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I. INTRODUCTION 

 

Shannon’s [8] entropy is a significant concept introduced 

in information theory. It plays a decisive role in areas of 

engineering and physics as a measure of complexity and 

uncertainty in order to define and control many chaotic 

systems. The basic uncertainty measure is defined by 

Shannon for random variable (r.v.) W  as,  

        wfEduwfwfWH loglog
0

 


                                                                                                  

(1.1) 

where  wf is the probability density function (pdf). 

Assume that 
nWWW ,...,, 21

be a random sample from a 

distribution function (cdf) )(wF with pdf )(wf . By 

arranging 
nWWW ,...,, 21

 from the lowest to highest, the 

order statistics of the sample is defined as 

nnnn WWW ::2:1 ... . The density of  thk  order 

statistics [1] is given by,   
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where  

 
 vu

vu
vuB




,  

Order statistics finds its application in the wide range of 

real world problems like robust statistical estimation, 

detection of outliers [3], description of probability 

distribution of record values and order statistics [2], case-

study of censored samples. Attributes of information 

pertaining to order statistics that are based on Kullback-

Leibler [7] and Shannon entropy [8] and measure using 

probability integral transformation have been thoroughly 

investigated by Ebrahimi et.al [6]. Two parametric 

generalized entropy, the Verma entropy [10] and [9] 

studied in context with order statistics. Various 

abstractions of Shannon’s entropy [8] are present in the 

literature of information theory. There is a scope to further 

generalize the measure (1.1) in many ways and 

accordingly in this paper a new generalized Information 

measure is proposed. 

In section II, we tend to specific generalized entropy of 
thK order statistics in terms of the generalized entropy of 
thK order statistics of exponential distribution and study a 

number of its properties. Section III, provide lower bound 

for entropy of order statistics. In section IV, we tend to 

derive an associate expression for residual generalized 

entropy of order statistics using residual generalized 

entropy for uniform distribution. In section V, some 

characterized results are analyzed for the generalized 

residual entropy of the proposed measure. 

 

II. A NEW TWO PARAMETRIC GENERALIZED 

ENTROPY OF ORDER STATISTICS 

 

Presume W  be a continuous r.v. with pdf )(wf and cdf 

)(wF , then the entropy of the type   ,  of the r.v. W  is 

given by, 

  wdwfWH 





0

, log)( 







 

  0,,1                          (2.1) 

where 

      wdwfWHWH 


 
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0

,
1

log
1

1
lim 


 

 is the 

Renyi’s entropy 
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and       wdwfwfWH loglim

0

,
1,1 







is the 

Shannon entropy. 

Using the substitution,    ( ) in (2.1) where V  has a 

standard uniform distribution. Let nVVV ,...,, 21 be a random 

sample from a uniform distribution [0,1] with the order 

statistics nzzz  ...21 , then nkzk ,...,2,1,   has a beta 

distribution with pdf, 

                         
 

    ,1
1,

1 1 kn
k

k
kk zz

knkB
zg 




  

10  kz                                       (2.2) 

where  

    0,0,1,

1

0

11  
 vudyyyvuB

vu follows a beta 

distribution with u  and v  as parameters. 

Now the generalized entropy of nkW :  is represented as, 
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(2.3) 

 

Table No.1: The expressions of GE for some lifetime 

distributions 

Distribution  wf   WH  ,  
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Theorem 2.1: The new two parametric generalized 

entropy of nkw :  can be defined as, 

   knk zHwH  ,:,                                                

  
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
      (2.4)  

where  kzH  ,  denotes the entropy of beta distribution 

with parameters k and  1 kn ,  wE
kg denotes 

expectation of w over kg  and kk gX ~ is the beta density 

with parameters   







 11k
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Putting   nkwFz nkk ,...,2,1,:   which implies that

 knk zFw 1
:

  

Therefore, the generalized entropy of nkw :  is given by, 
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                (2.6) 

Using (2.5) in (2.6) the required result (2.4) follows, 

Example 2.1: Suppose W is a r.v. that has an exponential 

distribution (ED) with pdf 
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Putting 1k in (2.5), we get  
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Putting 1k  in (2.7), we get 
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Using (2.8) and (2.9) in (2.4), we have  
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III. LOWER BOUND FOR THE NEW TWO 

PARAMETRIC GENERALIZED ENTROPY OF 

ORDER STATISTICS 

 

Theorem 3.1: A r.v. W with   WH  ,  an entropy of 

the thk  order statistics nkW nk ,...,2,1,:   is bounded 

below as, 
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where  )(mfM , f  is the pdf of U  and m  is the 

mode of the distribution. 
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Example 3.1: Over the interval [a, b] in the 

lifetime(uniform) distribution, we have 

   abWH  log,  
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Substituting 1k  in above equation, we obtain 
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We conclude that the bounds for  nWH :1,  and 

 nnWH :,  are similar. 

 

IV. RESIDUAL ENTROPY FOR THE NEW TWO 

PARAMETRIC GENERALIZED ENTROPY OF 

ORDER STATISTICS 

 

Ebrahim [5] for a random life time of W of a system, at 

time t  the residual entropy is defined as, 
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Equation (4.1) evaluates the uncertainty in the remaining 

lifetime of the component which is believed to have 

survived to a lifetime of t . 

where  wf t  is the pdf of the r.v.  tWtWW t  /  and 

is given by, 
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Using above result (4.1) can be rewritten as, 
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   (4.2) 

where    tFtF 1  is the survival function (s.f.) of W . 

In the same way the generalized entropy of the residual life 

time tW is given by, 
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
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1,0         (4.3) 

when 0t , it reduces to (2.1). 

We note that the pdf and s.f. of nkW : (refer to [4] ), denoted 

by  wf nk :  and   nkwF nk ,...,2,1,:   respectively are 

 wf nk :                                                                                     
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where  

    0,0,1,
1

1

0
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 vuydyyvuB
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 , follows beta 

distribution. 
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where  

    10,1,
1

1

1 


 wwdwwvuB
v

w

u
w  

follows, incomplete beta distribution. 

Theorem 4.1: The new two parametric generalized 

residual entropy of the thk  order statistics is expressed as 

    tFzHtWH knk ,, ,:,                                                              
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where   tFzH k ,,  represents the generalized residual 

entropy of the beta variate with parameters  1&  knk , 

 zE
kg  represents the expectation of z  over the random 

sample of size n  from uniform distribution on  1,0 . Then 
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kkk gZg ~&  is the incomplete beta density with 

parameters     
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Proof: Let kz be the thk  order statistics based on 

represents the generalized entropy of beta variate with 

parameters  1&  knk . 
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Putting  nkk WFX :  we have   nkk WXF :
1 
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 (4.8) 

using (4.7) in (4.8), we get the desired result (4.6). 

 

Example4.1: Let W be an exponentially distributed r.v. 

with pdf   0,0,     wewf w , then 
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Putting 1k  (4.7) and (4.9) , we get 

      nBtFzH tFk ,1log,,






  

   

























 11,1log nB tF








 

  
 

    































 




11,1

,1
1

1
1

1

1

nB

nB

XFfE

tF

tF

g









 







 

Using above results in (4.6), we get 
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Therefore, the divergence in the above two discussed 

entropies is independent of time in the exponential case. 

 

V.  PROPERTIES OF NEW TWO PARAMETRIC 

GENERALIZED RESIDUAL ENTROPY 

 

Theorem 5.1: Let F (survival function) be IGE (DGE) 

and   , then 
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Proof:  From (4.3), we have. 
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Since F is IGE (DGE) and   ,therefore,  we have 
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Theorem 5.2: Let W be the lifetime of a series system 

with pdf  wf nk :  and s.f.   0,: ttF nk ,then for ,   the 

following un equivalence holds 
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 
 

 
wd

F

wf

wf
wf

nk

nk

nk

t

nk





















:

:

:

: log
 

 

 

 































































t
nk

nk

t

nk

t

nk

wd
F

wf

dwwf

wdwf





:

:

:

: log

   
   







 
 tWHtFtF nknknk ,log :,:: 




    (5.2)                              

 

The LHS of (5.2) contributes to.  
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t
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   (5.3) 

Put (5.3) in (5.2), we obtain the desired result. 

 

Table No. 2: Generalized residual entropy of some 

lifetime distributions 
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It is clear from Fig (1) that both the  nWH :1,  and 

 nnWH :,   generalized entropies with respect to 

Exponential distribution are monotonic decreasing. 

 

VI. CONCLUSION 

 

A new generalized two parametric entropy of order 

statistics is proposed in this paper. Various 

characterizations based on this measure are also studied. 

The generalized entropy finds its application in many 

practical situations like areas of engineering, physics etc. 

Some results of this new generalized entropy are also 

derived and the behavior of generalized expressions are 

mentioned graphically. The proposed two parametric 

measure can be of utmost research interest in future. 
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