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Abstract—The branch of mathematics that deals with the study of non-integer order derivatives and integrals is called fractional 

calculus. The interesting thing about this subject is that in contrast to the classical derivatives, the fractional derivatives are not a 

point quantity. Indeed, the fractional derivative of a function of order α at some point is a local property only for α being an 

integer.  In recent years, the study of positive solutions for fractional differential equation boundary value problems has attracted 

considerable attention, and fruits from research into it emerge continuously. In this paper, the existence of positive solutions is 

established for boundary value problems defined within generalized Riemann–Louville and Caputo fractional operators. Our 

approach is based on utilizing the technique of fixed point theorems. For the sake of converting the proposed problems into 

integral equations, we construct Green’s function and study their properties for three different types of boundary value 

problems. An example is presented to demonstrate the validity of theoretical findings. 

 

Keywords— Existence of positive solutions; Fractional Calculus; Riemann-Liouville Differintegral; Generalized Fractional 
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1. Introduction  

Fractional differential equations arise in many fields, such as 

physics, mechanics, chemistry, economics, engineering and 

biological sciences, etc; see [1-3] for example. In recent 

years, the study of positive solutions for fractional differential 

equation boundary value problems (BVP) has attracted 

considerable attention, and fruits from research into it emerge 

continuously. For a small sample of such work, we refer the 

reader to [] and the references therein. In these papers, many 

authors have investigated the existence of positive solutions 

for nonlinear fractional differential equation boundary value 

problems. Their results are based on Schauder fixed point 

theorem, Leggett-Williams theorem, fixed point index 

theorems in cones, Krasnosel’skii fixed point theorem, the 

method of upper-lower solutions, fixed point theorems in 

cones and so on. On the other hand, the uniqueness of 

positive solutions for nonlinear fractional differential 

equation BVP has been studied by some authors, see [4,5] for 

example. The methods used in these papers are fixed point 

theorems for mixed monotone operators, u0-concave 

operators and monotone operators in partially ordered sets. 

Moreover, Fractional calculus is the theory of integrals and 

derivatives of arbitrary real (and even complex) order and 

was first suggested in works by mathematicians such as 

Leibniz, L’Hôpital, Abel, Liouville, Riemann, etc. The 

importance of fractional derivatives for modeling phenomena 

in different branches of science and engineering is due to 

their non-locality nature, an intrinsic property of many 

complex systems. Unlike the derivative of integer order, 

fractional derivatives do not take into account only local 

characteristics of the dynamics but considers the global 

evolution of the system; for that reason, when dealing with 

certain phenomena, they provide more accurate models of 

real-world behavior than standard derivatives [6]. 

 

The remainder of this paper is organized as follows; Section 2 

contains some basic fractional calculus. Section 3 offers the 

preliminary results. Section 4, introduces a some main results. 

Section 5, demonstrate illustrative example that show 

consistency to the main theorems.  In Section 6, the main 

conclusions obtained from this paper are discussed. 

 

2. Basic Fractional Calculus 

The main objects of classical calculus are derivatives and 

integrals of functions- these two operations are inverse to 

each other in some sense. If we start with a function f(t), and 

put its derivatives on the left- hand side and on the right- hand 
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side we continue with integrals, we obtain a both- side 

infinite sequence [4]. 

 

    (1) 
 

Fractional calculus tries to interpolate this sequence so this 

operation unifies the classical derivatives and integrals and 

generalizes them for arbitrary order. We will usually speak of 

differintegral, but sometimes the name α-derivative (α is an 

arbitrary real number) which can mean also an integral if        

α < 0, is also used, or we talk directly about fractional 

derivative and fractional integral. 

There are many ways to define the differintegral and these 

approaches are called according to their authors. For example 

the Grounwald-Letnikov definition of differintegral starts 

from classical definitions of derivatives and integrals based 

on infinitesimal division and limit. The disadvantages of this 

approach are its technical difficulty of the computations and 

the proofs and large restrictions on functions. Fortunately 

there are other, more elegant approaches like the Riemann-

Liouville definition which includes the results of the previous 

one as a special case. In this paper we will focus on the 

Riemann-Liouville, the Caputo and the Miller- Ross defi- 

nitions since they are the most used ones in applications. We 

will formulate the conditions of their equivalence and derive 

the most important properties. 

This science is part of mathematical analysis and deals with 

the applications of integration and derivation in the case of 

the ordered derivative, and this field is concerned with 

generalizing the derivative of the association (function) of 

any derivative of integer order, for example: we usually deal 

with the first and second derivatives. As for this field 

(fractional differentiation), it helps us to find the derivative 

number one-half or 0.3 or 0.7 ...etc [7]. 

 

2.1 The Gamma Function 

In the integer-order calculus the factorial plays an important 

role because it is one of the most fundamental combinatorial 

tools. The Gamma function has the same importance in the 

fractional-order calculus and it is basically given by integral; 

see e.g. [7-9]. 

 

Definition (2.1): Gamma Function 

                   (2) 

for Re(z) > 0. 

It is natural to expect a connection between the Gamma 

function and the factorial, by the fact that                     

Γ(1) = 1; Γ(n + 1) = n!. , for n ∈ .  
The gamma function then is defined in the complex plane as 

the analytic continuation of this integral function: it is a 

meromorphic function that is holomorphic except at zero and 

the negative integers, where it has simple poles. 

2.2 The Beta Function 

The Beta function is very  important for the computation of  

the fractional derivatives of  the power function. It is defined 

by the two-parameter integral; see e.g. [7-10]. 

Definition (2.2): Beta Function 

         (3) 

for z, w satisfying Re(z) > 0 and Re(w) > 0. 

 

We get a relation between the Beta function and the Gamma 

function which implies; 

 

  (4) 
 

where Γ(z) is a gamma function define by Eq. (2). 

2.3 The Riemann-Liouville Differintegral 

The Riemann-Liouville approach is based on the Cauchy 

formula (5) for the n
th

 integral which uses only a simple 
integration so it provides a good basis for generalization; 

 

(5) 

 

Definition (2.3): Riemann-Liouville  Differintegral 

Let a, T, α be real conatants  a < T, n = max (0, [α] + 1) and f 

(t) an integrable function on (a, T ) for n > 0 additional 

assume that f (t) is n-times differentiable on (a, T ) except on 

a set of measure zero. Then the Riemann-Liouville 

differintegral is defined for t ∈ (a, T ) by the formula: 

 

(6) 

 

2.4 The Caputo Differintegral 

We will denote the Caputo differintegral by the capital letter 

with upper-left index . The fractional integral is given by 

the same expression like before, so for α > 0 we have; 

 

                   (7) 

 

The difference occurs for fractional derivative. A non-integer-

order derivative is again defined by the help of the fractional 

integral, but now we first differentiate f (t) in the common 

sense and then go back by fractional integrating up to the 
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required order. This idea leads to the following definition of 

the Caputo differintegral. 

 

Definition (2.4): Caputo Differintegral 

 Let a, T, α be real conatants a < T, nc = max (0, [α] + 1) and 

f (t) an integrable function on (a, T ) in case nc = 0 and nc-

times differentiable on (a, T ) except on a set of measure zero 

in case nc > 0. Then the Caputo differintegral is defined for t 

∈ (a, T ) by the formula: 

               (8) 

 

Remark: For α > 0, α ∈ N0, Eq. (8) is often written in the 

form: 

(9) 

 

2.5 Riemann–Liouville integral and derivative 

Definition (2.5): Riemann–Liouville integral and 

derivative 

 The Riemann-Liouville fractional integral of order α > 0 for 

a continuous function f (t) : (0, ∞) →  is defined as; 

       (10) 

Provided the integral exists. 

Clearly, the Caputo derivative can also be written by the help 

of fractional integrals of the Riemann-Liouville type: 
 

          (11) 

2.6 Left and right Riemann-Liouville fractional 

derivatives 

All definitions given in the previous sections were so called 

left differ-integrals. The origin of this name is clear because 

we calculate the value of the differ-integral at point t by the 

help of points on the left of it. If t means time, it seems to be 

logical since we use in fact the history of the function f (t) and 

the future does not need to be known yet. On the other side, if 

t plays the role of a spatial variable, there is no reason why 

events on the left should be more important than those on the 

right, see [11]. 

 

In this paper, we may usually consider t to be time, so mostly 

we will not need right differ-integrals. The only exception 

occurs only in the chapter about applications where we will 

use the right Riemann-Liouville derivative according to the 

spatial variable. This is the reason why we do not introduce 

right differ-integrals for all approaches, but only the 

following formula for the right Riemann-Liouville derivative 

(we will denote the right fractional derivative by left bottom 

index −), n = [α] + 1: 

Definition (2.6):  Left and right Riemann-Liouville 

fractional derivatives 

 The left and right Riemann-Liouville fractional derivatives 

and of  order , are defined by; 

(12) 

and 

(13) 

 

2.7 Left and right Riemann-Liouville fractional integrals 

Definition (2.7): Left and right Riemann-Liouville 

fractional integrals 

Let J = [a, b], (−∞ < a < b < ∞) be a finite interval of . 

The left and right Riemann- Liouville fractional integrals 

 and  of order , are 

defined by; 

 

(14) 

and 

(15) 

 

Lemma (2.1):  

Assuming arbitrary function f (x) and m, n > 0 the following 

equations hold; 

1. Semi-group property: 

 

2. Commutative property: 

 
 

3. Preliminary results 

Theorem (3.1):  

(Fixed point theorem): Let a,b∈ R and a < b if 

F:[a,b]→[a,b] is continuous then there is a fixed point in F. 

Definition (3.1): 

 Let E be a vector space on the field Let 

we say that N is a norm on E if it satisfies the 

following properties: 

(1) N(X)=0 ⇔ X=0. 
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(2) N(λ X)=|λ| N(X) , ∀ λ ∈ , and ∀ x∈ E. 

(3) N(X+Y)⩽ N(X)+N(Y) , ∀ X ∈ E and ∀ y∈ E. 
 

In general N is donted by ∥ · ∥, and (E,N) is called a normed 

vector space (n.v.s). 

Definition (3.2):  

We say that (E,∥ · ∥ ) is complete if any cauchy sequence in E 

is convergent in E. A complete normed vector space is called 

a Banach space. 

Let C ∈ [0,1] be the Banach space endowed with the norm 

llζll=sup{ lζ (t)l; t∈[0,1]} for ζ ∈ C[0,1], and define the cone 

K={ζ ∈C[0,1]:ζ  ≥ 0, t∈[0,1]}. 

The positive solution that we take account in this work is such 

that ζ(t) ≥ 0 , 0⩽ t⩽1, ζ ∈C[0,1]. 
 

Definition (3.3):    
 

Let 0< υ, ρ : [a, b] →  be an integrable function and         

ϑ : [a, b] →  an  increasing  function  with  ϑ′ (t)  ≠ 0,  for  

all  t ∈ [a, b]  .The  ϑ  -RL  fractional  integral  of  ρ  of order 

υ is given by; 

(16) 

Definition (3.4): 

Let n-1< υ <n, and ρ, ϑ ∈ C
n
[a, b]such that ϑ is an increasing 

function with   ϑ′ (t) ≠ 0 for all t ∈[a,b]. 

 Then the ϑ - RL fractional derivative of order υ is given by; 

 

 

where: 

 

 

Lemma (3.1):  

Let r ∈  with r > n. Then ϑ -fractional integral and 

derivative of the function  ρ(t) = (ϑ(t) − ϑ(a))
r−1

 are; 

 

and 

 

Lemma (3.2): Let υ, r > 0 and    ρ ∈L[0,1]. Then we have; 

 

Lemma (3.3):  Let υ > 0. If we suppose  ζ ∈ C(0, 1) ∩ L(0,1), 

then the equation has a unique solution; 

Moreover,if ζ,  ζ ∈ C(0, 1)∩L(0,1),then; 

for some ci ∈   ,i=1,2,...,n. 

Consider the non-linear generalized fractional BVP of the 

form; 

   (17) 

we will investigate the existence and uniqueness of positive 

solution of Eq.(17). 

 

Theorem (3.2):  

(Banach). Let X be a Banach space with a contraction 

mapping T:X → X. Then T has a unique fixed - point x in X, 

see [12]. 

 

 

Theorem (3.3): 

(schaefer fixed point theorem ). Let X be a Banach space and 

let F:X→X be completely continuous mapping, see [13]. Then 

either : 

(i) The equation X=λ FX has a solution for λ = 1. 
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(ii) The set { x ∈ X :x=λ Fx for some λ ∈ (0,1)} is 

unbounded. 

Theorem (3.4): 

 (Darbo-sadovskii fixed point theorem) If  Ω is bounded 

closed and convex subset of Banach space X , the continuous 

mapping  L: Ω → Ω is an α-contraction , then the mapping L 

has at least one fixed point in Ω, see [13]. 

Definition (3.5): 

 Let A⊂ E we say that A is convex if : ∀ x,y∈ A ,∀t ∈ [0,1] , it 

holds: tx +(1-t) y∈ A, see [14]. 

Definition (3.6): 

 A set A is compact if every open cover of A contains a finite 

subcover of A, see [14]. 

Definition  (3.7): 

A  set  B  in  a  metric  space  is  relatively  compact  if  it  is  

closure
 

 is compact, see [14]. 

Theorem (3.5): 

 (Schauder) Let X be a Banach space and let S be a closed 

,convex,bounded subset of X. If T:S→ S is a continuous map 

such that the set {Ts:s∈S} is relatively compact in X , then T 

has at least one fixed point, see [12]. 

4. Main Results 

 
This section is dedicated to demonstrating the developed 

Green’s function corresponding to the problem (17) and 

proving the existence and uniqueness of positive solutions to 

a problem (17). 
 

Lemma (4.1): 

Let 1< υ ≤2 and ϕ : [0, 1] →   is continuous, see [15]. 

Then we have; 

             (18) 

 

has a unique solution ζ ∈ C[0,1] given by; 

             (19) 

where; 

(20) 

Here G(t,s) means the Green’s function of BVP, Eq. (18) and 
the given notation is adopted for easiness; 

 

proof . By applying Lemma (3.3) on first equation of Eq. (18) 

we obtain; 

(21) 

for some C1, C2 ∈  . 

from the second equation of (18),we get C2 = 0 and we have; 

 

Substitute the values of C1 and C2 in Eq. (21), and we get; 

 
Hence; 

 
Lemma (4.2): 

For all υ ∈ (1, 2]. The Green’s function given by Eq. (20) 

satisfies the properties: 

(i) G(t,s) is continuous on [0,1]×[0, 1]. 

(ii) G(t, s) > 0, 0 < t, s < 1. 

(iii) For s ∈ (0, 1). 

                    (22) 
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Definition (4.1): 

 Let a,b ∈  (b>a).For any ζ ∈[a,b],we say that β(t,.) is 

the upper control function if;  

 

and is the lower-control function if; 

 

Certainly,  and  are non-decreasing on 

ζ and; 

 

Theorem (4.1): 

Suppose β : [0, 1] × R+ → R+ is continuous, see [15]. Then 

there exists at least one positive solution ζ(t) of Eq.(17). 

Moreover 

 

Where 
 
are upper and lower solutions of Eq.(17). 

Proof . Define Q:K → K by 

 

Lemma (4.1) shows that fixed points of Q are solutions of 

Eq.(17). Because β(s, ζ) and G(t,s) are non-negative and 

continuous , Q:K→ K is continuous. Define the ball; 

 

and set; 

 

Then for any ζ ∈ B 
 
we get; 

 

 

 

This shows that (Q Br) is uniformly bounded. 

Now , we prove that Q is equicontinuous. Let ζ ∈ Br. Then 

for t1, t2 ∈ [0,1] with t1 < t2 , we have; 

 
(23) 

Consider  ∆=|G(t2, s) − G(t1, s)|.Thus; 

 

By applying the mean value theorem,then for a,b ∈ (t1, t2) 

 

The estimation of Eq. (23) because; 
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As t2 − t1 → 0, |(Qζ)(t2) − (Qζ)(t1)| → 0, which means that   

(Q Br) is equicontinuous. So by Arzela-Ascoli theorem, we 

conclude that Q is completely continuous. 

To apply Theorem (3.5),we need only to prove Q:Λ → Λ 

where; 

 

and ||W || = max{|W (t)| ≤ b; t ∈ [0, 1]}. Certainly,Λ is 

bounded, closed ,and convex subset of C[0,1]. For any 

W(t)∈ Λ, then 
 
it follows from 

Definition (4.1) that; 

and; 

Thus , Qw(t)∈ Λ,due to 
 
 t ∈ [0, 1].Hence , 

Q:Λ → Λ . According to Theorem (3.5),Q has at least one 

fixed point ζ(t) ∈ Λ for t∈ [0, 1]. Therefor, the problem 

(2.16) has at least one positive solution ζ(t) ∈ C[0, 1] and 

 ∈ [0, 1]. 

 

Corollary (4.1): 
 

 Let β:[0, 1] ×  →   is continuous , and there exist 

two constants L1(≥ 0) and L2(≥ 0) such that; 

         (24) 

Then the problem (17) has at least one positive solution     

ζ(t)  ∈ C[0, 1]. Moreover, for each t∈ (0, 1), 

   (25) 

and 

    (26) 

proof. from Definition 4.1 and Eq. (24),we have; 

  (27) 

Consider the following Fractional Differential Equation 

(FDE); 

           (28) 
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Certainly, Eq. (28) has a positive solution; 

(29) 

Taking into account Eq. (28), we can find that; 

 

Consequently, is the upper solution of Eq. (17). Also, we 

consider the following FDE; 

                (30) 

 

Certainly, Eq. (30) has a positive solution; 

 

 

 

Taking into account Eq. (27), we have; 

 

Therefore, is the lower solution of Eq. (17). So, Theorem 

(4.1) yields that Eq. (17) has at least one positive solution   

ζ(t) ∈ C[0, 1] which satisfies the inequality Eq. (25) and      

Eq. (26). 

Corollary (4.2):   

Suppose β : [0, 1] ×   → [a , +∞) is continuous, see [15]. 

where a>0. If; 

            (29) 

Then the problem (17) has at least one positive solution; 

Proof. By hypotheseis in Eq. (29), there exist  

such that if ,we have  

Let; 

                    (30) 

Then; 

 

According to Corollary (4.1), the problem (17) has at least 

one positive solution ζ ∈ C[0, 1]. 

Moreover, for each t∈ (0, 1); 

 

and; 

 

The following result is based on the Theorem (3.2). 

 



 Int. J. Sci. Res. in Mathematical and Statistical Sciences                                                                         Vol.11, Issue.5, Oct. 2024   

© 2024, IJSRMSS All Rights Reserved                                                                                                                                          9 

Theorem (4.2): 

 Suppose β : [0, 1] ×   →   is continuous, and there 

exists a constant δ > 0 such that; 

 

IF; 

                 (31) 

then the problem (17) has a unique positive solution           

ζ(t) ∈ C[0, 1]. 

Proof. Theorem (4.2) assures that Eq. (17) has at least one 

positive solution in K given by; 

 

Hence, we need only to show that Q: C[0, 1] → C[0, 1] 

defined by; 

 

is a contraction in C[0,1]. To this end, let ζ1, ζ2 ∈                

C[0, 1].Then by our assumption and Eq. (21), we have; 

 

 

 

 

Because Ω < 1, Q is a contraction. Hence, Theorem (3.2) 

concludes the problem (17) and has a unique positive solution 

ζ ∈ C [0, 1], for more details see e.g. [16-18]. 

 

5. Illustrative Example 

Consider the fractional BVP [20]: 

(32) 

where and  it 

is easy to see that β(t, ζ) is a non-negative and continuous 

function for all t ∈ [0, 1]and ζ ∈ [0, +∞).It is clear that; 

 

Moreover, by some computations, we get; 

 

All suppositions of Theorem (4.1) hold. So, Theorem (4.1) 

guarantees that Eq. (32) has a unique positive solution              

ζ(t) ∈ C[0, 1]. Observe that β : [0, 1] ×  → [1, +∞) is 

continuous and 

 

Thus, because all the suppositions in Corollary (4.2) are 

fulfilled with a=1, Corollary (4.2) can be applied to the 

problem (32). 

 

6. Conclusion and Future Scope 

The research of generalized FC has become a novel field of 

investigation. In this paper, positive solutions for the 

generalized RL-type problem were obtained. Firstly, we 
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presented Green’s function and showed its positivity; Next, 

using the fixed-point approach on a cone, and the upper 

(lower) solution method with control functions, we 

investigated some positive solutions. Finally, the uniqueness 

of the positive solution is proven via Banach’s fixed-point 

approach. The proofs rely on reducing the proposed problem 

to the equivalent integral equation. One pertinent example is 

offered to illustrate the fundamental results. Many special 

cases for our problem arise with a certain function selection 

of ϑ. The epilog obtained in this work will be very 

advantageous in the applications. Also, we anticipate finding 

some applications in further nonlinear problems. 
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