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Abstract— Even if there is a vast array of parametric and non-parametric information models, predictability still emerges to 

expand further parametric models to strengthen plasticity in the structure under study. Additionally, there looks to be a well-built 

association sandwiched between information entropy and the theory of “Portfolio Analysis”. Moreover, innumerable 

methodologies of risk assessment, comprising entropy technique, divergence procedure, unified approach, etc. are accessible 

within the existing corpus of portfolio analysis literature. The present paper is a step towards making progress on some well-

known optimizational principles by using new discrete entropic models and then showing how they can be used in portfolio 

analysis. In addition, the entrenched principle has been elucidated through the support of a well-managed numerical example.  
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1. Introduction  
 

Portfolio analysis is a quantifiable procedure for selecting the 

best portfolio to strike an equilibrium bordered by excellent 

return and the least risk in numerous ambiguous situations. 

For the selection of an optimal portfolio, the “return of a 

portfolio” and “risk convoluted in the portfolio” are the 

greatest momentous matters. Portfolio analysis is an 

exploration of constituents comprehended in an 

amalgamation of products through the determination of 

generating decisions that are expected to advance 

comprehensive returns. The word relates to a technique that 

permits an administrator to identify heightened approaches to 

assign resources with the objective of cumulating profits. 

This is an endorsed statement that portfolio choice is 

apprehensive to assign one’s wealth surrounded by divergent 

securities to undertake the investment objective.  

 

In portfolio selection analysis, we adopt the perspective of 

Markowitz, who pioneered the mean-variance approach [1], 

[2]. However, this mean-variance model typically generates 

significant portfolio revenue because the required data-

generating process deviates from regularity, limiting its 

application to robust investment structures. It is well-

accredited confirmation that although the variance is merely 

an average deviation measure of information, it is supposed to 

be a conjoint and profitable risk measure in such 

metaphysical models. To address this problem effectively, it 

is essential to understand diversification models. Encouraged 

by this impression, some investigators became familiar with 

Shannon’s entropy for evaluating investment extent in the 

securities because of its operative instrumentation nature [3], 

[4].  

 

2. Related Work  
 

Numerous well-established entropy models, primarily derived 

from Shannon's model, are prevalent in information theory 

literature [3]. This entropic model with amazingly pleasant 

possessions is defined by the following expression: 
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 where  ).,...,, 21 ( npppP     

Some supplementary modernizers who contributed a 

proportion to the enhancement of the portfolio analysis by 

introducing their distinctive entropic models include Stuart 

and Markowitz, Whitelaw, Ou, Soyer and Tanyeri, Bera and 

Park, Xu et al., Usta and Kantar, Lassance, Rau-Bredow, 

MacLean,  etc. [5], [6], [7], [8], [9], [10], [11], [12], [13], 

[14].    

                                                  
In recent times, Mercurio et al. made available a modified 

technique for demonstrating the entropy model as a risk-

convoluted portfolio problem [15]. The authors are 

accustomed to a pioneering assortment of problems entitled 

return-entropy optimization problems. This procedure 

rationalizes calculations using a combinatorial methodology 
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which addresses five foremost concrete apprehensions with 

the mean-variance optimization. Lu et al. mentioned that 

predictability measures in physical pointers grounded on 

metrics of entropy have been comprehensively second-

handed in the presentation purview of remedial assessment 

and investigational identification [16]. Li et al. well-thought-

out the problem of expanded portfolio selection and revealed 

that this problem provides a significant apprehension in 

indeterminate economic conditions [17]. In their discoveries, 

the authors deliberated the problem bounded by the structure 

of uncertainty theory and, as a consequence, projected an 

uncertain extension mean-variance divergence model by 

picking the mean as an objective function along with variance 

and entropy by means of risk and diversity limits. The two 

divergences were then discovered to determine the smallest 

amount of risk and intense return.  

 

Zhang and Shi stressed that Shannon’s entropy is a 

fabricating block of information theory and an obligatory 

feature of machine learning procedures [18]. The authors 

recognized asymptotic belongings that impose no settlements 

on the inventive dissemination, and these properties permit 

statistical analysis with wide-ranging Shannon’s entropy. 

Saraiva provided a concise and informal overview of 

Shannon's entropy, including specific properties, and 

conveyed the applications of the model [19]. 

 

Bisht and Kumar revealed that the various sector-based 

investment portfolios are more significant and provide an 

integrated process of portfolio development as the economy 

expands [4]. The authors developed a model workable in four 

stages and the consequences accomplished by the predicted 

portfolio are detected as remarkable which endorses the 

efficacy of the projected model. From the application point of 

understanding, the authors delivered the investigational study 

over the prevailing models.  

 
Recently, Vikramjit et al. wrought a newfangled entropic 

model for the isolated probability distributions acknowledged 

by the consequent appearance [20] 
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By commissioning this model, the authors made accessible 

communications with the learning of dissimilarities of 

uncertainty in the steady state and non-steady state queuing 

processes.  Additionally, the investigators delivered an 

association of solicitations of the maximum entropy principle 

by engaging their precise exposed model. 

 

Some other researchers who contributed towards the variety 

of investigational projections include Elgawad et al., Parkash 

et al,  Stoyanov et al., Shwartz and LeCun, etc. [21], [22], 

[23], [24]. 

 

 

 

3. Methodology  
 

In the present communication, we make a practice of 

numerous entropic models for the development of 

optimizational principles, but in advance, we make available 

a temporary outline of the commencement of mean-efficient 

perspective outstanding to Markowitz [1]. To elucidate this 

straightforward commencement, we progress subsequently.  

 

Let pj  entitle the probability of j
th

  security outcome and ji 

represent the security return on i
th

  security. Then the 

expected return on i
th

 security is quantified by the succeeding 

mathematical expression: 
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Additionally, the variances and the covariances of security 

returns are established by the consequent expressions:      
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Let a person aim to invest extents nzzz ,...,, 21 of his 

complete resources in n securities. Then 
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Therefore the expected return on securities and variance 

return are quantified by  
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Markowitz’s portfolio theory is based on the principle that 

nzzz ,...,, 21  are so selected to capitalize on the expected 

return E and to decrease the variance V, or, otherwise, to 

decrease V  while keeping E  at a stationary value. Now 
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where    
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Markowitz’s principle can be explained geometrically, where 

for each vector ),,...,,( 21 nzzz  one can ascertain the values 

E and V and then exemplify a point in the VE  plane. All 

points have normally been circumscribed by a sealed convex 

curve as exhibited in Figure 1.The lower portion on this 

curve, representing “mean-variance efficient frontier” 

intellects that collections  ), . . . ,,( 21 nzzz  compatible to 

points on this curve are superior to all supplementary 

collections. 
 

 
Figure 1. Mean-Variance efficient frontier 

 

If point P does not lie on boundary AB and Q, R lie on AB, 

then a portfolio analogous to Q is superior to a portfolio 

analogous to P. Subsequently, it has undergone a condensed 

amendment to match the expected return. Likewise, R is more 

amended than P because it has a superior expected return. 

Nevertheless, the purpose of the outstanding capable 

portfolios is uncontrollable. Furthermore, Markowitz pointed 

out that one could expect uncertainty in concluding 

outstanding, which can be determined introverted by 

persuading the arrogance of an investor’s risk. 

 

This elucidation owed to Markowitz’s principle specifies that 

uncertainty or entropy models can be engaged marvelously in 

portfolio analysis. Observing this understanding, we progress 

toward the expansion of optimization principles using our 

own entropy models. We introduce two newfangled entropic 

models for the discrete probability distributions, and we 

deliver transactions of these models for the enlargement of 

optimizational principles. 

 

Newfangled Entropic Models for Discrete 

Probability Distributions  
 
1. We introduce a newfangled parametric entropic model 

specified by the succeeding manifestation:  
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  1 ,1   or     .1 ,1                                            (11)                                     

                                                                                            
To derive this measure, we use Renyi’s entropy specified by 

[25] 
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Similarly, we have 
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Now, let us contemplate an innovative function prearranged 

by the succeeding manifestation: 
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 where .0,    

 

Obviously, )(, PH 
 attains its maximum value when 
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1

ni
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pi   that is, at the uniform distribution. 

Therefore we can conclude that )(, PH 
 is maximum at the 

uniform distribution. 

 

Since   1 ,0,  and 1  must have opposite signs if 

1 ,1    or if .1 ,1    Hence we can suppose that  
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Thus equation (14) reduces to 
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Now in whichever case, whether 1 ,1    or 

)1(  ,1 ,1    has the same sign as ).(    

Consequently, we have 
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In particular, for ,1k  we contract (11). 

Accordingly, the entropy represented by equation (11) 

assumes its maximum value at the uniform distribution, and 

thus it is an effective and additive measure of entropy. 

 

2. Next, we introduce a new parametric entropy of order α 

specified by the ensuing exact appearance: 
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which is Shannon’s entropy except a multiplicative constant 

[3]. Thus, the entropy represented by equation (18) is a 

generalized measure of entropy. 

 

To ascertain that (18) is an effective measure of entropy, we 

study its vital properties subsequently. 

 

(i) Non-negativity: By using the identity 1 xe  for 0x , we 

get 
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(ii) Permutational symmetry: Obviously, )(PH  is 

permutationally symmetric. 

 
(iii) Concavity: We have 
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Accordingly, )(PH possesses concavity. Additionally, the 

concavity of )(PH is obvious
 
from the graph of )(PH

against ip  as presented in Figure 2 for 2n  and .2   

 

Table 1. )(PH  against ip  for 2n  and 2  

ip  )(PH
 

0 0.00000 

0.1 0.27145 

0.2 0.38856 

0.3 0.45434 

0.4 0.48957 

0.5 0.50000 

0.6 0.48956 

0.7 0.45437 

0.8 0.38829 

0.9 0.27168 

1 0.00000 

 

 

Figure 2. Concavity of )(PH
with respect to ip

 
 
Henceforth, )(PH

is an accurate measure of entropy.  

 

(iv) Continuity: It can be seen that )(PH  is a continuous 

function of ip  for all s.'pi  
 
(v) Maximization: Consider the conforming Lagrange’s 

function  
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Differentiating equation (19) w.r.to ip  and equating the 

derivative to zero, we get 
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Consequently, we perceive that  max )(PH  ascends for the 

uniform distribution, and this consequence is further 

anticipated. 

 

 (vi) Expansibility: We have 
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That is, the entropy is unaffected by adding an impossible 

event. 

 

(vii) The maximum value )(n  of the entropy is prearranged 
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(20) increases as n increases. Therefore )(n  is an increasing 

function of n, which is once more a looked-for consequence 

as the maximum value of entropy should continuously 

increase. 

 

4. Results and Discussion 

Now we proceed to develop optimization principles through 

our proposed entropy measures. 

 

Markowitz endorsed his principle by reflecting the choice 

from investment proportions nzzz ,...,, 21  in such a 

methodology that minimizes the variance, that is, to make 

m ,...,, 21
 as undistinguishable as probable [1]. 

Consequently, any withdrawal of 
m ,...,, 21

 from 

egalitarianism was reflected as a risk. The comparable 

perseverance can be enhanced if we select nzzz ,...,, 21  so as 

to maximize the entropy function. Since the probabilities 

have not been convoluted in the above discussion, but there is 

an influenced requirement for their insertion, we can instead 

contemplate the maximization of the consequent entropy 

model 
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Equation (21) characterizes Shannon’s entropy function and 

ascertains incredible applications in a diversity of disciplines 

[3].  

 

For our proposed entropy measure represented by equation 

(17), the model (21) takes the succeeding form: 
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i.e., we have 
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Accordingly, we formulate the subsequent entropy-grounded 

principle as follows: 

  

Optimizational Principle-I 

 

Choose nzzz ,...,, 21  so as to maximize 

 

 
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                                                                                            (22) 

subject to the succeeding restrictions: 

 

Constant)( ...22

1
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
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j

jj zzzp                    (23) 

 

and 

 

,1
1




n

i

iz                                                                (24)             

 

. ,...,2,1  ,0 nizi                                                (25)           

 

The aforementioned hypothesis is illustrated through the 

following numerical example. 

  

Numerical Example: Let us reflect upon the case of two 

securities, each with ten plausible significances of 

corresponding probabilities and returns as shown in Table 2. 

 
Table 2. Probabilities and returns of securities 

Probability Return-I Return-II 
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We need to ascertain the optimum values of z1 and z2 when 

the mean return is 0.14875. Thus, our mathematical 

optimization problem for 3 ,2   can be expressed 

successively: 
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subject to the set of restrictions:  
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Differentiating L w.r.to z1 and z2, and equating the derivatives 
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and 
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Now, using the relation ,1375.016.0 21

2
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and solving equations (30) and (31) for random values of 
and ,  we get 5117.01 z  and ,4883.02 z providing the 

optimum values of 
1z  and ,2z  with mean return 0.14875.  

 

Next, we introduce an additional optimization principle, 

applying the quantitative parametric entropic model of order 

,  as developed in equation (18). 

  

In the current context, model (18) takes the following form: 
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Therefore, we propose the following entropy-based principle: 

 

Optimizational Principle-II 

 

Choose nzzz ,...,, 21  so as to maximize 
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subject to the succeeding restrictions: 
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5. Conclusion  
 

Our findings demonstrate the potential of parametric and non-

parametric information-theoretic entropy models to advance 

optimization principles across various domains of Operations 

Research. Furthermore, while these parametric models, with 

their unique advantages, persuade elasticity in the 

arrangement under study, entropy models can be adapted to 

address the challenges of portfolio analysis. The newly 

anticipated discrete entropy models introduce a 

groundbreaking approach to decision-making in uncertain 

portfolio selection problems, offering a significant 

advancement in the field. The future scope of the study is to 

investigate how these entropic models can be used to adapt 

portfolio strategies to changing market conditions. 
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