

 © 2021, IJSRMS All Rights Reserved 28

International Journal of Scientific Research in ___________________________ Research Paper.
Multidisciplinary Studies E-ISSN: 2454-9312

Vol.7, Issue.6, pp.28-35, June (2021) P-ISSN: 2454-6143

Voice Driven Bot For Cross Domain Database Querying

Affra H.
1*

, Nageshwari S.
2
, Poorvika A.N.

3

1,2,3

Information Science and Technology, College of Engineering Guindy, Anna University, Chennai, India

*Corresponding Author: rgeetha@yahoo.com

Available online at: www.isroset.org

Received: 08/Jun/2021, Accepted: 18/Jun/2021, Online: 30/Jun/2021

Abstract— Many applications in health, medicine, finance store their information in relational database. Users cannot

precisely work with structured query languages like SQL unless they have strong prior knowledge in this field. Also SQL

is difficult to expertise for non­technical users. Hence a long­standing goal is to allow the users to interact with database

with natural language. The reason for Voice­Driven bot is it can also be an assistive technology for visually impaired

people.

The system involves 3 main phases : Speech to text, Text to SQL queries and Text to speech. In the First phase,the input is

received as voice signals which will be used to predict the text from the audio file. Then in the second phase, SQL queries

are generated from the text using encoder­ decoder mechanism and pick the one which is valid and less complex to fetch

the results. The model is trained using the Spyder dataset which makes the model aware of relations between the tables.

After that, the results are converted to complete sentence and delivered back as a voice reply to the user. The natural

language query from the user is converted to text using Speech recognition. Deep Learning is used to train the neural

networks on large scale data of questions and answers.Bridge model finds the table names, column names and the

conditional operators. SQLite Database is used to fetch the results based on the generated query

Keywords: Speech Recognition, SQL, BRIDGE model, NLP

1. INTRODUCTION

The objective of the system is to design a bot which

answers the user query by converting the natural language

into SQL query automatically. Speech Recognition system

and natural language processing have given rise to

powerful voice-based interfaces. The system consists of

three modules: Speech to text, Text to SQL queries and

Text to speech. The first module is to convert the user

query from speech to text. It is done using the Mozilla

DeepSpeech model. In the following module the text is

used to generate the SQL query using the encoder­decoder

mechanism. And the last module is to convert the text back

to speech. Here, the results are fetched from SQLlite

database and google API is used for converting the end

results to voice.

The report is organised as follows: Section 1 contains

Introduction which gives an overall outline about the NLP

based query retrieval, voice bot based solutions and

objective of the model, Section 2 contains the related work

carried before the beginning of the work, Section 3

provides the diagrammatic representation and the

functionalities of each and every module is clearly

explained, section 4 gives the detailed design level aspect

of the entire model and the algorithm of each module and

the training process and testing, Section 5 describes how

the entire system is implemented and is used to analyse the

certainty of success and failure with the help of the result

obtained and a deep analysis on the performance of the

given model is done, Section 6 concludes the overall and

future works.

2. RELATED WORK

Parsing Natural language query to fetch results involves

the task of translating the NL utterance into text. The

conversion of speech into text and NLP based database

querying techniques are widely explored in this section.

2.1 End-to-End Speech Recognition using RNN
The paper by Dario Amodei et al., [3] discussed the Deep

Speech 2: End-to-End Speech Recognition in English and

Mandarin. Here, Recurrent neural network trained to ingest

speech spectrograms and generate text transcriptions. This

method involves 11 layers including many bidirectional

recurrent layers and convolutional layers. CTC loss

function was used to train the model. A very high

¬performing recognizers are created for two very different

languages, English and Mandarin, required essentially no

expert knowledge of the languages. But training involves

very high end system which will be hindrance when one

try to develop the model for their native languages.

2.2 Speech Recognition System

The paper by Pranab Das et al., [7] provides a Speech

Recognition System which converts a voice into a text.

This system consists of five modules. They are, Receiving

http://www.isroset.org/

 Int. J. Sci. Res. in Multidisciplinary Studies Vol.7, Issue.6, Jun 2021

 © 2021, IJSRMS All Rights Reserved 29

Voice Input, Sampling, Vectorization, Acoustic Model and

Predicting words by Language Model. First, the received

voice from the microphone will be in the form of one

dimensional waves. To turn the received waves into

number, the height of the wave at the equally spaced points

are recorded. Then the input to the decoder will be 20

millisecond audio chucks. It will try to figure out the letters

corresponding to the input. Having memory of the previous

predictions, the valid words are identified. It will reduce

the data loss by imposing weighted value to the data

regions. So that the data which are about to loss can be

reduced .The drawback here is this model makes use of

MFCC algorithm. Since MFCC low robust to Noise

signals, all inputs are altered by noise signal, if at least one

frequency is distorted.

2.3 BERT based model for SQL generation

 The paper by Tong Guo et al., [10] gives a detailed

explanation about a simple methods BERT ¬based model

for solving text ¬to ¬SQL problem. It is observed that

some of the table content matches some words in question

string and some table header may match some words in

question string. Here, encoding of two addition feature

vector is carried for the deep model. It is trained using the

mask language model loss and the next¬ sentence loss.

And then it is fine¬ tuned for specific tasks like text

classification, text matching and natural language

inference. Here, BERT as the representation layer. It gives

very high accuracy on WikiSQL dataset which includes

only simple queries. It fails to create querieswhich includes

multiple tables.

2.4 Syntax Tree based model for SQL generation
The paper by Tao Yu, et al., [9] provides a Syntax Tree

based model for Natural language processing-based

database querying. Using syntax tree-based model,

generating a complex SQL query with multiple clauses,

selections and sub queries are efficiently possible. In this

model, each SQL token is predicted with the help of

grammar rules and SQL generation path history. Totally

nine modules are existing in SQL token prediction. They

are, IUEN module, KW module, COL module, OP module,

AGG module, Root/Terminal module, AND/OR module,

DESC/ASC/LIMIT module and HAVING module. The

self-developed module working strategy says that If the

SQL generation path history’s last prediction is HAVING

clause, then there is a chance for aggregate functions

(SUM(), COUNT(), AVG(), MIN(), MAX(),..) takes place

next. As a result, it achieves 12.3 percentage total

improvement compared to previous models and 22

percentage accuracy. The model will degrade the

correctness of predicted SQL query since the context of the

input is not taken into an account.

2.5 Bridging Textual and Tabular Data In cross

Domain semantic parsing for SQL generation

The paper by Xi Victoria Lin et al., [11] explained the

Bridging Textual and Tabular Data for Cross Domain Text

to SQL Semantic Parsing. Here, Question Schema

Serialization and Encoding is carried out for Metadata

Features extraction which is done using BERT and LSTM.

Then Bridging is carried out which acts as a anchor text to

link value mentions in the question with the corresponding

DB fields. Finally Schema Consistency Guided Decoding

is carried out where SQL query is generated based on the

SQL syntax constraints. It fails to give compositional

generalization and the application of BRIDGE in other

tasks are yet to be identified. It gives the accuracy of 71%

on Spyder dataset.

2.6 Dependency Graph for SQL Generation

The paper by Xiaojun Xu et al., [12] discussed

synthesized SQL queries from natural language without the

use of reinforcement learning. In this, sketch¬ based

approach is employed where sketch contains a dependency

graph so that one prediction depends only on the previous

predictions not on the entire one. To denerate the where

class, sequence¬ to ¬set and column attention mechanism

is employed. The former is to predict an unordered set of

constraints and the later is to capture the dependency

relationship. The main aim is to avoid sequence¬ -to --

sequence model where SQL query order does not matter.

This achieves the accuracy of 74.1% when tested with

Wiki SQL dataset. But it is noticed that this approch is not

effective when the query gets complex and it involves

many table and joins.

3. SYSTEM DESIGN

The system consists of three modules. The first module is

to convert the user query from speech to text. It is done

using the Mozilla DeepSpeech model. In the following

module the text is used to generate the SQL query using

the encoder­decoder mechanism. And the last module is to

convert the text back to speech. Here, the results are

fetched from SQLlite database and google API is used for

converting the end results to voice.

3.1 SPEECH TO TEXT MODULE

 The natural language query spoken by the user is received

as put for the module and stored in the audio file. For

processing them to text, it requires the following stages.

They are Sampling, Vectorization, Decoder using Acoustic

and Language Model.

3.1.1 Dataset for Speech Recognition:

 The deepspeech model is trained with 3816 hours of

transcribed audio. The model also includes around 1700

hours of transcribed WAMU (NPR) radio shows. For

further training, the dataset is created by recording the

Natural Language query from users and storing them as

audio files. 300 audio files along with their ground truths

are used for training.

3.1.2 Sampling

 Initially we perform sampling on the audio files where

continuous signal is converted to discrete signals using the

heights of the signal at the equally spaced points. Here

sample rate, bits per sample and channel number are

considered.

 Int. J. Sci. Res. in Multidisciplinary Studies Vol.7, Issue.6, Jun 2021

 © 2021, IJSRMS All Rights Reserved 30

Figure 1 Architecture Diagram

3.1.3 Vectorization
Feature extraction is done using Mel Frequency Cepstral

Coefficients (MFCC). Vectorization is performed on the

sampling output and a NumPy buffer array is obtained. At

this stage only the useful signals will be retained since

redundant and unwanted information is eliminated using

the blocking mechanism. This array will be passed as a

input to the decoder.

3.1.4 Decoder

 Decoding is carried out with the help of acoustic and

language model. Acoustic model contains statistical

representations of each distinct sounds that makes up a

word. It is a RNN model which involves 5 hidden layers

with 3 non recurrent layers, 1 recurrent layer and 1 output

layer. Language model provides the context to distinguish

the sounds or the word that sounds similar by performing

probability distributions. By means of probability

distributions it will assign probability to a sequence of

words. Therefore, with the help of acoustic model and

language model the decoder will predict the appropriate

text. The NL query in the text format corresponding to the

audio given is converted to text using the generated model.

3.2 TEXT TO SQL MODULE

The user query in text format obtained from the speech-to-

text module is processed in Word Embedding, Link

Embedding, Object Creation and Decoder to generate the

SQL query.

3.2.1 Dataset for Query Classification

The training of this module is carried out using the Spyder

dataset which contains 10,181 questions and 5,693 unique

complex SQL queries involving 200 databases with

multiple tables across 138 different domains.

3.2.1 Word Embedding

The text obtained from previous module is cleaned for

further processing. Stop words are removed and tokenized.

Word embedding helps to identify the aggregate function.

If the query contains aggregate function, it further predicts

the type of aggregate function with the help of

classification models. Classification model is trained using

the binary table which includes features as columns and

NL queries as rows. After predicting the type of query link

embedding was performed.

3.2.2 Link Embedding

Link embedding helps to identify level of complexity by

identifying the number of tables involved to generate

query. Classification model is trained using the binary

table which includes features as columns and NL queries

as rows. After predicting the type of query link embedding

was performed.

3.2.3 Object Creation using Bridge Model

Then Bridge model gives the raw information regarding

the table and column names and it identifies the

conditional operators with the help of database schema. In

Bridge model, Encoding is carried out for Meta-data

Feature’s extraction which is done using BERT and

LSTM. Then Bridging is carried out which acts as a anchor

text to link value mentions in the question with the

corresponding DB fields.

3.2.4 Decoder

Using the output of Bridge model, decoder conditionally

append the SQL tokens using the grammar rule to generate

the query in the proper format. The SQL query generated

from the NL query will be the output of this module.

3.3 TEXT TO SPEECH MODULE

This module converts the results fetched from the database

into the speech format which will be the final output of the

model.

3.3.1 Database Creation

The obtained SQL query is used to fetch the results from

the SQLlite database. Database is created with sample

entries which is used to fetch results. The results are

fetched in the tuple format. They are converted to string to

perform speech conversion.

 Int. J. Sci. Res. in Multidisciplinary Studies Vol.7, Issue.6, Jun 2021

 © 2021, IJSRMS All Rights Reserved 31

Google Text to Speech API commonly known as the gTTS

API is used to convert the resultant string into speech

format. The wave file of the NL query result obtained from

gTTS API is the final output of the system.

4. METHODOLOGY

The detailed design of the model and algorithm of various

modules are given in this chapter.

4.1 SPEECH TO TEXT USING DEEPSPEECH

MODEL

Transcribing to text from the speech input provided by the

user is explained in this section.

4.1.1 Sampling

The audio file containing NL queries, obtained from the

user will be in the mp3 format. Then the audio will be

sampled with the sampling rate of 16kHz. The bit rate is 16

so that 16 bits will be used to store the values of each

sample. The number of channels is set as mono.

Parameters are tuned using PyDub library.

Algorithm 1: Sampling of NL queries

Step 1: Convert the audio file to .mp3 format.

Step 2: Set sampling rate to 16kHz

Step 3: Set bits/sample to 16 bits

Step 4: Set the channel number to 1

Step 5: Measure the height of signal and convert the

speech to discrete value

Step 6: Store the results in .wav format

4.1.2 Training the pre­trained model

Acoustic Model already developed by Mozilla is used to

predict the phonetics. It is trained with around 68 hours of

audio along with their transcripts. It mostly includes

American English which doesn't give the desired accuracy

for the Indian users. To improve the accuracy the model is

further trained with the Indian English audio files.

Audio files are obtained from different users and stored in

a folder. Sampling is performed for all audio files. CSV

files are created which includes 3 columns. They are

location of audio files, size of the file and ground truth. For

training, validation and testing, the data-set is split into

three CSV files as train.csv, dev.csv, test.csv.

Algorithm 2: Creation of dataset

Step 1: Collect the voice input from different users

Step 2: Store all audios in single folder

Step 3: Find the size of the audio files

Step 4: Create the CSV file which have location of audio

files, size of audio files and ground truth of audio files

as columns.

Step 5: Split the CSV into train,dev and test

Acoustic model is trained using the deep earning

mechanism which is composed of 5 layers of hidden

units.The first three layers are not recurrent. At each time

step, the non-recurrent layers work on independent data.

The fourth layer is a recurrent layer with two sets of hidden

units. One set has forward recurrence while the other has

backward recurrence. The fifth (non-recurrent) layer takes

the forward units as inputs. The output layer predicts the

character probabilities for each time step.

Training of acoustic model is initialized by providing the

location of the checkpoints of the pre-trained model so that

the training is continued on the already trained model of

Mozilla. Further the location of binary files of the language

model, train.csv, dev.csv and test.csv is given learning rate

is set to 0.0001 which seems to give the better accuracy.

After training, the model is stored in .pb format. It is

converted to .pbmm format which is memory mapping

format to predict the user inputs with great efficiency.

Algorithm 3: Training the pre-trained Model

Step 1: Perform sampling on all audio files

Step 2: Perform vectorization for feature extraction using

MFCC.

Step 3: Provide the location of checkpoints of acoustic

and language model.

Step 4: Train the pre­trained model with learning rate of

0.0001.

Step 5: After training, store the model in .pbmm format

The model obtained after training is loaded and predictions

are made. The buffer array type is set as type16 since the

bit rate during sampling is 16 bits. It is tested with different

audio files. To know the better accuracy and loss of the

trained model it is tested only with NL queries. Audio from

the user is sampled and stored in .wav format.The wave

file is then read to create a NumPy buffer array. The buffer

is a byte array since pre-trained model expects 16-bit int

array. Model is created with trained acoustic and language

model along with the parameters. The NumPy buffer is

given to the decoder which will predict the end result with

the help of acoustic and language model.

4.2 SPEECH TO TEXT USING EXISTING MODEL
Natural language questions alone is extracted from the

Spyder dataset and converted them to CSV format. CSV

file is given as input to PYTTSX (offline Python Text to

Speech library) to get output as speech format (Audio file)

of NL questions. The output audio file is considered as

source file to measure the performance of various API’s.

These API’s includes Google Speech API, Pocketsphinx

API, Wit.ai API. The created audio file is passed as input

into these API’s for Speech Recognition and the results are

stored in separate CSV file. The csv file obtained is used to

calculate the performance measures.

Algorithm 4: Performance measure of existing API’s

Step 1: Extract NL queries from Spyder dataset and store

in CSV file

Step 2: Convert NL queries to audio files using PYTTSX

Step 3: Convert audio files to text in 3 different API’s

Step 4: Store the results in CSV and compare the results

with transcripts

Step 5: Calculate the accuracy of each API

 Int. J. Sci. Res. in Multidisciplinary Studies Vol.7, Issue.6, Jun 2021

 © 2021, IJSRMS All Rights Reserved 32

4.3 CLASSIFICATION OF NL QUERIES

Classification of natural language query to identify the

type of query, aggregate functions and complexity. SQL

queries obtained from spyder dataset is used to build the

binary table. All the SQL queries with SUM(), COUNT(),

AVG(), MIN(), MAX() are considered aggregate queries

and the rest is considered simple queries. If the given query

is identified as aggregate, they are further classified to

identify the type of aggregate function. For that, Binary

table is created with natural language query as rows and

valuable tokens as columns. Then to identify the level of

complexity, SQL queries obtained from spyder data-set is

used to build the binary table. Queries involving single

table and multiple tables are classified for identifying the

tables using different classification algorithms. Several

supervised learning algorithms are used to identify the best

model of all.

4.3.1 Query Classification using Naïve Bayes

Naive Bayes is a classification technique based on Bayes

Theorem with an assumption of independence among

predictors. It assumes that the presence of a particular

feature in a class is unrelated to the presence of any other

feature. Naive Bayes predicts membership probabilities for

each class such as the probability that data point belongs to

a particular class. It assumes that particular feature in a

class is unrelated to the presence of any other feature. The

class with the highest probability is considered as the most

likely class. Then, Naive Bayesian equation is used to

calculate the posterior probability for each class. The class

with the highest posterior probability is the outcome of

prediction.

4.3.2 Query Classification using Support Vector

Machine

Support Vector Machine or SVM is one of the most

popular Supervised Learning algorithms, which is used for

Classification as well as Regression problems. SVM uses

the data to obtain different points and maps them in a very

high dimensional space using a nonlinear kernel function.

SVM works by searching for the optimal solution for class

splitting. The solution can be used to maximize the

distance with respect to the nearest points. Finally, the

hyperplane is obtained. For obtaining optimal results,

parameters of SVM will be tuned.

4.3.3 Query Classification using Random Forest Tree

Random forest is a supervised learning algorithm. The

"forest" it builds, is an ensemble of decision trees, usually

trained with the “bagging” method. The general idea of the

bagging method is that a combination of learning models

increases the overall result. Random Forest initially select

“k” features from total “m” features such as K<m. Among

“k” features, calculate the node “d” using the best split

point. This can be done with any decision tree algorithms.

Later it will split the node into daughter modes using the

best split based on the votes obtained. This is repeated until

the specified number of nodes are reached.

To identify the best classification model and to attain the

highest accuracy classification is carried out in all three.

Further to improve the accuracy, feature selection is

carried out where the features which doesn’t hold any

values are removed and finally the cluster of 120 features

are used.

Algorithm 5: Binary Table Creation

Step 1: Extract natural language query from Spyder

dataset

Step 2: if Query contains ’min’, ’max’, ’avg’, ’sum’,

’count’ keywords then mark the classfield1 as

’aggregate’ otherwise mark as ’simple’

Step 3: if Query contains 'join','(select'),'(select'

keywords then mark the classfield2 as ' complexTable'

otherwise mark as 'singleTable'

Step 4: if Query contains aggregate function fill aggregate

function is classfield3

Step 5: if token matches valid words, then fill the column

as ’Y’ fill the column as ’N’

Step 6: Binary table created is loaded and transformed to

binary value

Step 7: Models are generated using Gaussian Naive

Bayes, SVM, Random Forest

Step 8: Classification model with highest accuracy is used

to predict results

For identifying whether the query is Simple/Aggregate,

Random Forest Tree gives the best results. For fine tuning

the hyper parameters are modified as n_estimators=2000,

criterion=’entropy’ and min_sample_split=10. This model

gives the accuracy of 88%. For identifying the type of

query, Support Vector Machine gives the highest accuracy

of 91.6% when hyperparameter kernel=’rbf’. For

identifying the query complexity, Support Vector Machine

gives the highest accuracy of 71% with the

hyperparameters kernel=’rbf’, gamma=1, degree=1

4.3 BRIDGE MODEL FOR OBJECT CREATION

Pre-trained Bridge model takes input as a natural language

utterance and a database schema and generates SQL

queries as token sequences. Here the meta data features are

obtained using the BERT model where the tokens which

helps to identify the table names, column names and

conditional operators are identified. Later fussy string

mapping is carried out to obtain the object which gives the

raw information.

Algorithm 6: Creation of Bridge Model

Step 1: Create tokens for NL query and database schema

Step 2: Meta­data Features extraction using

Question­Schema Serialization and Encoding

Step 3: Fussy string matching to map the NL tokens with

column names and conditional operator

4.4 SQL GENERATION USING GRAMMAR

RULES

Pre-processed Natural Language query and database

schema are given to pretrained Bridge model which

identifies the column names and ground truth values with

accuracy of 86%. Text received from the previous module

is used to perform text pre-processing, which consists of

 Int. J. Sci. Res. in Multidisciplinary Studies Vol.7, Issue.6, Jun 2021

 © 2021, IJSRMS All Rights Reserved 33

removing punctuation, white spaces, duplication,

tokenization and Stop-words removal. After obtaining

column names and conditions from the BRIDGE model,

they are conditionally appended with the help of grammar

rules to generate the SQL query which will be syntactically

correct.

Algorithm 7: Generation of SQL Query

Step 1: Pre trained Bridge model identifies table names,

column names, conditional operators

Step 2: ” SELECT ” and column names are appended to

query variable

Step 3: ” FROM” and table names are appended later

Step 4: if conditional operators present then conditions

are appended

Step 5: Generated query verified with classification

results

4.5 TEXT-TO-SPEECH COMVERSION

Generated SQL query is used to fetch the results.

Databases are created using SQLite, appropriate tables and

sample entries are created. Results are fetched in the form

of tuples. Results fetched are converted to string for voice

conversion. Google API commonly known as gTTS is used

for converting the SQL results in the form of voice to

users.

Algorithm 8: Generation of Query result

Step 1: Creation of database using SQLite

Step 2: Sample entries for all tables and columns of single

database are created

Step 3: Connection is created for the created database

Step 4: Generated SQL query is given to database

Step 5: Results obtained in tuples format are converted to

string

Step 6: Results are given to google API

Step 7: Audio file in .wav format is obtained

5. RESULTS AND DISCUSSION

In this Study, Voice driven bot for cross domain database

querying, The Prediction of speech to text is done using the

pretrained Mozilla’s DeepSpeech model with the accuracy

of 75%. To improve the accuracy further while predicting

Indian English, new dataset is created. For that, the natural

language questions are extracted from spyder dataset which

is around 300 entries and stored in CSV file. User queries

from spyder dataset are shown in Table 5.1. They are

converted to audio files using PYTTSX which is in .wav

format. Training Dataset includes three columns. They are,

Location of the audio files, Size of the audio files and

Trascription of the audio files. Training dataset shown in

Table 5.2.

Table 5.1 User Queries from Spyder Dataset

S.NO NATURAL LANGUAGE QUERY

1 How many heads of the department are older than 56?

2 List the name, age and born state of the heads of the

department order by age.

3 What are the maximum and minimum budgets of the

department?

4 In which year are most departments established?

5 How many farms are there?

To predict the text from given speech, Dataset is converted

to feature vector and given to recurrent neural network. It

converts speech spectrograms to English text. Average loss

of model when tested with multiple instances are recorded

to be 16%.

Table 5.2 Training Dataset

WAV_FILENAME WAV_FILESIZE TRANSCRIPT

OUTPUT1.WAV 1058458 who scored more

that eighty percent

OUTPUT2.WAV 1058458 how many are

from it department

OUTPUT3.WAV 1058458 give me the total

girls count

OUTPUT4.WAV 1058458 who secured the

highest score

OUTPUT5.WAV 1058458 find the name of

the students whose

performance is

good

To measure the performance of three different existing

API, user queries are collected from the Spyder dataset

which is around 100 entries and stored in CSV file. The

extracted NL questions are converted to audio files using

PYTTSX. This audio files are given to Google Speech to

text API, Pocketsphinx API and Wit.ai API as an input.

The result obtained from each API are analyzed. After

analysis it is found that WIT.ai API has the highest

accuracy as shown in table 5.3.

To convert Natural language questions to Structured Query

Language, pretrained bridge model is used. It gives

information regarding columns, tables and column values.

Then SQL queries are predicted using this information.

Table 5.3 Performance measure of existing APIs

API NAME ACCURACY

GOOGLE API 74.78%

POCKET SPHINX 84.50%

WIT.AI API 89.73%

To check the correctness of SQL query, Classifications are

done using four different models. They are, Naive Bayes,

Decision tree, Random Forest and Support Vector

Machine. Binary tables are created to train the

classification model. For that, Natural language questions

extracted from spyder dataset which is around 10,000

entries are kept as rows. The extracted texts are pre-

processed and tokens which helps to classify a query alone

is separated which is around 120 and kept as columns.

Those features are shown in table 5.7. The binary table for

classification is shown in table 5.4, 5,5, 5.6. Word

Embedding and Link Embedding are done to create a class

labels which is a column of binary dataset.

Table 5.4 Binary table for Simple/Aggregate query classification

model

NL Question Class Label How Many List

How many heads

are older than

56?

Aggregate Y Y N

 Int. J. Sci. Res. in Multidisciplinary Studies Vol.7, Issue.6, Jun 2021

 © 2021, IJSRMS All Rights Reserved 34

List the name and

age of the heads

of departments.

Simple N N Y

What are the

minimum budget

of the

departments?

Aggregate N N N

Table 5.5 Binary table for Aggregate query type classification

model

NL Question Class Label How Many Average

How many

heads are older

than 56?

Count Y Y N

What is the

average number

of working

horses?

Average N N N

What are the

minimum

budget of the

departments?

Maximum N N N

Table 5.6 Binary table for Single/multiple table classification

model

NL Question Class Label How Many what

In which year

were most

departments

established?

Single N N N

What are the

distinct ages of

the heads who

are acting?

Multiple N N Y

How many farms

are there?

Single Y Y N

Table 5.7 Features of binary dataset

how, many,

minimum,

maximum,

count, total,

average, sum,

who, what,

where, least,

in, most,

order, sorted,

bigger,

smaller,

which,

distinct, list,

more,

ascending,

descending,

give, each,

show,

reversed,

greater, at,

lower, less,

never, when,

longest,

greatest,

ending,

starting,

furthest, top,

bottom,

beginning,

select,

increasing,

decreasing,

long, range,

frequent,

partition,

contain,

max, min,

higher, start,

end, oldest

newest,

smallest,

shortest,

largest mean,

lowest,

lasted, ended,

always,

cheap, etc...

In Word Embedding, Queries are classified as Simple and

Aggregate. Queries are labeled as Aggregate when it

contains a words such as Min, Max, Sum, Avg and Count.

Otherwise labeled as Simple. The results shows 5900

queries are simple queries and 3800 queries are aggregate

queries. Decision Tree for Simple/Aggregate classification

model is shown in Figure 5.1. Another classification made

on Types of query. Here Aggregate Queries alone is

separated and labeled by five different class labels. Here

out of 3800 queries, 174 queries are labeled as Max,288

queries are labeled as sum, 2710 queries are labeled as

count, 428 queries are labeled as avg and 200 queries are

labeled as Min aggregate functions respectively.

Figure 5.1 Decision Tree of Simple/Aggregate SQL Query

Classification Model

In Link Embedding, tables associated with SQL queries are

found. Here the queries are classified into two different

labels. Queries contains the words like join, union, select

and intersection are classified as multiple table query.

Which means the query derived from more than one table.

otherwise, queries classified as single table query. Here

4738 queries are labeled as Single Table queries and 4955

are labeled as Multiple Table queries.

Table 5.8 Accuracy of Classification model

Machine

Learning

Classifier

Simple/

Aggregate

Query

Type of

Aggregate

Function

Single/

Multiple Table

Query

Support

Vector

Machine

85% 92% 68%

Random

forest

88% 91% 66%

Decision

tree

83% 87% 60%

Decision

tree with

feature

selection

85% 87.5% 63%

Decision

tree with

parameter

tuning

86% 90% 65%

Naive Bayes 51% 25% 59%

Binary tables are given as an input to Four classification

models. The accuracy obtained from each model is shown

in table 5.8. The prediction results are shown in table 5.9.

Table 5.9 The prediction Model Results

Classification Model Actual SQL

Query

Correctly

Predicted SQL

Query

Simple/Aggregate 9693 8530

Type of Aggregate

Function

3800 3500

Single/Multiple table 9693 6593

 Int. J. Sci. Res. in Multidisciplinary Studies Vol.7, Issue.6, Jun 2021

 © 2021, IJSRMS All Rights Reserved 35

SQLite is used to create a database. Then tables and

Sample entries are created. The generated SQL query is

parsed to the Database to fetch the results. The results are

converted to Voice format using Google Text to Speech

API. The result is shown in Figure 5.2.

Figure 5.2 Final Result

6. CONCLUSION AND FUTURE SCOPE

The aim of this system is to convert the natural language

questions into SQL queries and produce a voice based

results. This system involves three modules named ‘Voice

to Text’, ‘Text to SQL’ and ‘Text to Voice’. First, Voice to

Text module (Converting a Speech to Text) has been done

by using deep learning method with accuracy of 76%. Then

the Performance Measurement of the existing API are

carried out to examine which API is best among existing

APIs. Three APIs named ‘Google API’, ‘Wit.ai API’ and

‘sphinx API’ was taken. These are examined by converting

batch of Voice to Text. The result shows Wit.ai API is best

Bridge model is used to create an object which is used to

convert a Text into a SQL query with the help of Grammar

rules. Supervised Machine Learning algorithms like Naive

Bayes, Decision Tree, Random Forest and Support Vector

Machine are used for Query classification. For generated

SQL query Results are fetched from SQLite database. The

results are converted to voice using Google API.

The future work of this system will include, improving

prediction of Text from different Voice tones and

Improving accuracy in conversion of speech to text. Since

the training is carried out only limited audio files. Accuracy

seems low when the input involves more complex queries

since the accuracy of our model

REFERENCES

[1] Ahmed Elgohary, Saghar Hosseini, Ahmed Hassan Awadallah,

”Speak to your Parser: Interactive Text­to­SQL with Natural

Language Feedback”, arXiv:2005.02539v2 ,2020.

[2] Bailin Wang, Richard Shin,Xiaodong Liu, Oleksandr Polozov,

Matthew Richardson, “RAT­SQL: Relation­Aware Schema

Encoding and Linking for Text­to­SQL Parsers”, In Proceedings

of the 54th Annual Meeting of the Association for

Computational Linguistics, 2020.

[3] Dario Amodei, Rishita Anubhai, Eric Battenberg, Carl Case,

Jared Casper, Bryan Catanzaro, Jingdong Chen, Mike

Chrzanowski, Adam Coates, Greg Diamos, Erich Elsen, Jesse

Engel, Linxi Fan, Christopher Fougner, Tony Han, Awni

Hannun, Billy Jun, Patrick LeGresley, Libby Lin, Sharan

Narang, Andrew Ng, Sherjil Ozair, Ryan Prenger, Jonathan

Raiman, Sanjeev Satheesh, David Seetapun, Shubho Sengupta,

Yi Wang, Zhiqian Wang, Chong Wang, Bo Xiao, Dani

Yogatama, Jun Zhan, Zhenyao Zhu , “Deep Speech 2:

End­to­End Speech Recognition in English and Mandarin”,

2015.

[4] DongHyun Choi, Myeong Cheol Shin, EungGyun Kim, Dong

Ryeol Shin, “RYANSQL: Recursively Applying Sketch­based

Slot Fillings for Complex Text­to­SQL in Cross­Domain

Databases”, Association for Computational Linguistics, 2020.

[5] Jiaqi Guo, Zecheng Zhan, Yan Gao, Yan Xiao, Jian­Guang Lou,

Ting Liu, Dongmei Zhang “Towards Complex Text­to­SQL in

Cross­Domain Database with Intermediate Representation”,

2019.
[6] Jichuan Zeng, Xi Victoria Lin, Caiming Xiong, Richard Socher,

Michael R. Lyu, Irwin King, Steven C.H. Hoi, “Photon: A

Robust Cross­Domain Text­to­SQL System”, 2020.

[7] Prerana Das, Kakali Acharjee, Pranab Das and Vijay Prasad,

“Voice Recognition System : SPEECH­TO­TEXT”,

International Journal of Applied and Fundamental

Sciences,pages 191­195, 2016.

[8] Puneet Kaur, Bhupender Singh,Neha Kapur, “Speech

Recognition with Hidden Markov Model”, 2014.

[9] Tao Yu, Michihiro Yasunaga, Kai Yang, Rui Zhang, Dongxu

Wang, Zifan Li, and Dragomir Radev, “Syntaxsqlnet: Syntax

tree networks for complex and cross­domain text­to­sql task”, In

Proceedings of the Conference on Empirical Methods in Natural

Language Processing pages 1653–1663,2018.

[10] Tong Guo ,Huilin Gao “Content Enhanced BERT­based

Text­to­SQL Generation ”,arXiv:1910.07179v5 , 2020.

[11] Xi Victoria, Lin Richard, Socher Caiming Xiong,”BRIDGE :

Bridging Textual and Tabular Data for Cross­Domain

Text­to­SQL Semantic Parsing”, 2020.

[12] Xiaojun Xu, Chang Liu, Dawn Song “ SQLNet: Generating

Structured Queries From Natural Language Without

Reinforcement Learning”, 2017.

