query Classification using Naïve Bayes 

Naive Bayes is a classification technique based on Bayes 

Theorem with an assumption of independence among 

predictors. It assumes that the presence of a particular 

feature in a class is unrelated to the presence of any other 

feature. Naive Bayes predicts membership probabilities for 

each class such as the probability that data point belongs to 

a particular class. It assumes that particular feature in a 

class is unrelated to the presence of any other feature. The 

class with the highest probability is considered as the most 

likely class. Then, Naive Bayesian equation is used to 

calculate the posterior probability for each class. The class 

with the highest posterior probability is the outcome of 

prediction. 

 

4.3.2 Query Classification using Support Vector 

Machine 

Support Vector Machine or SVM is one of the most 

popular Supervised Learning algorithms, which is used for 

Classification as well as Regression problems. SVM uses 

the data to obtain different points and maps them in a very 

high dimensional space using a nonlinear kernel function. 

SVM works by searching for the optimal solution for class 

splitting. The solution can be used to maximize the 

distance with respect to the nearest points. Finally, the 

hyperplane is obtained. For obtaining optimal results, 

parameters of SVM will be tuned. 

 

4.3.3 Query Classification using Random Forest Tree 

Random forest is a supervised learning algorithm. The 

"forest" it builds, is an ensemble of decision trees, usually 

trained with the “bagging” method. The general idea of the 

bagging method is that a combination of learning models 

increases the overall result. Random Forest initially select 

“k” features from total “m” features such as K<m. Among 

“k” features, calculate the node “d” using the best split 

point. This can be done with any decision tree algorithms. 

Later it will split the node into daughter modes using the 

best split based on the votes obtained. This is repeated until 

the specified number of nodes are reached. 

 

To identify the best classification model and to attain the 

highest accuracy classification is carried out in all three.  

Further to improve the accuracy, feature selection is 

carried out where the features which doesn’t hold any 

values are removed and finally the cluster of  120 features 

are used.  

Algorithm 5: Binary Table Creation 

Step 1: Extract natural language query from Spyder 

dataset 

Step 2: if Query contains ’min’, ’max’, ’avg’, ’sum’, 

’count’ keywords then mark the classfield1 as 

’aggregate’ otherwise mark as ’simple’ 

Step 3: if Query contains 'join','(select'),'( select' 

keywords then mark the classfield2 as ' complexTable' 

otherwise mark as 'singleTable' 

Step 4: if Query contains aggregate function fill aggregate 

function is classfield3 

Step 5: if token matches valid words, then fill the column 

as ’Y’ fill the column as ’N’ 

Step 6: Binary table created is loaded and transformed to 

binary value 

Step 7: Models are generated using Gaussian Naive 

Bayes, SVM, Random Forest 

Step 8: Classification model with highest accuracy is used 

to predict results 

 

For identifying whether the query is Simple/Aggregate, 

Random Forest Tree gives the best results. For fine tuning 

the hyper parameters are modified as n_estimators=2000, 

criterion=’entropy’ and min_sample_split=10. This model 

gives the accuracy of 88%. For identifying the type of 

query, Support Vector Machine gives the highest accuracy 

of 91.6% when hyperparameter kernel=’rbf’. For 

identifying the query complexity, Support Vector Machine 

gives the highest accuracy of 71% with the 

hyperparameters kernel=’rbf’, gamma=1, degree=1 

 

4.3   BRIDGE MODEL FOR OBJECT CREATION 

Pre-trained Bridge model takes input as a natural language 

utterance and a database schema and generates SQL 

queries as token sequences. Here the meta data features are 

obtained using the BERT model where the tokens which 

helps to identify the table names, column names and 

conditional operators are identified. Later fussy string 

mapping is carried out to obtain the object which gives the 

raw information. 

Algorithm 6: Creation of Bridge Model 

Step 1: Create tokens for NL query and database schema 

Step 2: Meta­data Features extraction using 

Question­Schema Serialization and Encoding 

Step 3: Fussy string matching to map the NL tokens with  

column names and conditional operator 

 

4.4   SQL GENERATION USING GRAMMAR 

RULES 

Pre-processed Natural Language query and database 

schema are given to pretrained Bridge model which 

identifies the column names and ground truth values with 

accuracy of 86%. Text received from the previous module 

is used to perform text pre-processing, which consists of 
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removing punctuation, white spaces, duplication, 

tokenization and Stop-words removal. After obtaining 

column names and conditions from the BRIDGE model, 

they are conditionally appended with the help of grammar 

rules to generate the SQL query which will be syntactically 

correct. 

Algorithm 7: Generation of SQL Query 

Step 1: Pre trained Bridge model identifies table names, 

column names, conditional operators 

Step 2: ” SELECT ” and column names are appended to 

query variable 

Step 3: ” FROM” and table names are appended later 

Step 4: if conditional operators present then conditions 

are appended 

Step 5: Generated query verified with classification 

results 

 

4.5   TEXT-TO-SPEECH COMVERSION 

Generated SQL query is used to fetch the results. 

Databases are created using SQLite, appropriate tables and 

sample entries  are created. Results are fetched in the form 

of tuples. Results fetched are converted to string for voice 

conversion. Google API commonly known as gTTS is used 

for converting the SQL results in the form of voice to 

users. 

Algorithm 8: Generation of Query result 

Step 1: Creation of database using SQLite 

Step 2: Sample entries for all tables and columns of single 

database are created 

Step 3: Connection is created for the created database 

Step 4: Generated SQL query is given to database 

Step 5: Results obtained in tuples format are converted to 

string 

Step 6: Results are given to google API 

Step 7: Audio file in .wav format is obtained 

 

5. RESULTS AND DISCUSSION 

 

In this Study, Voice driven bot for cross domain database 

querying, The Prediction of speech to text is done using the 

pretrained Mozilla’s DeepSpeech model with the accuracy 

of 75%. To improve the accuracy further while predicting 

Indian English, new dataset is created. For that, the natural 

language questions are extracted from spyder dataset which 

is around 300 entries and stored in CSV file. User queries 

from spyder dataset are shown in Table 5.1. They are 

converted to audio files using PYTTSX which is in .wav 

format. Training Dataset includes three columns. They are, 

Location of the audio files, Size of the audio files and 

Trascription of the audio files. Training dataset shown in 

Table 5.2. 

 
Table 5.1 User Queries from Spyder Dataset 

S.NO NATURAL LANGUAGE QUERY 

1 How many heads of the department are older than 56? 

2 List the name, age and born state of the heads of the 

department order by age. 

3 What are the maximum and minimum budgets of the 

department? 

4 In which year are most departments established? 

5 How many farms are there? 

To predict the text from given speech, Dataset is converted 

to feature vector and given to recurrent neural network. It 

converts speech spectrograms to English text. Average loss 

of model when tested with multiple instances are recorded 

to be 16%.  

 
Table 5.2 Training Dataset 

WAV_FILENAME WAV_FILESIZE TRANSCRIPT 

OUTPUT1.WAV 1058458 who scored more 

that eighty percent 

OUTPUT2.WAV 1058458 how many are 

from it department 

OUTPUT3.WAV 1058458 give me the total 

girls count 

OUTPUT4.WAV 1058458 who secured the 

highest score  

OUTPUT5.WAV 1058458 find the name of 

the students whose 

performance is 

good  

 

To measure the performance of three different existing 

API, user queries are collected from the Spyder dataset 

which is around 100 entries and stored in CSV file. The 

extracted NL questions are converted to audio files using 

PYTTSX. This audio files are given to Google Speech to 

text API, Pocketsphinx API and Wit.ai API as an input. 

The result obtained from each API are analyzed. After 

analysis it is found that WIT.ai API has the highest 

accuracy as shown in table 5.3. 

 

To convert Natural language questions to Structured Query 

Language, pretrained bridge model is used. It gives 

information regarding columns, tables and column values. 

Then SQL queries are predicted using this information. 

 
Table 5.3 Performance measure of existing APIs 

API NAME ACCURACY 

GOOGLE API 74.78% 

POCKET SPHINX 84.50% 

WIT.AI API 89.73% 

 

To check the correctness of SQL query, Classifications are 

done using four different models. They are, Naive Bayes, 

Decision tree, Random Forest and Support Vector 

Machine. Binary tables are created to train the 

classification model. For that, Natural language questions 

extracted from spyder dataset which is around 10,000 

entries are kept as rows. The extracted texts are pre-

processed and tokens which helps to classify a query alone 

is separated which is around 120 and kept as columns. 

Those features are shown in table 5.7. The binary table for 

classification is shown in table 5.4, 5,5, 5.6. Word 

Embedding and Link Embedding are done to create a class 

labels which is a column of binary dataset. 

 
Table 5.4 Binary table for Simple/Aggregate query classification 

model 

NL Question Class Label How Many List 

How many heads 

are older than 

56? 

Aggregate Y Y N 
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List the name and 

age of the heads 

of departments. 

Simple N N Y 

What are the 

minimum budget 

of the 

departments? 

Aggregate N N N 

 

Table 5.5 Binary table for Aggregate query type classification 

model 

NL Question Class Label How Many Average 

How many 

heads are older 

than 56? 

Count Y Y N 

What is the 

average number 

of working 

horses? 

Average N N N 

What are the 

minimum 

budget of the 

departments? 

Maximum N N N 

 

Table 5.6   Binary table for Single/multiple table classification 

model 

NL Question Class Label How Many what 

In which year 

were most 

departments 

established? 

Single N N N 

What are the 

distinct ages of 

the heads who 

are acting? 

Multiple N N Y 

How many farms 

are there? 

Single Y Y N 

 
Table 5.7 Features of binary dataset 

how, many, 

minimum, 

maximum, 

count, total, 

average, sum, 

who, what, 

where, least, 

in, most, 

order, sorted, 

bigger, 

smaller, 

which, 

distinct, list, 

more, 

ascending, 

descending, 

give, each, 

show, 

reversed, 

greater, at, 

lower, less, 

never, when, 

longest,  

greatest, 

ending, 

starting, 

furthest, top, 

bottom, 

beginning, 

select, 

increasing, 

decreasing, 

long, range, 

frequent, 

partition, 

contain,  

max, min, 

higher, start, 

end, oldest 

newest, 

smallest, 

shortest, 

largest mean, 

lowest, 

lasted, ended, 

always, 

cheap, etc... 

 

In Word Embedding, Queries are classified as Simple and 

Aggregate. Queries are labeled as Aggregate when it 

contains a words such as Min, Max, Sum, Avg and Count. 

Otherwise labeled as Simple. The results shows 5900 

queries are simple queries and 3800 queries are aggregate 

queries. Decision Tree for Simple/Aggregate classification 

model is shown in Figure 5.1. Another classification made 

on Types of query. Here Aggregate Queries alone is 

separated and labeled by five different class labels. Here 

out of 3800 queries, 174 queries are labeled as Max,288 

queries are labeled as sum, 2710 queries are labeled as 

count, 428 queries are labeled as avg and 200 queries are 

labeled as Min aggregate functions respectively. 

 
Figure 5.1 Decision Tree of Simple/Aggregate SQL Query 

Classification Model 
 

In Link Embedding, tables associated with SQL queries are 

found. Here the queries are classified into two different 

labels. Queries contains the words like join, union, select 

and intersection are classified as multiple table query. 

Which means the query derived from more than one table. 

otherwise, queries classified as single table query. Here 

4738 queries are labeled as Single Table queries and 4955 

are labeled as Multiple Table queries.  
 

Table 5.8 Accuracy of Classification model 

Machine 

Learning 

Classifier 

Simple/ 

Aggregate 

Query 

Type of 

Aggregate 

Function 

Single/ 

Multiple Table 

Query 

Support 

Vector 

Machine 

85% 92% 68% 

Random 

forest 

88% 91% 66% 

Decision 

tree  

83% 87% 60% 

Decision 

tree with 

feature 

selection 

85% 87.5% 63% 

Decision 

tree with 

parameter 

tuning 

86% 90% 65% 

Naive Bayes 51% 25% 59% 
 

Binary tables are given as an input to Four classification 

models. The accuracy obtained from each model is shown 

in table 5.8. The prediction results are shown in table 5.9.  
 

Table 5.9 The prediction Model Results 

Classification Model Actual SQL 

Query 

Correctly 

Predicted SQL 

Query 

Simple/Aggregate 9693 8530 

Type of Aggregate 

Function 

3800 3500 

Single/Multiple table 9693 6593 
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SQLite is used to create a database. Then tables and 

Sample entries are created. The generated SQL query is 

parsed to the Database to fetch the results. The results are 

converted to Voice format using Google Text to Speech 

API. The result is shown in Figure 5.2. 

 

 
Figure 5.2   Final Result 

 

6. CONCLUSION AND FUTURE SCOPE 

 

The aim of this system is to convert the natural language 

questions into SQL queries and produce a voice based 

results. This system involves three modules named ‘Voice 

to Text’, ‘Text to SQL’ and ‘Text to Voice’. First, Voice to 

Text module (Converting a Speech to Text) has been done 

by using deep learning method with accuracy of 76%. Then 

the Performance Measurement of the existing API are 

carried out to examine which API is best among existing 

APIs. Three APIs named ‘Google API’, ‘Wit.ai API’ and 

‘sphinx API’ was taken. These are examined by converting 

batch of Voice to Text. The result shows Wit.ai API is best 

Bridge model is used to create an object which is used to 

convert a Text into a SQL query with the help of Grammar 

rules. Supervised Machine Learning algorithms like Naive 

Bayes, Decision Tree, Random Forest and Support Vector 

Machine are used for Query classification. For generated 

SQL query Results are fetched from SQLite database. The 

results are converted to voice using Google API. 

 

The future work of this system will include, improving 

prediction of Text from different Voice tones and 

Improving accuracy in conversion of speech to text. Since 

the training is carried out only limited audio files. Accuracy 

seems low when the input involves more complex queries 

since the accuracy of our model  
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