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Abstract- In this paper, we have introduced two functors between the category of     semimodules and the category of 

     semimodules, where A is a H-semimodule semialgebra over a Hopf algebra. Further, assuming H as a finite 

dimensional semisimple Hopf algebra we have established a categorical equivalence between these two categories. 
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I. INTRODUCTION 

 

In [7], R.P. Sharma and others defined the tensor product of semimodules over a semiring. In our papers [2], [6] we have 

extended the Hopf algebra action on a semialgebra   and studied some connection between Hopf semimodule semialgebra     

and its smash product semialgebra     .  

 

In this paper we consider the study of categorical equivalence between the category of semimodules over   fixed 

semialgebra   and the category of semimodules over the smash product semialgebra    .  

 

For,     (   
  ), define  ( )  (   )       and for a morphism         in   

  , let 

 ( ) (   )       (   )       be defined by  ( )(   )     ( )   for all 

    (   )      . For,     (      ) define  ( )     considered as left    semimodule. Also, if 

         is a morphism in        then define   ( )          by  ( )( )    ( )        where    is 

   morphism in   
   and   ( )   ( ).  We have proved that   and   are functors and there is a natural 

isomorphism   between the functors     and  
     

. Also, we have proved that there is a natural transformation   

between the functors     and  
  

  
. Under certain conditions, we have observed that the natural transformation   

is also a natural isomorphism. 

     This paper is organised as follows: The second section contains some basic concepts and results on semirings, 

Hopf algebras and category theory that are required for the development of this paper. In the third section, we 

introduce the Hopf algebra   action on a semialgebra   and define the semialgebra of   invariants    and smash 

product semialgebra    . In the fourth section, as a main result in this section we prove the categories of left 

   semimodules and the categories of left     semimodules are equivalent. The fifth and the final section contain the 

conclusion of this paper. 

 

II. PRELIMINARIES 

 

In this section we present the necessary preliminaries on semirings, category theory and Hopf algebra that are required for the 

latter sections. 

 

For definition and results in semirings we refer to [3], 
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Definition 2.1. 

A semiring   is a nonempty set   equipped with two binary operations ‘   and     called addition and multiplication such that, 

for         , 

1. (   ) is a commutative monoid with identity element 0. 

2. (   ) is a monoid with identity element 1. 

3. Multiplication distributes over addition from either side. 

   ( )  (   )           

  (  )(   )              

  4.            for all    . 

  5.    . 

 

Definition 2.2. 

Let   be a semiring.  A left   semimodule   is a commutative monoid (   ) with additive identity    for which we have a 

function      , defined by  

(   )    , which satisfies the following conditions: 

( ) (   )   (   ); 

(  ) (    )        ; 
(   )(    )        ; 

(  )     ; 

( )            where          and          
A right   semimodule is defined analogously. 

For definition and results on category theory, we refer to [4], 

 

Definition 2.3. 

A category   consists of  

1. A class      of objects. 

2. For each ordered pair of objects (   )  a set     (   ) whose elements are called morphisms with domain   and 

co-domain  . 

3. For each ordered triple of objects (     ), a map (   )     of the product set    (   )     (   ) into 

   (   )  
 

It is assumed that the objects and morphisms satisfy the following conditions: 

1. If (   )  (   )  then     (   ) and     (   ) are disjoint. 

2. If       (   ),       (   ) and       (   ), then (  )   (  ).  

3. For every object   we have an element        (   ) such that       for every       (   )  and       

for every       (   ).  

 

Definition 2.4. 

If   and   are categories, a (covariant) functor   from   to   consists of  

1. A map      of      into     . 

2. For every pair of objects (   ) of  , a map    ( ) of     (   ) into      (     )  
We require that these satisfy the following conditions: 

If     is defined in  , then  (   )   ( )   ( ). Also,  (  )     . 

 

Definition 2.5. 

Given two functors          a natural transformation       is a function which assigns to each object   of  , an arrow 

         of T in such a way that for every arrow        in   then the diagram 

 
commutes. 

A natural transformation   with every componets    invertible in   is called natural isomorphism. 
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Definition 2.6. 

We say that   and   are said to be equivalent categories if there exists functors       and       such that        

and        where   denotes the natural isomorphism of functors. 

 

Definition 2.7. 

Let K be semiring. Let   be a right   semimodule,   a left   semimodule. We define a balanced product of   and   to be a 

commutative monoid (   ) together with a map   of the product set     into   satisfying the following conditions: 

1.  (      )   (   )   (    )  
2.  (      )   (   )   (    )  
3.  (    )   (    ) 

for all                    . 

 

Definition 2.8. [5]  

Let  ̃ be the category of all commutative monoids. Let        ̃  and   (   )  denotes   the   free   monoid   

generated   by      ,     be the congruence o n    (   ) generated b y  t h e  pairs  (      ) (    )(    )  
and (      ) (    )(    ) . Take     as  (   )  .  Let         ̃  and     ̃(    )  and    ̃(    ), 

then assignment  (   )        and  (   )         determine the bifunctor     ̃   ̃   ̃.  It is observed 

in [5], that the bifunctor       ̃   ̃   ̃  is an internal tensor product. 

Notation: Let  –       and      –    denote the categories of left and right  –semimodules, respectively, over a 

semiring . 

Now, we give the definition of tensor product of semimodules as given in [7],  

 

Definition 2.9. 

Let          –     and        –      ,  then both     and     are commutative monoids,  so  are  in   ̃  and  

therefore  has  tensor  product  (considered  as  a  commutative monoids). The tensor product        is 

defined as the factor monoid  (    )    where     is the congruence on        generated by the pairs 
           , for all             and     , such that for any balanced product  (   )  of     and , there 

exists a unique morphism of monoids          , satisfying         where              is 

given by (   )     . 

 

Remark:  

Let     be a commutative semiring. Then every left  –semimodule is a right  –semimodule and vice-versa. Also, if  

           , then        is a commutative monoid and it becomes a   semimodule by 

defining  (    )           , for           and      
 

Theorem 2.10. 

Let   be commutative semiring. Then (            ) is a monoidal category. 

 

Definition 2.11.  

The monoids in the monoidal category (             ) are called   semialgebras. 

Therefore, a  –semialgebra can be defined as a triple (     ) with    a  –semimodule,        ,  is 

called multiplication map,       ,  a map called the unit map, and such that the following diagrams are 

commutative, 

 
Now let us recall some definition and results in Hopf algebras [8], 
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Definition 2.12.  

A system(         ), where     has algebra structure over a commutative ring     with multiplication   and unit 

  and   has co-algebra structure over   with co-multiplicaion     and co-unit   satisfying: 

(i)     are co-algebra maps; 

(ii)     are algebra maps, is called a bialgebra. 

 

Definition 2.13.  

Let   be a bialgebra, the map       satisfying 

 

∑ (  

( )

)     ( )   ∑   (  )

( )

  

where  ( )    ∑   ( )    , is called an antipode for H. 

 
Definition 2.14.  
A bialgebra with an antipode is Hopf algebra. 

 

Lemma 2.15. [1] 

Let H be a finite dimentienal Hopf algebra, then 

(i) If    
 
, then         , and {  } may be chosen to form a basis for H, where   ( )    ∑ (  ( )    ) .  

(ii) H is semisimple if and only if there exists     
 
(    

 
)  so that       

(iii) With   as in (ii)  ( )      ( )           ( )   hence 

 
 
  

 
           

 

III. HOPF ALGEBRA ACTIONS ON SEMIALGEBRAS 

 

Definition 3.1. 

Let A be a K-semialgebra with identity    and   be Hopf algebra. We say A is called H-semimodule 

semialgebra if: 

(i) A is an H-semimodule, where we denote the action of H of A by    . 

(ii)   (  )  ∑ (    )  (    ) ( )  where           and  

 ( )  ∑     

( )

   

(iii)       ( )    for all      
Now we introduce the H-invarients of an H-semimodule  semialgebra A. 

 

Definition 3.2. [2]  

Let A be  –semialgebra and    be a Hopf algebra acting on A, then the  –fixed subsemialgebra of A, denoted 

by  , is defined by 

   
  {      |          ( )         . 

 

Definition 3.3. [2]  

Let   be Hopf algebra and   a   semimodule semialgebra. The smash producta of    with , written    , is an H-

semimodule semialgebra defined as follows 

1. As a semimodule     is    . Elements of     will be written      
2. Multiplication is defined by(   )(   )  ∑  (    )( )  (    ). 

 

IV. THE CATEGORIES OF    SEMIMODULES AND    -SEMIMODULES: 

 

Notation: 

1.   
    denotes category of all left     semimodules. 

2.        denotes category of all left      semimodules. 

Remark: 

1. If M is a left     semimodule, then     is a left    semimodule under the restriction of scalars. 
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2. If     is a left    semimodule, then (   )      is a left     semimodule.   

 

Lemma 4.1.  

For     
  , define  ( )  (   )     .  Also if,           is a morphism in    

    defined by  

 ( ) (   )       (   )        by  ( )(   )   

   ( )      (   )      . Then   is a functor from   
     into      . 

 

Proof: 

Let     
  ,            and define       

          by   ( )   (   )     .  

Claim:     is a functor: 

Clearly  (   )      is belonging to      . Therefore    is an object function. Let        be in   
   and       

   be morphism in   
  , then define  ( ) (   )       (   )        by ( )(   )     ( ) 

     (   )      . 

 Claim:  ( )  is morphism in      : 

Define,  ( )̅̅ ̅̅ ̅̅ : (   )×    (   )        by   ( )̅̅ ̅̅ ̅̅ (   )     ( ) 

(i)  ( )̅̅ ̅̅ ̅̅ (       )  (     )   ( ) 

                ( )      ( ) 

             ( )̅̅ ̅̅ ̅̅ (    )+  ( )̅̅ ̅̅ ̅̅ (    ) 

(ii)  ( )̅̅ ̅̅ ̅̅ (       )    (     ) 
              (  )     (  ) 

            ( )̅̅ ̅̅ ̅̅  (    )    ( )̅̅ ̅̅ ̅̅  (    ) 

 (iii) Let        ( )̅̅ ̅̅ ̅̅ ̅(    )      ( ) 

                  ( ) 

                 (  )     (    is  morphism in   
  ) 

              ( )̅̅ ̅̅ ̅̅ (    ) 
 

By universal property, there exists a morphism,   ( ) (   )       (   )        given  by   ( )(  

 )     ( )      (   )      ,  therefore    is arrow function. Let       ,     
  , be identity 

map(morphism) in   
  . Then 

  (  )(   )      ( )        (   ) 
   (   )     (   )   

      (   )     , which implies  (  )     . Let         and         be two morphisms 

in   
  , we have 

   (   )(   )   (   )( ) 

            ( ( ))  
                    ( )(   ( ))  

                      ( )  ( )(   ) ,        (   )                                       

                                  (   )   ( )   ( )  

Therefore,     is a functor from    
    to       .  

 

Lemma 4.2.  

For         , define  ( )      where      as a left    semimodule. Also, if         is a morphism in 

      such that the map  ( )         defined by  ( )( )    ( )       where    as a     morphism and 

  ( )   ( ). Then   is a functor from        into   
  . 

 

Proof: Let     
  ,         and define           

   by  ( )     , where      as a    semimodule.  

Claim:   is a functor: 

Clearly   is an object function. Let       be in       and         be morphism in       , then define  ( )     
where                as a     morphism and   ( )   ( )  This is clearly arrow function. Let       ,  

       , be identity map(morphism) in      , then  (  )       where   
        as a     morphism and 

  
 (  )    (  )     (  )          which implies  (  )    

         . 
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Let          and          be two morphisms in      , then consider             a morphism in 

     , we have 

   (     )(  )    (     ) ( ) 

                                                    (     )( )            

                 (  ( ))    

                     (  ( )) 

                     (  )(  ( )) , 

                                 (  )( (  )( )  

                    ( (  )  (  ))( ) ,                                                 

                              (     )    (  )   (  )  

 G is functor from         to   
  . 

 

Lemma 4.3. 

There is a natural isomorphism between the functors       and   
     

 , where     is a functor from       to         

and   
      

  is identity functor on        

Proof: We have two factors     
          ,              

  , then                 is also functor with 

object function (   )( )   ( ( )) and arrow function(   )( )   ( ( )). Let  ̅      
     

. For each   

     , define   ̅̅ ̅ (   )      by   ̅̅ ̅(     )  (   ) . Since   is left     semimodule, then   ̅̅ ̅ is     linear. 

Also, if (   )     ,   ̅̅ ̅((   )(   )  )  (   )(   )  ((   ) (   ) ). Since  (   )        is arbitrary and 

therefore, by universal property, we have a morphism    : (   )       defined by  

  ̅̅ ̅(     )  (   )   

Let        be morphism in      , we need to show the diagram 

 
commutes. 

Claim:   ( )         ((   )( )) 

We have,  (  ( )    )(        )      ( )(   (        ))                                                                                                              

                                                  ( )((   ) ) 

      (   ) ( ) 

Also, we have (    (   )( ))(        )     ((   )( )(        )) 

               ( ( ( )(        ))) 

                 ( ( (        ))) 

                  (        ( )) 

               (   ) ( ) 

Since,            (   )    is arbitrary, which implies   ( )         (   )( ). To prove   is natural 

isomorphism, it is enough to prove    is invertible in      . That is, if there exists    
    (   )       is morphism in  

        such that   
      (   )      and      

    .  Define   
    (   )       by 

  
 ( )  (     )              

We have,  

(     
 )( )    (  

 ( )) 

                         ((     )      ) 

            (     )      ( )             
Since n is arbitrary in N, it follows that      

    . 

We have,  (  
    )(        )        

 (  (        )) 

                   
 ((   ) )  

                (     )     (   )   

                         

                  (   )     (        )    
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Since,            (   )    is arbitrary, which implies   
      (   )       Hence there is a natural isomorphism 

between the functors     and  
     

. 

Lemma 4.4. 

There is a natural transformation between the functors      and  
  

  
, where     is a functor from   

    to    
    and  

 
  

  
  is identity functor on    

    

 

Proof: 

We have two functors     
         ,            

  , then       
     

   is also a functor with object 

function    ( )   ( ( )) and arrow function    ( )   ( ( )). Let       
  

  
. For each     

  , define 

  ̅̅ ̅̅  (   )      by   ̅̅ ̅̅ (     )   ( )(   ) , 

where     
 
  as mentioned in Lemma(2.15). 

(i)   ̅̅ ̅̅ ((   )  (   )  )           ( )(   )    ( )(   )  

    ̅̅ ̅̅ (     )+  ̅̅ ̅̅ (     ) 

 

(ii)   ̅̅ ̅̅ (         )    ( )(   )(     ) 

                                     ( )(   )    ( )(   )   

        ̅̅ ̅̅ (      )     ̅̅ ̅̅ (      ) 

 

(iii)  Let        ̅̅ ̅̅ ((   )   )         ̅̅ ̅̅ (      ) 

            ( )(    )  
              ( )(   )   
            ̅̅ ̅̅ (      ) 

By universal property, there exists a morphism    (   )      defined by  

  (     )=  ( )(   ) . 

For each morphism,         in   
  ,  we need to show, the diagram,   

 
commutes. 

Claim:   ( )         ((   )( )) 

We have, (  ( )    )(       )    ( )(  ( )(   ) )                                                                                                             

                                                ( )(   ) ( ) 

Also, we have     (   )( )(       )     ( ( ( )(       ))) 

                     ( ( )(       )) 

                     (       ( )) 

                   ( )(   ) ( ) 

Since,          (   )    is arbitrary, which implies   ( )         ((   )( )).  

Hence there is a natural transformation between the functors     and  
  

  
. 

 

Lemma 4.5.  

For every     (   
  )  the map     (   )         given in the above lemma has a right inverse. i.e., there exist a 

map    
    (   )       such that       

    . 

 

Proof:  

Define   
    (   )      by   

 ( )  (     )             
 We have,  

(     
 )( )    (  

 ( )) 
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                        ((     )     ) 

             (  )(    )  

             ( )       

              ( ).(  ( )    as   is semisimple) 

 

Since   is arbitrary in  , implies that      
    . 

Remark: 

In general, the map    may not have a left inverse. That is.,   
     may not be equal to  (   ) 

   . But, if the map 

         given by  (   )   ( )(   ), preserve multiplication then any left    semimodule   becomes a left 

    semimodule under the action given by  

(   )     (   )   ( )(   )  

Further, if the action of   on   is trivial or if         ( )  then   is multiplicative. 

 

Theorem 4.6. 

If H is a finite dimensional semisimple Hopf algebra acting on a semialgebra A and if        ( ) then the categories   
    

and        are equivalent. 

 

Proof: Follows from Lemma (4.1), (4.2), (4.3), (4.4), (4.5) and the above Remark. 

 

V. CONCLUSION 

 

In this paper, we have introduced two functors F   
        ,           

   between the categories of 

   semimodules and the categories of     semimodules. Further we established a natural isomorphism   between the 

functors     and  
     

. Also we established a natural transformation   between the functors     and  
  

  
  

Assuming   as a finite dimensional semisimple Hopf algebra, we established the equivalence between categories 

  
   and      . 
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