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Abstract— Working on symmetrical or asymmetrical data is complicated since each requires a different probability density
function. Many statistical distributions can be used for these data types, where choosing one should be satisfied with the correct
data type. So, we apply the ranked set sampling technique, which is essential in gaining data when dealing with units in a
population is expensive. However, their classification is simple according to the variable of interest. The Rayleigh distribution
has recently played a crucial role in analyzing symmetrical or asymmetrical complex data sets specifically in modeling claim
and risk data used in actuarial and financial studies, and its density can take different symmetric and asymmetric possible
shapes. It is proposed in various areas, such as reliability, survival, economics, actuarial science, and insurance. In this paper, we
provide Bayesian estimation for a parameter of the Rayleigh distribution based on a simple random sample (SRS) and ranked set

sampling (RSS) using two loss functions; the squared error loss function, and the linex loss function.

The results of the

simulation study showed that the Bayes estimates based on RSS are more efficient than the estimates based on SRS for different

sample sizes of (n) and different values of the parameter a.

Keywords— Bayesian analysis; Linex loss function; Ranked set sampling; Rayleigh distribution; Squared error loss function;

Simulation Study.

1. Introduction

Lord Rayleigh introduced the Rayleigh distribution [1], and it
is now widely used in many research fields, including
acoustics, communication engineering, survival analysis and
reliability theory, economics, actuarial science, insurance, and
life testing of electro-vacuum devices. This distribution’s
failure rate is a linear function of time, which is one of its key
characteristics.

Compared to the exponential distribution, the Rayleigh
distribution's dependability function drops at a far faster pace.

This distribution's relevance in real-life scenarios is
noteworthy since it has relationships with several
distributions, including the Chi-square, Weibull, and

generalized extreme value distributions [2]. Recent years
have seen much research on the estimate, prediction, and
several other conclusions regarding the Rayleigh distribution;
see e.g. [3-5].

On the other hand, the well-known data combining method is
the simple random sampling (SRS) design. Under these
conditions, we may use ranked sampling approaches to
analyze several representative samples from the attached
population and restore the statistical inference's efficacy.
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Cost-effective sampling is essential in many contexts,
including fisheries and medical research, especially when
measuring the feature of interest is costly [6].

Ranking set sampling (RSS) planning was introduced by
Mclntyre [7] as a contemporary method for SRS in subjects
where the benefit variable is expensive or difficult to manage.
Numerous analyses have determined that the RSS approach is
a better fit than the SRS. To learn more about these two
approaches, see [8].

In this paper’, we investigate the SRS and RSS, using Bayes
estimation when the underlying distribution is Rayleigh. We
recall that a random variable X has a Rayleigh distribution
with parameter o > 0; the probability density function (PDF)
of Rayleigh distribution is;

f(x) = axexp ya>0,x 20,

)
and the corresponding cumulative distribution function (CDF)
of Rayleigh is;

! This paper is extracted from a master’s thesis entitled "Bayesian
Analysis Using Ranked Set Sampling"”, in King Saud University,
Saudi Arabia.
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Figure 1, presents graphical representation of PDF and CDF

for different values of the parameter (a) for the Rayleigh
distribution.
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Figure 1: PDF (a) and CDF (b) of the Rayleigh distribution.

This distribution is considered as one of continuous
distributions. Rayleigh distribution is a special case of
Weibull distribution when =2 and it has various
applications in different aspects, this distribution is widely
used in communication engineering, reliability analysis and
statistics.

The remainder of this paper is organized as follows; Section 2
contains the Bayes estimation based on SRS. Section 3 offers
the Bayes estimation based on RSS. Section 4, introduces a
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simulation study and comparisons. In Section 5, the main
conclusions obtained from this paper are discussed.

2. Bayes Estimator Based on SRS

In this section, the Bayes estimates based on SRS and RSS
are derived for the unknown parameter (a) of the Rayleigh
distribution. The Bayes estimates are obtained based on a
conjugate prior and a non-informative prior for the
parameter of this model. This is done with respect to both
symmetric loss function (squared error loss), and asymmetric
loss function (Linear-exponential; LINEX), for more details
about asymmetric loss functions, see [9, 10].

Let (e | x) and m* (& | ¥) is the posterior density of &

given simple random sampling SRS(X) and posterior density
of & given ranked set sampling RSS(Y), respectively.

2.1 Conjugate prior for (&)

In this subsection, Let X, X5,---, X, be independent and
identically distributed (11D) random variables from Rayleigh
distribution with parameter or and we assume gamma is the
conjugate prior of Rayleigh density.

The density of gamma random variables with parameters a,b
can be given as;

a

—a'" Yexp[-ba] ,

m(a) = o) a>0, a,b>0.

®3)

The posterior density of parameter a based on SRS can be
given as following;

(o) H f(z)

!}(;'(“ \ l)

@[T flegda

blF _ 1 - Eu:‘
mﬂ(n ”(‘X])(—bﬂ]n” H(-’f’g)(’ &

n alb+ Iy r?)
% b atn-1 2 e
’U ['(a) ! H('LT)( b da
i=1
f___i n I“.!
a..u+n—l({ albts ,'; )
Iy 2
o —a(h+§ Y as)
’” attn-le =1 da

(4)

Therefore, the final pattern for the posterior becomes as

following;

alb+ 1 S x? n

( 2421 r)(b+ % ZI?)"+n
i=1

T'(a +n)

(y(f‘+717 1 e

gola| x) =

Q)
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The Bayesian estimation of a using squared error loss
function is;

a'pes = Ela]X),
V00
= / ag(a| z)da
Jo
1 . 2\a4n [ n+n ””‘+% >”: 'I‘.’Jj
(b+ 5;.1',‘) b =1 da
- 1=
[(a+n)
(l n
)+ Z nlh+, Z )
= —= | olotme = da
F(11+11) Jo
n
b+ Z Mwn (l+]l ¥ l)(b_{_%;.l.'f)—(uﬂzﬂi
B [(a+n)
n
(a+n)(b+3 Y o)t
B i=1
)f _Z n +n+1
(6)
Therefore, the Bayes estimator based on SRS under

symmetric (squared error) loss function, when there is
information prior for parameter a, of Rayleigh distribution,
becomes as following;

a—+n
b—l—éz:[:?
= ™

The Bayesian estimation for the parameter (o)) of Rayleigh
distribution using linear exponential (LINEX) loss function
is;

& RCs =

1 ki
o' per(z) - nE(e™),

bl n 2
u+u albts ,Z‘ ")

—ca LH-H lh+ Z 1:’(1

]'l /x i=1
—=1I
C Jo F{n+-n)

n+n .
—alb+1 5 p24¢
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e i du
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Then;
n a+n
(b+ 3> a?)
a*rer(z) = 8 In ,,I:l
' b+3> x2+c¢)
i=1

(8)
Thus, the Bayes estimator based on SRS under asymmetric
(LINEX) loss function, when there is information prior for
parameter (a) of the Rayleigh distribution becomes as
following;

(b+ % r?)
('l*[g(,'j‘(i) = - ((l T ”) In ”i:l C % 0.
(h—kész—l—r‘)
o ©

2.2 Non-Informative prior for (&)

Now, we are using the non-informative prior distribution of the
parameter a under SRS as we used it earlier in the previous
chapter. This relation can be obtained by;

gla) x \/I(a),

where | (a) is the Fisher information for Rayleigh distribution,
Thus, we obtained that;

1
gla) o — | a>0
o
Proof:
It is known that;
2 .
I(@)=F [_() l]l,(‘;f(gX,(l)] .
oy (10)
where £ denotes the likelihood function.
Firstly;
. n ' 1 n 5
InLf(X;0)=nha+ ;hmi — 5(1’21:1, ,
IMLf(X;a) n LIy 2
da 2 — v
PmLf(X;0)  n
da? T2
Finally;
PInLf(X;a)
foy - p [[Z LI
=53]
n
T2
Therefore;
g(a) o</ (),
3



Int. J. Sci. Res. in Mathematical and Statistical Sciences

1
.(]((1') X =,
Q
Using the likelihood function and the prior distribution of the

parameter (), the posterior distribution of (a)) can be written
as;

a > 0.

(L) Hf( | a)

.(]J(O | l) = - .
*O0
\’o (%) [] f(zi| @)da
i=1
1 L -3 i
(,—)(“)”(Hl Ti)e i
- n a2
ju a(“_l)(H -l'i)P =1 do
i=1
Then;

n
o 12 n
9 Z ‘l." 2

(},(-,,_1)(7_- = (% Z-l'i)"
I'(n)

We can noted that the posterior distribution of (&) is gamma

L . . 1 .
distribution with parameters (:rlJ R M )

The Bayesian estimation of the parameter (), using squared
error loss function is;

.* a—
ApNs —

(11)
This is the Bayes estimator based on SRS using symmetric
loss function when little or no prior information is available
for the parameter (a).

Now, we derive the Bayes estimator of the parameter (o),
using LINEX loss function based on SRS;
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Then, the Bayes estimator based on simple random sampling
using asymmetric (LINEX) loss function when there is not
information prior for the parameter a of Rayleigh distribution
is given by;

n
@ pnp = —=In

PIEH
=1
- ., ¢ Z£0.
S x?+2c
=l (12)

3. Bayes Estimator Based on RSS

Assume that the variable of interest has a density function
fix le), given by Equation (1) and a distribution function
F(x | ), given by Equation (2), and « has a prior density
function (e,

Let Xl-' X:J "'JX;.! be a SRS and Xll,Xlgj "'JXln;X:l,X::,"'JX:”
(judgment) order
statistics of n sets of simple random samples each set of size
(n).

We will assume throughout the study that there is no error in
ranking, i.e. the visual ranking is the same as the actual
ranking.

Definition: Let ¥;1,¥;2,---,¥j; be a set of order statistics,
where Y}, is taken from the first set, ¥;5 is taken from the
second set and ¥jp is taken from the last set.

(Y11, Ya2,7+, ¥y ) is called a balanced RSS (BRSS). The
density function of ¥ is;
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n!

U(!Ji\(l):m[ (yi | )71 = Flyi | o] fyi | ).

(13)
From Equations (1) and (2) in Equations (13), then we have;

i—1 .
n 7 — 1 ) w2k
,(](,Ug | a) = Zi’(i) ( k ) (_1)" e 2 (k+n—it+l)

k=0
(14)
The joint density is given by;

n

[Tow e

i=1

g(yla) =

n i—1

) HZ < >< >(_1)k]”.’/z(’f%“"’f("“’“*lﬂ)‘

i=1 k=0
(15)
From Takahasi and Wakimoto[ll] we have;

n—1 n

ouio -3 S ('

i1=01i2=0 in=0 j=1
3.1 Conjugate prior for (&)

We assume gamma with parameters (a,b) is conjugate prior
for the parameter (¢x), which is as follows;

m(a)g(y| o)
I m(a)g(y | o)da

go(aolY) =

anterlete Z Z E Il i(5)

in=0 j=1

i1=0i2=0
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mn
1
flxlea) =—Z filx1a)
= (16)
Where f;{x | &) is the density of the i} order statistic in a
random sample of size n evaluated at x. Thus;

fiﬁilﬁ)=ﬁf{fxi|a}=;lni Z ; Z nﬁ(x ).
i=1 ir=1ix=1

in=1 j=1
17)
Then;
= * ,%,, i: 5/',")(1'7,911 7+1)
) (1))@ ([w)e ==
J=1 (18)
:!n
() = — et a,b >0, a>0.
['(a) (19)

Then, the posterior density of ¢ is;

——u L u (a_,—l—r! —j+1)

D(=De T

n—1

n
n —%0 5 yj"(t".-l—n—j—l—lj

’n anta-lesba Z Z 2 (11J (J)(I_I)(_l)i“)f‘f 7=t dov

.’| =) i- r—U

n—1

arretete 3 3 S (L)) D

=0 j5=1

=0 ip=0

in=0 j=1

i

I

r.;|._

[ lVJ

a f(i +n—7j+1)

1

>S5 Z(HJ(”)("')(—I)"-f) :

i1=01i2=0 in=0 j=1

Since, the Bayesian estimation of & based on squared error

loss function is the posterior mean for the parameter &, and
which is as follows;

E(alY).

In mathematical optimization and decision theory, a loss
function or cost function (sometimes also called an error
function) [12] is a function that maps an event or values of
one or more variables onto a real number intuitively
representing some “cost” associated with the event. An
optimization problem seeks to minimize a loss function. An
objective function is either a loss function or its opposite (in
specific domains, variously called a reward function, a profit

Qpros =
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I'(a+n)

[% > y;“)t—"_,'+n—,j+l)+h]”+”
j=1"

function, a utility function, a fitness function, etc.), in which
case it is to be maximized. The loss function could include
terms from several levels of the hierarchy.

In statistics, typically a loss function is used for parameter
estimation, and the event in question is some function of the
difference between estimated and true values for an instance
of dataset. Moreover, these techniques are ineffective when
the data set comprises outlier values. The parameters must be
estimated using the robust estimator to get the best
estimation. Many papers in several models explore many
robust estimators; see e.g. [13-19].

Thus;
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&R(?S = E(&IZ)a

1 n-1 n L —u‘[% i gz{iJ‘%—u—j-{-l)-{-b]
> Y S I ) () 7 antee A do
_ i1=01i2=0 f,,;ﬂ j=1
= 5 1
Z Z Z H ] n\ (j—1 33 _ I'(a+n)
i1=012=0 in=0 7= ( )( ) [% Z_: y?(?'.j+31—j+l)+b]01n
Z Z Z I1 (") (1) (~1)") ——Tletntl
11=012=0 in=0 j=1 ( )( )( )[% .Z_;] yf(ij+71—_j+1)+b](ﬂ+n+ll
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P J ” — —1)%4 . a-+n
i1=0 i3=0 -;'.uzo(j=1 / ( g )=1) )[% 2 (i +n—j+1)+blotn
j=

Therefore, the Bayes estimator based on RSS ranked set  informative prior for the parameter of Rayleigh distribution,
sampling using squared error loss function when there is is;
n—1 n

Z Z »> (H J( ) (' )(_1)”)(“ +n)(3 i:l y2(ij +n—j+ 1) + b ~(@tntD)

11=0 !’2—” in=0 j7=1

Qpes = -
3 S ATI6) ) 00 5020+ n =g+ 1) e
11=012 in= }_ J= (20)
To obtain the Bayesian estimation of ¢ based on LINEX loss Firstly, we need to calculate the posterior expectation of
function. g~ %% as follows;
n—1 n —u[% i y?(i_,-—f—n—j—l—l]-kb—k::]
SRIDS (5GP [T arete 0 da
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% i Zl ]—[ (a) (jl I) i (a+n)
} T l).rj.) ( 1
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- 0 1 n—1 n - _ M(a+n)
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Finally, the Bayes estimator of & based on (RSS) and using -1
LINEX when there is informative prior for the parameter ¢ of Gper = — In[E(e™™)] | c # 0.
Rayleigh distribution, given by; c

0 1 n—1 ) 1 n

n .
4|2 al H»‘()( DED) G X il +n =+ 1) +b+ 7

Gprer = —1In n=br ?"_” 1= j= _

DI (H JC O (=05) (3 2 w0 +n =g+ 1) + b=

i1=0i2=0 in=0 j= J=1

. : (21)

3.2 Non-informative prior for (&) 1

gla)x — , a>0.
The non-informative prior distribution of the parameter ¢x by; . . . ) (23)
The posterior density can be written as;

gla) x \/I(a). )
Therefore;
(3)9(y| @)
.‘JJ((-le) = =1 )
1 —1 —al3 i] Y3 (ij+n—j+1)]

>y S L) ) (=1)5)an e

11=012=0 in=0 j=1

0 = | aly 35 w2y tn—gtn)]
["x: Z Z Z HJ(”) (Je l) 1)?"‘)0'”'_16’ 2;‘— UJ fr—j+ do

i1=012=0 in=0 j= J

35 S AT ) (et TR

Uu 0 in=0 j=

i_ HJ(”)(J 1)( 1)i)l n[ ZJ? ;J+;;_J+1)](—:a

1

Then, The Bayesian estimation of & using squared error loss
function is;

apns = FE(alY),
n—1 n [3 L yJ(¢'J+u,—j+l)]

b S SREED S [Ti ()0 (=Dmare = da

q—ﬂag 0 tn=0 j=1

n—1 n ’

Z Z 2. H f(n) (J 1) —1)4)(n)[3 ; y2(ij +n—j+ 1)

31—072—0 in=0 j=1

Z Z Z(H }(n) (J 1) —1)%) I'(n+1)

11 =012=0 in=0 j=1 [§ P> 2(1 +n—j+1)](n+1)
- 0 n—1 n I(n)
- (n
2 S (ITa() L) (=15 )3
i1=01i2=0 in=0 j=1 2 . UJ 2(ij4+n—j+1)]"

F=1

Thus;
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To obtain the Bayesian estimation of «r based on LINEX loss
function.

n—1 n

rl—f):}—f] tn=0 j=I1

>y S i) e

(24)
Firstly, we need to calculate the posterior expectation of
g~ % as follows;
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Finally, the Bayes estimator of @ based on ranked set
sampling and using LINEX Ioss function and also when there

n—1 n

>y (I3 G) O3 (=

is not mformatlve prior for the parameter & of Rayleigh
distribution is given by;

f;)[% Zlg;f(i_j +n—j+1)+c™"

_1 i1= = = =
ARNL = —h I Oﬂu - . no—l n ) : n ¢ % 0.
‘Zu Z(] Z{J(Hlj(j) (Ji—jl](_])h)[% Zly_?(;ij +n—-j+1)™"
11=0112= in=uU 1= J=

4. Simulation Study and Comparisons

Since we are not aware of any the estimation results
concerning of the Bayes estimations based on the ranked set
sampling values and comparison that with results of Bayes
estimations based on simple random sampling, so a
simulation study was conducted in order to compare results of
the Bayes estimates. Simulations using the following
algorithm, by using MATLAB program.

4.1 Algorithm for simulation study

1. Generate random sample of size n from Rayleigh
distribution using Equation (2) by inverse transform
technique when @ = 0.5, 1 and 1.5.

2. Calculate the Bayes estimators that we have obtained in

Equations (7), (9), (11) and (12).

© 2024, IISRMSS All Rights Reserved

(25)

Now generate random sample of size n” from Rayleigh
distribution using Equation (2) by inverse transform
technique when & = 0.5, 1 and 1.5.

e These items are the randomly divided into n sets of n
units each.

Arrange the items from the smaller to the larger for
each set.

We select the item with the smallest ranking, X[y for
measurement from the first set.

From the second set we select the item with the
smallest ranking, Xp;, we continue in this manner
until we have ranked the items in the nth set and
selected the item with the largest ranking, X, this
means that we take the elements of the diagonal.

Calculate the Bayes estimators based on ranked set
sampling which is Equations (20), (21), (24) and
(25).
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4. Using 1000 iterations to study the estimates of the scale MSE = [bias]? + variance. (26)
parameter; mean squared error (MSE) of the estimates, ~ The MSE of the estimator e * is noted by Mse”™ and the MSE
variance of the estimates and _blas of the estimates. of the estimator & is noted by M5E

5. Final, we calculate bias, variance and MSE of Bayes
estimators based on SRS and RSS. . -

e Tables 13-15 show the relative efficiency of MSE of
4.2 Simulation Results and Discussion Bayes estimates based on ranked set sampling with
e Tables 1-3 show numerical comparisons between the respect to MSE of Bayes estimates based on SRS, when
Bayes estimates based on the simple random sampling 0=0.5,0=1and a=1.5 since eff.= MSE" / M3E.
and the ranked set sampling, when [a = 0.5 in Table 1],
[ =1inTable 2], and [z = 1.5 in Table 3]. Table 2. Estimates of o for the Rayleigh distribution when a = 1
e Tables 4-6 show numerical comparisons between the bias Based on SRS
of the Bayes estimates based on the simple random T € g (@D @pe ¢ oz
sampling and the ranked set sampling, when [ = 0.5 in 3 15% gi 1‘5‘2‘; 1,05 1428 gi 1322
Table 4], [@ = 1 in Table 5], and [z = 1.5 in Table 6], ' ' @51 1320 01 1207
where the bias is defined by the difference between the 01 1343
. 4 1.342 0.1 1.310 (1,0.5) 1.384 0.1 1.361
true value of the parameter and the Bayes estimator. 01 1378 01 1409
(15,1) 1.296 0.1 1.278
. . . . x . -0.1 1.314
The bias of the estimator ™ is noted by bias™ and the bias of 5 1271 01  0.604 (1,05) 1.267 01 1251
. .. . -0.1 0.614 -0.1 1.283
the estimator ¢ is noted by bids 151 1224 01 1211
01 1238
* Tables 7-9 show numerical comparisons between the —— - = Based ?: F:fs = —

i i 1 RIS RjL 0] Acs RCL
variance of the Bay_es estimates based on the ranked set R A T o5 T3 ST T2%
sampling and the simple random sampling, when [a = 01 1257 01 1.268
0.5 in Table 7], [ = 1 in Table 8], and [ = 1.5 in Table sy 1z 01 10
9]_ 4 1.143 0.1 1.134 (1,0.5) 1.166 0.1 1.158

-0.1 1.151 -0.1 1.174
The variance of the estimator &” is noted by Var* and the 151 1136 %1 ﬁig
variance of the estimator & is noted by Vir. 5 1077 01 1072 (1,05 1113 01 1109
-0.1 1.081 -0.1 1.118
Table 1. Estimates of a for the Rayleigh distribution when o = 0.5 (5.1) 1107 g'i ﬁgg
Based on SRS
nooagys £ &gy (@b o' 0 @'zm Table 3. Estimates of « for the Rayleigh distribution when a = 1.5
3 0.736 01 0721 (1,0.5) 0.862 01 0850 Based on SRS
-0.1 0.753 -0.1 0.876 m r - r ]
(1.5,1) 0.804 01 0794 n_ gy £ Tap (@b)  apey c & prr
-0.1 0.813 3 2.251 0.1 2114 (1,0.5) 1.926 0.1 1.872
4 0.647 0.1 0.640 (1,0.5) 0.737 0.1 0.730 -0.1 2.470 -0.1 1.986
-0.1 0.654 -0.1 0.744 (15,1) 1.689 0.1 1.654
(1.5,1) 0.752 0.1 0.746 -0.1 1.726
-0.1 0.759 4 1.954 0.1 1.890 (1,0.5) 1.943 0.1 1.899
5 0.609 0.1 0.604 (1,0.5) 0.678 0.1 0.674 -0.1 2.029 -0.1 1.990
-0.1 0.614 -0.1 0.684 (15,1) 1.691 0.1 1.663
(1.5,1) 0.687 0.1 0.683 -0.1 1.721
-0.1 0.691 5 1.828 0.1 1.786 (1,0.5) 1.793 0.1 1.763
Based on RSS -0.1 1.874 -0.1 1.990
1 = = B = = (15,1) 1.656 0.1 1.633
n Fans c Bang (o.o) o T c o Tord 0.1 1.681
3 0.604 0.1 0.600 (1,0.5) 0.659 0.1 0.655
0.1 0.608 0.1 0.663 — — Based on R?S — —
(L5,1) 0.680 01 0676 no g £ gy  (ab) @pey € Epep
-0.1 0.684 3 1.237 0.1 1.219 (1,0.5) 1.253 0.1 1.761
4 0.552 0.1 0.550 (1,0.5) 0.605 0.1 0.603 -0.1 1.257 -0.1 1.820
-0.1 0.554 -0.1 0.607 (15,1) 1.212 0.1 1.643
(1.5,1) 0.622 0.1 0.620 -0.1 1.688
-0.1 0.624 4 1.143 0.1 1.134 (1, 0.5) 1.166 0.1 1.707
5 0.531 0.1 0.530 (1,0.5) 0.569 0.1 0.568 -0.1 1.151 -0.1 1.741
-0.1 0.532 -0.1 0.571 (15,1) 1.136 0.1 1.604
(1.5,1) 0.567 0.1 0.566 -0.1 1.631
0.1 0.568 5 1.077 0.1 1.072 (1, 0.5) 1.113 0.1 1.627
-0.1 1.081 -0.1 1.648
(15,1) 1.107 0.1 1.561
e Tables 10-12 show numerical comparisons between the 01 1579
MSE of the Bayes estimates based on the ranked set )
sampling and the simple random sampling, when [ = 0.5 9. Conclusion and Future Scope
in Table 10], [a = 1 in Table 11], and [a = 1.5 in Table ) )
12], where the MSE is given by; 1. The Bayes estimates of the parameter « of the Rayleigh

© 2024, 1JSRMSS All Rights Reserved

distribution based on ranked set sampling (RSS) using
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LINEX or squared error loss functions with Jeffrey’s'
prior are better than The Bayes estimates of the
parameter o of the Rayleigh distribution based on simple
random sampling (SRS) using LINEX or squared error
loss functions with Jeffrey’s', to different values of o

Table 4. Bias of the estimates of a for the Rayleigh distribution when a = 0.5

Based on SRS

n biasTzyy ¢ bias'p; (ab) biasTp., ¢ biesTpg
3 -0.236 01 0221 (1,05 -0.362 0.1  -0.350
01  -0.253 01  -0.376
(15, 1) -0.304 01  -0.294
01  -0.313
4 -0.147 01  -0140  (1,05) -0.237 01  -0.230
01  -0.154 01 -0.244
(15,1) -0.252 01  -0.246
01  -0.259
5 -0.109 01  -0104  (1,05) -0.178 01  -0.174
01  -0.114 01  -0.184
(15, 1) -0.187 01  -0.183
01  -0.191
Based on RSS
n bidsg,, ¢ bifsgy (a.b) bidsz. ¢ bifsyy
3 -0.104 01  -0100  (L,05) -0.159 0.1  -0.155
01  -0.108 01  -0.163
(15, 1) -0.108 01  -0.176
01  -0.184
4 -0.052 01 0050  (1,05) -0.105 01  -0.103
01  -0.054 01 -0.107
(15, 1) 0122 01  -0.120
01  -0.124
5 -0.031 01 0030  (1,05) -0.069 0.1  -0.068
01 -0.032 01 -0.712
(1.5, 1) -0.067 01  -0.066
0.1 -0.068

Table 5. Bias of the estimates of a for the Rayleigh distribution when o = 1

Based on SRS

n bias'z;, ¢ biasTzy (mb)  biasTpry £ biasTp,
3 0526 01  -0446  (1,05) 0428 01  -0397
-0.1 -0.547 -0.1 -0.462
(15,1) -0.320 0.1 -0.297
-0.1 -0.343
4 0342 01 0310 (1,05 0384 01  -0.361
-0.1 -0.378 -0.1 -0.409
(15,1) -0.296 0.1 -0.278
-0.1 -0.314
5 -0.271 0.1 -0.251 (1,0.5) -0.267 0.1 -0.251
01 0292 01 -0.283
(1.5, 1) -0.224 0.1 -0.211
01 0238

Based on RSS

n bidsg, ¢ bifisgy (ab) bidsge ¢ bidspy
3 -0.237 0.1 -0.219 (1,0.5) -0.253 0.1 -0.239
-0.1 -0.257 -0.1 -0.268
(15,1) 0.212 0.1 -0.200
-0.1 -0.224
4 -0.143 0.1 -0.134 (1,0.5) -0.166 0.1 -0.158
-0.1 -0.151 -0.1 -0.174
(1.5,1) -0.136 0.1 -0.129
-0.1 -0.143
5 -0.077 0.1 -0.077 (1,0.5) -0.113 0.1 -0.109
-0.1 -0.081 -0.1 -0.118
(1.5, 1) -0.107 0.1 -0.103
-0.1 -0.112

2. The Bayes estimates of the parameter « of the Rayleigh

distribution based on ranked set sampling (RSS) using
LINEX or squared error loss functions with conjugate
prior are better than the Bayes estimates of the parameter
a of the Rayleigh distribution based on simple random
sampling (SRS) using LINEX or squared error loss
functions with conjugate prior, to different values of o.

© 2024, 1JSRMSS All Rights Reserved
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The MSE of the Bayes estimates based ranked set
sampling using LINEX loss function when e is positive is
less than the MSE of the Bayes estimates based ranked
set sampling using LINEX loss function when c is
negative, using Jeffrey’s' prior, as well as the bias.

Table 6. Bias of the estimates of a for the Rayleigh distribution when a. = 1.5

Based on SRS

n bias'gyy ¢ bias'py (b)) biasTgee £ biasTyg
3 -0.751 0.1 -0.614  (1,05) -0.426 0.1 -0.372
01  -0.970 01 -0.486
(15,1) -0.189 0.1 -0.154
01 -0.226
4 -0.454 0.1 -0.390 (1,05) -0.443 0.1 -0.399
01  -0.529 01 -0.490
(151) -0.191 0.1 -0.163
01 -0.221
5 -0.328 0.1 -0.286 (1,05) -0.293 0.1 -0.263
01 0374 01  -0.325
(15,1) -0.156 0.1 -0.133
01  -0.181
Based on RSS
n  bidsg,, ¢ bidsgy (ab) bidsg., ¢  bidsgy
3 -0.271 0.1 -0.236 (1,05) -0.290 0.1 -0.261
01 -0.308 01  -0.320
(15,1) -0.165 0.1 -0.143
01  -0.188
4 -0.183 0.1 -0.165 (1,05) -0.224 0.1 -0.207
01  -0.201 01 -0.241
(15,1) -0.117 0.1 -0.104
01  -0131
5 -0.093 0.1 -0.083 (1,05) -0.137 0.1 -0.127
01 -0.104 01 -0.148
(15,1) -0.070 0.1 -0.061
01 -0.079
Table 7. Variance of the estimates of o for the Rayleigh distribution
when a = 0.5
Based on SRS
n Var'gis ¢ Vargp (ab) Var'ge, ¢ Vargy
3 0.396 0.1 0.347 (1,05) 0.320 0.1 0.297
01 0466 01 0.346
(15,1) 0.192 0.1 0.182
01 0203
4 0.166 0.1 0.156 (1,05) 0.174 0.1 0.166
01 0176 01 0182
(15,1) 0.146 0.1 0.140
01 0182
5 0.116 0.1 0.111 (1,0.5) 0.106 0.1 0.103
01 0121 01 0110
(15,1) 0.097 0.1 0.094
0.1 0.100
Based on RSS
n Viérgs e WVargy (a.b) Virg. ¢ Virgg
3 0.088 0.1 0.085 (1,0.5) 0.098 0.1 0.095
01 0091 01 0102
(15,1) 0.086 0.1 0.084
0.1 0.089
4 0.040 0.1 0.039 (1,05) 0.051 0.1 0.050
01 0041 01 0052
(15,1) 0.046 0.1 0.045
0.1 0.046
5 0.023 0.1 0.022 (1,05) 0.025 0.1 0.025
01 0023 01 0026
(15,1) 0.023 0.1 0.023
0.1 0024
4. The results of the simulation showed that the MSE of the

Bayes estimates based on ranked set sampling (RSS)
using LINEX or squared error loss functions with
conjugate prior or with Jeffrey’s' prior are always less
than the MSE of the Bayes estimates based on simple
random sampling (SRS) using LINEX or squared error
loss functions with conjugate prior, or with Jeffrey’s'
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prior, for different sample size of n and for different
values of the parameter a, and so, would the bias and the
variance of the Bayes estimates based on ranked set
sampling smaller than the bias and the variance of the
Bayes estimates based on simple random sampling, for
all of Bayes estimates.

Table 8. Variance of the estimates of o for the Rayleigh distribution

6. The MSE of the Bayes estimates based ranked set
sampling using LINEX loss function when ¢ is positive
are less than the MSE of the Bayes estimates based
ranked set sampling using mean squared error loss
function, using conjugate prior, as well as the bias.

Table 10. MSE of the estimates of a for the Rayleigh distribution
when a = 0.5

whena =1
Based on SRS Based on SRS
ry ry ~ - = - _- 1 . . ! . & ] * . & -
n Vargs c Vargy (ab) Vargs € Vargg n MSE'z;s ¢ MSETzy (ab) MSEzo © MSETpy
3 4,397 0.1 2.130 (1,0.5) 0.562 0.1 0.508 3 0.452 0.1 0.397 (1,0.5) 0.452 0.1 0.420
0.1 2122 0.1 0.626 0.1 0.530 0.1 0.488
(1.5,1) 0.307 0.1 0.286 (15,1) 0.285 0.1 0.269
0.1 0.330 0.1 0.301
4 0.897 0.1 0.780 (1,0.5) 0.467 0.1 0.431 4 0.187 0.1 0.176 (1,0.5) 0.230 0.1 0.219
0.1 1.059 0.1 0.509 0.1 0.200 0.1 0.242
(151) 0.303 0.1 0.286 (1.5,1) 0.210 0.1 0.201
0.1 0.321 0.1 0.219
5 0.462 0.1 0.429 (1,0.5) 0.296 0.1 0.281 5 0.128 0.1 0.122 (1,0.5) 0.138 0.1 0.133
0.1 0.499 0.1 0.313 0.1 0.134 0.1 0.144
(151) 0.222 0.1 0.212 (15,1) 0.132 0.1 0.127
: 0.1 0.233 0.1 0.136
Based on RSS Based on RSS
n_Varg, ¢ Vargy (a.b) Virges ¢ Vargg n M3Egy ¢ MS3Ez; (ab) M3Eg. ¢ M3Ezy
3 0.508 0.1 0.467 (1,0.5) 0.302 0.1 0.287 i - T = T =
01 0.559 01 0320 3 0.099 0. 0.095 (1,0.5) 0. 0. 0.119
(L5,1) 0.217 01 0208 01 0103 01 0.129
01 0226 (1.5,1) 0.119 0.1 0.115
4 0185 01 0179  (L05) 0.159 01 0155 01 0.123
01 0.191 01 0.164 4 0.043 0.1 0.042 (1,0.5) 0.062 0.1 0.061
(151) 0.130 01 0127 01 004 01 0.063
-0.1 0.133 (1.5,1) 0.061 0.1 0.060
5 0100 01 0098  (L05) 0.107 01 0105 01 0.062
01 0102 01 0.109 5 0.023 gi gggi (1,0.5) 0.030 gi gggg
(L51) 0.083 01 0.081 ' ' (15,1) 0.028 01 0.028
0.1 0.084 ol : o1 0029
Table 11. MSE of the estimates of « for the Rayleigh distribution
Table 9. Variance of the estimates of o for the Rayleigh distribution when o= 1
when a = 1.5 Based on SRS
Based on SRS . + " * « * N *
— — - — — n MSE gy © MSE'gy (mb) MSE'z. ¢ MSE'py
n Vargs ¢ Vargpy (@b) Var'gee © Var'gg
3 4.808 0.1 3.085 (1,0.5) 0.855 0.1 0.757 3 4.675 _g'i gf‘éi (1.05) 0.746 _%‘i 8'2%
0.1 11.465 0.1 0.977 15.1) 0.409 01 0.375
(151) 0.386 0.1 0.355 01 0.448
0.1 0.421 : :
4 1.681 0.1 1.379 (1,0.5) 0.764 0.1 0.692 4 1015 _gi 2'%2 (1.05) 0615 _g'i 8'2%
0.1 2.196 0.1 0.851 15.1) 0.390 o1 0.363
(151) 0.396 0.1 0.344 01 0.420
0.1 0.397 : :
5 1.045 0.1 0.925 (1,0.5) 0.543 0.1 0.504 5 0.536 _g'i g'ggé (1.05) 0.367 _g'i 8'23‘31
0.1 1.200 0.1 0.587 15.1) 0.273 01 0.257
(15) 0.334 0.1 0.314 01 0.290
’ 0.1 0.355 - -

Based on RSS Based on RSS

n Virgs ¢ Varggy (ab) Virge, ¢ Virgg n MSEz. ¢ MSEz,; (ab) MS3Eg, ¢ M5Ezg
3 0752 01 0685 (1,0.5) 0.530 01 0495 3 08565 0l 055 1.05) 0.367 01 034
01 0833 201 0568 01 0625 01 0392
(15,1) 0.333 01 0316 (15.1) 0.262 01 0248
01 0352 01 0277
4 0362 01 0347 (1,0.5) 0.347 01 0332 4 0205 01 0197 (1,05) 0.187 01 0180
01 0380 01 0363 01 0214 01 0195
(15,1) 0.239 01 0231 (15.1) 0.148 01 0143
01 0248 01 0154
5 0.206 A1 0.201 (1,0.5) 0.190 0.1 0.185 5 0.106 0.1 0.103 (1,0.5) 0.120 0.1 0.117
01 0212 01 0195 01 0109 01 0123
(15,1) 0.154 01 0150 (15,2 0.094 01  0.092
01 0157 01 0097

5. The MSE of the Bayes estimates based ranked set
sampling using LINEX loss function when c is positive is 7. Tables 13, 14 and 15 show that always the relative
less than the MSE of the Bayes estimates based ranked efficiency of MSE of Bayes estimates based on ranked
set sampling using LINEX loss function when c is set sampling are larger than one therefore, ranked set
negative, using conjugate prior, as well as the bias.
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sampling (RSS) is more efficient than the estimators
based on simple random sampling (SRS).

Table 12. MSE of the estimates of a for the Rayleigh distribution
when a = 1.5

Based on SRS

n MSE'n;y ¢ MSE'n; (ab) MSE'ge € MSE'ge
3 5373 01 3462 (1,0.5) 1.037 01  0.89%
01 12.407 01 1215

(15.1) 0.422 01 0379

01 0473

4 187 01 1531 (1,0.5) 0.961 01 0851
01 2476 201 1.091

(15,1) 0.406 01 0371

01 0446

5 1153 01  1.007 (1,0.5) 0.629 01 0573
01 2476 01 1.091

(15,1) 0.358 01 0332

0.1  0.388

Based on RSS

n J‘rfSERI.-\' c J‘ffSEﬂjl I:ﬂull:':I J‘ffSERE_«.; c J‘ffSERf:_
3 0.826 0.1 0.741 (1,0.5) 0.614 0.1 0.564
-0.1 0.928 -0.1 0.671
(15,1) 0360 01 0336
-0.1 0.387
4 0.396 0.1 0.374 (1,0.5) 0.397 0.1 0.375
-0.1 0.420 -0.1 0422
(15,1) 0253 01 0241
-0.1 0.265
5 0.215 0.1 0.208 (1,0.5) 0.209 0.1 0.201
-0.1 0.223 -0.1 0.217
(1.5,1) 0.158 0.1 0.154
-0.1 0.163

Moreover, The relative efficiency under Rayleigh distribution
of the Bayesian estimates based on ranked set sampling,
defined as follows;

MSE g MSE™a 0
eff g5 = .*—,_-.R'h eff gy = -’—:-RJL:

MEE” e MEE” 4~
eff acy) =#m= Eff:ﬂﬂ.nz%=

JdSHRr.\" Jrfls'uﬂfl

Table 13. Relative efficiency under Rayleigh distribution when o = 0.5

n effg ¢ effzm, (ab) efary ¢ effam,
3 4554 01 4153 (L05) 3.637 01 3508
01 5142 01 3783
(15,1) 2.384 01 2327
01 2447
4 4347 01 4172 (1,05) 3.603 01 3504
01 4554 01 3.802
(15,1) 3.429 01  3.349
01 3515
5 539 01 5160  (L0.5) 4599 01 4493
01 5557 01 4690
(15,1) 4.658 01 4567
01 4770

Table 14. Relative efficiency under Rayleigh distribution when oo = 1

n EEE: RjS] C EEE:H}I. | {2, b:| EII-:'-:: ALY c EEE:HC}. |
3 8.267 0.1 4.517 (1,0.5) 2.033 0.1 1.938
-0.1 3.870 -0.1 2.142
(1.51) 1.562 0.1 1511
-0.1 1.617
4 4.936 0.1 4.445 (1,0.5) 3.281 0.1 3.113

© 2024, 1JSRMSS All Rights Reserved
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01 5606 01  3.460
(15,1) 2.625 01 2529

01 2728

5 5037 01 4749 (1,0.5) 3.055 01 2939
01 5367 01 3181

(15,1) 2.880 01 2783

01 2.980

Table 15. Relative efficiency under Rayleigh distribution when o = 1.5

] f'ff:nj.w'. ¢ eff, gy (@b) effarsy € eff e
3 6.504 0.1 4670 (1,0.5) 1.689 0.1 1.587
01 13359 01 1810
(151) 1.169 0.1 1.125
01 1220
4 4.760 0.1  4.089 (1,0.5) 2.415 01 2267
01 5887 01 2587
(151) 1.605 0.1 1534
01 1683
5 5.351 01 4843 (1,0.5) 3.006 01 2842
01 11077 01 5020
(1.5,1) 2.256 01 2157
01 2367
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