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Abstract— This paper presents an Optimized Banach Contraction Method (OBCM), which employs a novel iterative technique 

to solve integro-differential equations (IDEs) and their systems. The method offers a more efficient and faster approach than 

traditional methods, eliminating the need for discretization, linearization, or restrictive assumptions. It provides both analytical 

and approximate solutions for linear and nonlinear equations, without requiring the computation of polynomials or Lagrange 

multipliers. These advantages improve the reliability of the OBCM, with numerical results confirming its effectiveness. 
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1. Introduction  

Solving integro-differential equations (IDEs) is a topic of 

significant interest among researchers. These equations play a 

crucial role in various physical processes, such as glass 

formation, nano hydrodynamics, dropwise condensation and 

desert wind ripple formation [1,2,3,4]. Various range of 

numerical and analytical methods have been developed to 

address these problems. For instance, see 

[5,6,7,8,9,10,11,12,13,14,15,16,17,18,19]. Each of these 

methods is generally applicable only to specific classes of 

IDEs. To solve highly nonlinear differential equations lacking 

explicit solutions, numerical and semi-analytical iterative 

techniques have been employed, relying on proposed initial 

conditions. These methods include the classic Picard 

approach, the HAM method, and the Banach Contraction 

technique, among others [20, 21]. The Banach Contraction 

method, introduced in 1922, is widely regarded as the most 

effective of these approaches [22], as the other methods often 

suffer from issues such as defects, errors, and error 

accumulation, complicating the solution process [21, 23]. In 

recent years, the Banach Contraction principle has been 

extended and generalized using fixed-point theory, leading to 

significant new results in various studies [23]. 

2. Related Work  

In 2009, Varsha Daftardar-Gejji and Sachin Bhalekar 

proposed an iterative technique that can be applied to 

different types of nonlinear functional equations of the form 

 [21]. This iterative method, based on the 

Banach Contraction Principle, is abbreviated as BCPM. They 

demonstrated its validity by solving various types of 

equations through examples [21]. In this study, we aim to 

enhance and apply the Banach Contraction Method (BCM) to 

solve systems of integro-differential equations, analyze 

errors, assess solution accuracy, and showcase the method's 

high efficiency. 

3. Basic Idea of the Banach Contraction Method 

We examine a broad class of functional equations represented 

as discussed:  

)()()( xfuNxu                               )1...(  

Where )(uN is a nonlinear operator from a Banach space 

𝐵→𝐵, (𝑥) is a known Integrable function of 𝑥 and )(xu  is 

an unknown function 

We seek a solution of )(xu  of  Eqn. (1) in series form as 
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Combining Eqns. (2) and (3), Eqn. (1) is rewritten in the form 
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Next, we define the recursive sequence of approximations as 
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Thus, the solution of Eqn. (1) is given by 

)(lim)( xuxu n
n 


                  

)7...(  

3.1 The Enhanced Banach Contraction 

Approach for Solving Second-Order Single 

Volterra Integral-Differential Equations 

(VIDEs). 

Let us examine the following Volterra Integral-Differential 

Equations (VIDEs) of 
thk  order. See [24]  
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xu )(  and 

)]([ xuF
 is a known non-linear 

function of )(xu such as )(2 xu , ))(sin( xu  and 
)( xue ,  

and )(xu  is unknown function. Because the Eqn. (8) 

combines the differential operator and the integral operator, 

then it is necessary to define initial conditions )0(u , )0(u , 

. . .  )0()1( ku  for the determination of the particular 

solution u(x) of Eqn. (8). Without loss of generality, we may 

assume a VIDE of the second kind given by 
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By integrating both sides of Eqn. (9) twice from 0 to x and 

use the initial conditions, we get 
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 Building on the fundamental concept of the Banach 

Contraction Method (BCM), we reformulate the recurrence 

relation for the Optimized Banach Contraction Method 

(OBCM) as follows:  
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Notably, the above algorithm effectively addresses the 

challenges encountered in the traditional Banach Contraction 

Method (BCM). 

3.2 The case of single VIDE of 
thk  order 

applying the initial conditions, we obtain:  
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Using the OBCM recurrence relation, we obtain: 
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2.3 The case of the non-linear system of VIDEs 
 In this section, the method will be applied to a system of 

nonlinear Volterra Integral-Differential Equations (VIDEs) of 

the second kind. The approach outlined here can also be 

extended to linear systems in a similar way. To illustrate the 

effectiveness of the proposed method, we apply the optimized 

Banach Contraction Method (BCM) to a system of nonlinear 

VIDEs for which an analytical solution is known. Consider 

the following system of nonlinear VIDEs of the second kind 

[25]: 
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By integrating both sides of Eqn. (14) twice from 0 to x and 

use the initial conditions, we get
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Using the OBCM recurrence relation, we obtain 
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and so on. Continuing in this manner, the 
thn )1(   

approximation of the exact solutions for the unknown 

functions )(1 xu  and )(2 xu   can be achieved as 
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Therefore, the approximate solutions 
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The optimized Banach Contraction Method (BCM) will be 

illustrated through examples that involve both integro-

differential equations and systems of integro-differential 

equations.     

  

4. Results and Discussion 

Example 1: 

Consider the following system of nonlinear second-order 

IDEs (Hemeda, 2018) 
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Thus, to evaluate the above system of equation, we go by 

applying the recurrence relation as defined in section 2. 
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Therefore, according to the algorithms in section 2, we 

have the other components of the OBCM for Eqn. (20a 

and 20b) as follows using the above recursive scheme: 
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The series solution is then obtained by summing the above 

iterations, 
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Table 1: The comparison between exact solutions )(xu and the 

approximate solution using OBCM 

 

x EXACT OBCM ABSOLUTE ERROR 

    

0 1 1 0 

0.1 1.0050042 1.0050042 2.32037E-13 

0.2 1.0200668 1.0200668 5.5405E-11 

0.3 1.0453385 1.0453385 1.32407E-09 

0.4 1.0810724 1.0810724 1.23247E-08 

0.5 1.127626 1.1276259 6.84604E-08 

0.6 1.1854652 1.1854649 2.7462E-07 

0.7 1.255169 1.2551681 8.81436E-07 

0.8 1.3374349 1.3374325 2.4088E-06 

0.9 1.4330864 1.4330805 5.83985E-06 

1 1.5430806 1.5430677 1.29301E-05 

 

 
Figure 1: Graphs of the exact solution )(xu and the approximate 

solution using OBCM. 
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Table 2: The comparison between exact solution )(xv and the 

approximate solution using OBCM 

x EXACT (V(X)) OBCM (V(X)) ABSOLUTE ERROR 

0 0 0 0 

0.1 0.10016675 0.10016675 1.90264E-14 

0.2 0.201336003 0.201336003 9.52666E-12 

0.3 0.304520293 0.304520293 3.59075E-10 

0.4 0.410752326 0.410752321 4.68166E-09 

0.5 0.521095305 0.521095271 3.4085E-08 

0.6 0.636653582 0.636653411 1.71485E-07 

0.7 0.758583702 0.758583034 6.6784E-07 

0.8 0.888105982 0.888103828 2.15398E-06 

0.9 1.026516726 1.026510717 6.00863E-06 

1 1.175201194 1.175186263 1.49301E-05 

 

 
Figure 2: Graphs of the exact solution )(xv and the approximate 

solution using OBCM. 

 

Example 2: 

Consider the system of nonlinear Fredholm integro-

differential equation (Bakodah & Almuhalbedi, 2019) 
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With exact solution 

    

 

Applying  

x x

dtdtL
0 0

1 (.)(.)  to both sides of Eqn. (22a) 

and Eqn. (22b), we get 
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4
1)( dttvtuxxxxv   …(23b) 

Thus, to evaluate the above system of equation, we 

apply the recurrence relation as defined in section 2. 

1)(0 xu , 
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Therefore, according to section 2, we have the other 

components of the OADM for Eqn. (22a & 22b) as 

follows using the above recursive scheme: 

  









































1

0

2
1

1

2
1

1

332

1 ,)()(
!3

1

30

12
)( dttvtuxxxxu

n

m

m

n

m

mn

  









































1

0

2
1

1

2
1

1

332

1 )()(
!3

1

18

4
)( dttvtuxxxxv

n

m

m

n

m

mn

 

For 1n  

 

 

 

 

 

 

The series solution is then obtained by summing the above 

iterations, 

...)()()()()()( 43210  xuxuxuxuxuxu  

...)()()()()()( 43210  xvxvxvxvxvxv  
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Table 3: The comparison between exact solutions )(xu and the 

approximate solution using OBCM 

x EXACT U(X) OBCM U(X) ABSOLUTE ERROR 

0 1 1 0 

0.1 1.01 1.009999608 3.92251E-07 

0.2 1.04 1.039996862 3.13801E-06 

0.3 1.09 1.089989409 1.05908E-05 

0.4 1.16 1.159974896 2.51041E-05 

0.5 1.25 1.249950969 4.90314E-05 

0.6 1.36 1.359915274 8.47262E-05 

0.7 1.49 1.489865458 0.000134542 

0.8 1.64 1.639799168 0.000200832 

0.9 1.81 1.809714049 0.000285951 

1 2 1.999607749 0.000392251 

 

 
Figure 3: Graphs of the exact solution )(xu and the approximate 

solution using OBCM. 

 

Table 4: The comparison between exact solutions )(xu  , the approximate 

solution using OBCM and ADM 

x EXACT  OBCM (n=4) ADM (n=6) 

0 1 1 1 

0.1 1.01 1.009999608 1.009612278 

0.2 1.04 1.039996862 1.036898224 

0.3 1.09 1.089989409 1.079531505 

0.4 1.16 1.159974896 1.135185791 

0.5 1.25 1.249950969 1.201534748 

0.6 1.36 1.359915274 1.276252044 

0.7 1.49 1.489865458 1.357011347 

0.8 1.64 1.639799168 1.441486326 

0.9 1.81 1.809714049 1.527350647 

1 2 1.999607749 1.61227798 

 

 
Figure 4: Graphs of the exact solution )(xu

,
 the approximate 

solution Using OBCM and ADM 
 

Table 5: The comparison between exact solutions )(xv and the 

approximate solution using OBCM 

x EXACT  OBCM  ABSOLUTE ERROR 

0 1 1 0 

0.1 0.99 0.99 1.54688E-07 

0.2 0.96 0.959999 1.2375E-06 

0.3 0.91 0.909996 4.17658E-06 

0.4 0.84 0.83999 9.90004E-06 

0.5 0.75 0.749981 1.9336E-05 

0.6 0.64 0.639967 3.34126E-05 

0.7 0.51 0.509947 5.3058E-05 

0.8 0.36 0.359921 7.92003E-05 

0.9 0.19 0.189887 0.000112768 

1 0 -0.00015 0.000154688 

 

 
Figure 5: Graphs of the exact solution )(xv and the approximate 

solution using OBCM 

 

Table 6: The comparison between exact solutions )(xv  , the approximate 

solution using OBCM and ADM 

x EXACT (V(X)) OBCM (V(X)) ADM (V(X)) 

0 1 1 1 

0.1 0.99 0.989999845 0.990186726 

0.2 0.96 0.959998762 0.961493812 
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0.3 0.91 0.909995823 0.915041615 

0.4 0.84 0.8399901 0.851950495 

0.5 0.75 0.749980664 0.773340811 

0.6 0.64 0.639966587 0.680332922 

0.7 0.51 0.509946942 0.574047186 

0.8 0.36 0.3599208 0.455603963 

0.9 0.19 0.189887232 0.326123611 

1 0 -0.00015469 0.18672649 

 

 
Figure 6: Graphs of the exact solution )(xv

,
 the approximate 

solution using OBCM and ADM 

 

Example 3: 

Consider the following system of nonlinear Volterra integro-

differential equation [(Wazwaz, 2011) and (Hemeda, 2018)] 
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With exact solution 

 ),())(),(( xx exexxvxu     

Applying  

x x

dtdtL
0 0

1 (.)(.)  to both sides of Eqn. 

(24a) and Eqn. (24b), we get  
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Thus, to evaluate the above system of equation, we 

apply the recurrence relation as defined in section 2. 

 

1)(0 xu , 

1)(0 xv , 

    
x x

dttvtutxdttvtxxxxxu
0 0

2

0

2

0

22

0

52

1 )()()(
4

1
)()(

2

1

60

1

2

1
2)(

 

 

   

x x

dttvtutxdttutxtxxxv
0 0

2

0

2

0

2

0

42

1 )()()(
8

1
)()(

12

1

2

1
)(

 

Therefore, according to Section 2, we have the other 

components of the OBCM for Eqn. (24a & 24b) as 

follows using the above recursive scheme: 
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For 1n  
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Table 7: The comparison between exact solutions )(xu And the 

approximate solution of OBCM 

x EXACT u(x) OBCM u(x) ABSOLUTE ERROR 

0 1 1 0 

0.1 1.2051709 1.20517094 1.72759E-08 

0.2 1.4214028 1.4214039 1.14388E-06 

0.3 1.6498588 1.64987226 1.34557E-05 

0.4 1.8918247 1.89190264 7.79418E-05 

0.5 2.1487213 2.14902729 0.000306023 

0.6 2.4221188 2.42305784 0.000939044 

0.7 2.7137527 2.71618243 0.002429719 

0.8 3.0255409 3.03108798 0.005547052 

 

 
Figure 7: Graphs of the exact solution )(xu and the approximate solution 

of OBCM for example 3 
 

Table 8: The comparison between exact solutions )(xv   

And the approximate solution of OBCM 

x EXACT v(x) OBCM v(x) ABSOLUTE ERROR 

0 -1 -1 0 

0.1 -1.0051709 -1.0051709 1.22036E-10 

0.2 -1.0214028 -1.0214027 1.6006E-08 

0.3 -1.0498588 -1.0498585 2.8012E-07 

0.4 -1.0918247 -1.0918225 2.14872E-06 

0.5 -1.1487213 -1.1487108 1.04872E-05 

0.6 -1.2221188 -1.2220804 3.84493E-05 

0.7 -1.3137527 -1.313637 0.000115698 

0.8 -1.4255409 -1.4252397 0.00030125 

 

 
Figure 8: Graphs of the exact solution )(xv and the approximate 

solution of OBCM for example 3 

Table 9: The comparison between exact solutions ),(xu the 

approximate solution of OBCM and NIM (Hemeda, 2018) 

x EXACT u(x) OBCM u(x) NIM u(x) 

0 1 1 1 

0.1 1.2051709 1.2051709 1.205167 

0.2 1.4214028 1.4214039 1.421328 

0.3 1.6498588 1.6498723 1.64946 

0.4 1.8918247 1.8919026 1.890496 

0.5 2.1487213 2.1490273 2.145313 

0.6 2.4221188 2.4230578 2.414704 

0.7 2.7137527 2.7161824 2.699366 

0.8 3.0255409 3.031088 2.999872 

 

 
Figure 9: Graphs of the exact solution ),(xu the approximate solution of 

OBCM and NIM (Hemeda, 2018) 
 

Table 10: The comparison between exact solutions ),(xv the approximate 

solution of OBCM and NIM (Hemeda, 2018) 

x EXACT v(x) OBCM v(x) NIM v(x) 

0 -1 -1 -1 
0.1 -1.0051709 -1.0051709 -1.00516 
0.2 -1.0214028 -1.0214027 -1.0212 
0.3 -1.0498588 -1.0498585 -1.04883 
0.4 -1.0918247 -1.0918225 -1.08853 
0.5 -1.1487213 -1.1487108 -1.14063 
0.6 -1.2221188 -1.2220804 -1.2052 
0.7 -1.3137527 -1.313637 -1.28216 
0.8 -1.4255409 -1.4252397 -1.3712 

 

 
Figure 10: Graphs of the exact solution ),(xu the approximate solution of 

OBCM and NIM (Hemeda, 2018) 
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Example 4: 

Consider the following nonlinear second-order IDE  

(Hemeda, 2018) 
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As per the above example, the IDE is equivalent to the 

integral equation  
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Applying the recurrence relation as defined in section 2.3, we 

obtain 
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Therefore, according to section 2.3, we have the other 

components of the OBCM for Eqn. (26) as follows using the 

above recursive scheme: 
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For 1n  
 

And so on. The solution in a series form is given by 

 

Table 11: The exact and approximate solution of Applying Algorithm in 
section 2.3 for Eqn. (26) 

x EXACT OBCM ERROR 

0 1 1 0 

0.1 1.105171 1.105171 4.44E-16 

0.2 1.221403 1.221403 1.53E-14 

0.3 1.349859 1.349859 1.41E-12 

0.4 1.491825 1.491825 3.48E-11 

0.5 1.648721 1.648721 4.22E-10 

0.6 1.822119 1.822119 3.27E-09 

0.7 2.013753 2.013753 1.85E-08 

0.8 2.225541 2.225541 8.39E-08 

0.9 2.459603 2.459603 3.19E-07 

1 2.718282 2.718283 1.06E-06 

 

 
Figure 11: shows the exact solution 

xexu )( with the Approximate 

solution obtained from Eqn. (26) 
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The primary objective of this study was successfully achieved 

by solving a nonlinear system of integro-differential 

equations using the proposed method, specifically through the 

implementation of the optimized Banach Contraction Method 

(OBCM). A comparison of the results obtained from this 

method with the exact solutions and results from other 

methods is provided in the tables and figures. 

 

The OBCM has demonstrated both efficiency and reliability 

in approximating solutions to nonlinear integro-differential 

equations, as shown in Tables 1-11. Unlike the Adomian 

Decomposition Method (ADM) and Differential Transform 

Method (DTM), which require specific Adomian polynomials 

for handling nonlinear terms, the OBCM operates without 

such assumptions. 

 

When comparing the OBCM's results with those from ADM 

and the Numerical Iteration Method (NIM), it is clear that the 

OBCM produces more accurate numerical solutions, as 

evidenced by the tables and figures. Moreover, the 

approximation error decreases with increasing iterations, as 

shown in the figures and tables. 

 

Overall, the OBCM converges more quickly and achieves 

higher-order accuracy without the restrictive assumptions 

required by other methods. This is further confirmed by the 

comparison results in Tables 1-11 and Figures 1-11. 

 

5. Conclusion and Future Scope  

This study introduced a semi-analytical approach grounded in 

the Banach Contraction Method (BCM) to tackle nonlinear 

integro-differential equations and systems of such equations. 

The method’s effectiveness was illustrated through four 

examples. The findings reveal that this approach provides a 

more straightforward and efficient computational process 

compared to alternative methods, making it a preferable and 

more practical solution for addressing nonlinear problems. 
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