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Abstract - Linear dependence between predictors is one of the serious issues in regression analysis. Due to near linear 

dependence (or multicollinearity) between any two or more predictors, ordinary least squares (OLS) method will yield unstable 

estimates to the regression coefficients. In the literature, several techniques like Ridge regression, Principal component 

regression, Partial least squares regression, Liu method of regression etc., have been developed to overcome problem of 

multicollinearity. Among them Ridge regression is one of the most widely used methods, which will yield more stable 

estimate‟s as compared to OLS estimator. Here we propose a new ridge estimator based on Harmonic mean method. 

Performance of the ridge estimators is evaluated both theoretically and empirically under a wide range of degree of 

multicollinearity and error variances. Both methods have indicated that the performance of the suggested estimator is slightly 

more stable than some existing estimators, which are considered under study with respect to various degrees of 

multicollinearity, sample size, and error variance. 
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I.  INTRODUCTION 

 

Multicollinearity is one of the severe issues in regression 

analysis. To overcome the problem of multicollinearity 

several techniques such as, ridge regression (RR), principal 

component analysis (PCR), partial least squares regression 

(PLSR) etc., have been defined in the literature. Ridge 

regression is the one which is most widely used techniques 

among the above methods, especially in the areas of 

sentiment analysis [1], satellite imagery [2], genetics, 

forestry etc. Ridge regression is an alternative method to 

ordinary least squares (OLS) regression. Before we study the 

ridge regression, consider the standard form of multivariate 

linear regression (MLR) model, defined as 

 

uβy  X
 
                        (1) 

 

Where X is a ( pn ) data matrix, y is a ( 1n ) vector of 

response, β  is ( 1p ) vector of regression coefficients and 

u  is a ( 1n ) vector of random errors which are iid with 

zero mean and variance
2

 . If X  has full rank, the ordinary 

least squares (OLS) method, will yield the estimate for β  as 
 
                                         

yβ X)XX(ˆ
OLS


1

.               (2) 

 

OLS estimator yields unstable estimates to the regression 

coefficients because sometimes inverse of XX   may not 

exist due to the near linear dependence between predictors, 

and thus to overcome the problem of singularity, X is 

standardized such that XX   is in the form of a near 

correlation matrix.  

 

For simplicity in computation, we express the model defined 

in equation (1) in canonical form. Let W be a matrix of 

order ( pp ), such that its columns are normalized eigen 

vectors of XX  . Suppose ,XWZ  then XWXWZZ  , 

where  DZZ   

,
p

.,..,,diag )(
11

 and s'
j


 
are the

th
j  eigen value of XX  , 

then the equation (1) can be written as 

  

uγy  Z ,                           (3) 

 

where βγ W  . The OLS estimator for γ  is now given by 

  

yyγ ZDZZZˆ
OLS


 11

)( .              (4) 

 

Since βγ W  , implies γβ ˆWˆ  .  

 

The outline of the present article is as follows. In section 2, 

the concept of ridge regression is discussed. Section 3, deals 
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some ridge estimators. Under some stated conditions, 

performance of the proposed estimator is verified 

theoretically in section 4. In section 5, simulation study is 

conducted and results obtained are tabulated to see the 

performance of the suggested and few existing estimators in 

terms of their MSE. Some remarks are made on simulation 

results in section 6. 

 

II. RIDGE ESTIMATION 

 

There are number of techniques have been proposed in the 

literature to overcome the shortcomings of OLS, viz., Ridge 

regression, Principal component regression(PCR), Partial 

least squares regression(PLSR), etc. Among the above, ridge 

regression [3], [4] is the one, which is widely used technique 

in the regression analysis when there is a linear dependence 

between any two predictors. To overcome the problem of 

singularity, a constant )0(k  is to be added to every 

th
j element of the diagonal of the matrix XX  , so that ridge 

estimator becomes more robust to the problem of singularity 

and it was shown that MSE of the ridge estimator is 

minimum compared to OLS, [5].   

The ordinary ridge estimator for the regression coefficients 

is given by 

 

yyγ ZAZkIZZˆ
R


 11

)(                (5) 

 

Where kIDA  , and WZX  . Using equation (4), we 

write equation (5) as 

 

OLSR
ˆkAIˆ γγ )(

1
 .               (6) 

 

It was proved that the ridge estimator is biased and its bias-

square is continuous and monotonically increasing function 

of k , and for 0 ≤ k  ≤
2

2

max
γ̂


, the MSE (

R
γ̂ ) is minimum, 

where 
2

max
γ̂ is the largest element of 

2

R
γ̂ and 

2
  is replaced 

by its estimate
1

2






pn

Zˆ
ˆ OLS

yγyy
 , [4]. Another estimate of 

2
  was suggested and it is defined as

pn

Zˆ
ˆ OLS






yγyy2
  , 

[6]. Above two estimators of 
2

 , may yield negative 

estimates to the residual mean square, if pn   and to 

overcome this, an estimate of 
2

  was suggested in [7] 

which makes use of „hat matrix‟, H  such that degrees of 

freedom for the error are pnHHHtrn  )2( , as it 

avoids negative estimates to
2

 , when pn  .  

III.   SOME RIDGE ESTIMATORS 
 

Several authors have been suggested various methods of 

estimating the ridge parameter k , say. Some of the well 

known methods in the literature are due to [8, 9, 10, 11, 12, 

15, 16, 19, 20, 21, 22, 23, 24] etc.  

Following are some of the well-known methods for 

estimating the ridge parameter k . Firstly, the estimator 

defined as 

 

               
1

2

k
ˆˆ

ˆp
k

HKB





γγ


 ,                           (7) 

 

This is due to [5]. It is observed that estimator due to [5] 

seems to be over shrunken the estimator towards zero, and it 

does not perform well if predictors are more than the sample 

size in the model. 

The ordinary ridge estimator due to [5] was then modified 

[8], by making use of Eigen values and is given by 
 

2

1

2

2

k

ˆ

ˆp
k

p

j
jj

LW








γ


 ,             (8) 

 

It relies on least-squares estimates of the parameters, and 

like the estimator due to [5], it shows poor performance 

when the error variance is small and the degree of 

correlation is very high. Another estimator which is defined 

[9] as 
  

 
3

1

21222

2

)]][1(1[

k

ˆ/ˆ
j/ˆ

ˆp
k

p

j

/

jj

N


 









γγ

      (9) 

                                                                   

This estimator which shrinks less as compared to the 

estimator defined in [5], and it is observed that it results in 

increased total variance of regression coefficients when 

number of observations is more than the predictors and 

thereby, far from true parameter value and shows little better 

performance when predictors is more than the sample size. 

Estimator due to [10], as  
 

422

2

)1(
k

ˆˆpn

ˆ
k

maxmax

max

KS





γ


.           (10) 

 

Where 
max

 is the largest eigen value of XX  . It shrinks less 

as compared to estimator due to [5] but, like the estimator 

due to [9], it shows greater variability in total variance for 

large error variances. It is observed that the estimator  

,k
)VIF(nˆˆ

ˆp
,Maxk

maxj

DK 5

2
1

0 

















γγ


       (11) 
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was proposed by [11], which shrinks less and tend towards 

true parameter value, where 

;21
1

1

2
p.,..,,j,

)R(
VIF

j

j



 is the variance inflation 

factor of the 
th

j  regressor. It is more stable than the 

estimators defined in equations (7) to (10) in both the cases 

i.e., when predictors are larger than the sample size and also 

when the sample size is more than the predictors. However, 

when sample size is more than the predictors it is observed 

that it does not dominate but coincides it with the estimator 

due to [5]. Estimator due to [12] is defined by  

 

        

62

2

1

2
)( k

p

j ˆ

ˆp
HMk

jmax

D





γ




,               (12) 

 

It performs better when number of predictors is more than 

the sample size, and when predictors are highly collinear, 

but it becomes unstable when n is large. 

Estimators due to [13, 14] are defined by 

 

7

2
11

k
n

k
nˆˆ

ˆp
k

max

HKB

max

SV









γγ

,              (13) 

 

                                                          

 
81

2
11

1
k

ˆˆ
k

ˆˆˆˆ

ˆp
k

maxmax

SV











γγγγγγ 


          (14) 

                      

9212

2

2

1

2

1

2
k

m
k

mˆˆ

ˆp
k

SV





γγ


,            (15) 

 

where 
minmax

/m   is called the condition number 

[15]. Higher the value of m , higher is the degree of 

multicollinearity. If (30 < m < 100) means a moderate to 

strong multicollinearity, and if m > 100 suggests severe 

multicollinearity [16].  

 

Few modified ridge estimators were suggested in [13, 14], 

and are obtained by modifying the estimator due to [5], and 

therefore they also seem to be over shrunken the estimator 

due to [5], i.e., more often the estimator tend towards zero 

and therefore they seem to be unstable like [5] when number 

of predictors exceeds the number of sample observations. 

Also, when error follows normal distribution, the estimators 

1
SV and

2
SV  [14], deviate a little away from the true 

parameter value as compared to estimators due to [5, 11].  

Ordinary ridge estimator (
3

SV ) was suggested [17], which is 

obtained by taking the geometric mean of the estimators due 

to [5, 11] and is defined by 

  

105151
)(

3
kkkk,kGMk

SV
 ,              (16) 

  

Above estimator seems to be more stable in both the cases 

i.e., when the sample size n, is either more or less than the 

number of predictors. 

 

IV.  PROPOSED ESTIMATOR AND ITS 

PERFORMANCE 

 

Here we suggest an ordinary ridge estimator say, 4SV  

which is obtained by taking the harmonic mean of the 

estimators due to [4, 11], and is defined by 

  

11515151
)(2)(

4
kkk/kkk,kHMk

SV
    (17) 

 
 

It is noted that the estimators defined in equations (7) to (14) 

are verified under very high degree (   ≥ 0.9 ) of 

multicollinearity between the predictors [18], whereas the 

performance of the estimators due to [13, 14, 17] are 

investigated under various degree of multicollinearity viz., 

low, moderate and high degree of multicollinearity.  

The following are the results which prove that under certain 

general conditions, the proposed estimator is superior to the 

other estimators considered in this study. 

 

Theorem 1: When pn  for the linear regression model 

with homoscedastic, 
11

k is superior to 
1

k  in the MSE sense. 

That is,  

 )(
HKB
ˆMSE γ – )(

4SV
ˆMSE γ  ≥ 0, if  

  ,
*

jj

p

j

*

jj

p

j

2

j

ck̂k̂

ck̂k̂k̂k̂

]2[

]2)[(

1
111

111
1

111
2







 

 







γ

where 

  

2

11

2

1
)()( k̂k̂

c

jj

j*

j






.  

Proof: Since 11
k  is the harmonic mean of 1

k
 
land 5k , and 

51
kk   implies, 

 

                         111
kk  .                       (18) 

 

Accordingly, it is trivial that  

)(
4SV

ˆMSE γ ≤ )(
HKB
ˆMSE γ .  

Or alternatively, since
111

kk  , consider,  
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p
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2
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k̂
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ˆMSE

1
1

2

1

2

2
)(

)(


 γ
γ                   (19) 

Then, 

 )(
HKB
ˆMSE γ – )(

4SV
ˆMSE γ

 

   = 
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2
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j

2
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1
2

11

2
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2

2

1

2

1

2

)()( 
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On simplification,  
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111

111111111

2

(
2

)(
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                                                  (20) 

 

Since 0( )
111
 k̂k̂ , then 0 , if 
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2
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Hence the theorem is proved. 

 

Theorem 2: For, 10 
j

k  the linear regression model 

with homoscedastic 
11

k
 
is superior to 

2
k  in the MSE sense. 

That is, 

 )(
LW
ˆMSE γ – )(

4SV
ˆMSE γ  ≥ 0, if  

  ,
*

jj

p

j

*

jj

p

j

2

j

ck̂k̂

ck̂k̂k̂k̂

]2[

]2)[(

1
112

112
1

112
2







 

 







γ

where 

  

2

11

2

2
)()( k̂k̂

c

jj

j*

j






. 

 

Proof:  

Case 1: First to prove
211

kk  . 

Consider, 2

1

2

2
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ˆ
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k

p
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and
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(2
4
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DKHKBDKHKBSV
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Since
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kk  , and suppose
25

kk  , then   

5125152
kkkkkkk   

 
512

11 kk/k/ 
 

115151251
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Consider, 
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Then, 
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ˆMSE γ – )(
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On simplification,  
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Since 0( )
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 k̂k̂ , then 0 , if 
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Case 2: Suppose 
25

kk  then as in above, it can be shown 

that 

 
                     211

kk                 (24) 

 

Thus 0 , if 
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Hence the theorem is proved. 

It is observed that in a similar approach one could compare 

MSE (SV4 = k11) with that of MSE of the remaining other 

estimators, which are considered under study. 
 

V. SIMULATION STUDY
 

 

The simulation study was conducted for various values of n , 

the sample size; p  the number of predictors, residual 

variance
2

 , and  , the degree of correlation, in the 

presence of low, moderate and a high degree of 

multicollinearity. The results were obtained by generating a 

random data matrix X of size ( pn  ) using the relation: 

   ;21211
212

p.,..,,j;n.,..,,i,i)(x
ipj

/

ij
    

where
ij

 „s are independent standard normal pseudo-random 

numbers,  is fixed such that 
2

  is the degree of correlation 

between any two predictors. These variables are 

standardized such that XX   takes up correlation matrix 

form, and to generate y  we have assumed vector β as 

 )90.5,0.3,0.5,0.4,0.3,.83,0.9,0.0.3,0.95,00.59,0.74,0.03,0.91,(0.03,0.5, β      
The performance of the suggested estimators

 
was evaluated 

for various sample size n = 10, 25, 100 and 1000; number of 

predictors 15p , and the variance of the residual term
2

 : 

5, 25, 100, and 1000; and the degree of correlation  = 0.3, 

0.5, 0.7, 0.9, 0.99 and 0.9999. The experiment was 

replicated 1000 times each and the average of mean square 

error (AMSE) was computed using the relation,  





1000

1

*

)(

*

)(
)-()(

1000

1
)

*
(

j
jj

ˆˆˆAMSE βββ-ββ

 

, 

 

where, 
*

β̂ is any estimator that was used in this study. Ridge 

estimates were computed by considering the different 

estimators of the ridge parameter k , defined in equations (7) 

to (15). The results of the simulation are presented in Table 

1. Here, the estimators leading to the maximum ratio of 

AMSE of OLS over AMSE of other ridge estimators were 

considered to be the best in terms of MSE.  
 

VI. CONCLUSION 
 

The simulation study indicates that the suggested estimator 

yields more stable estimates as compared to all the other 

estimators which are considered under study in terms of ratio 

of AMSE over OLS. It was noticed that (Table 1), when the 

sample size n  is small (i.e., pn  ), and for small error 

variance (
2

 =5), the estimators due to [9, 11, 12] have 

yielded more unstable estimates for the ridge parameter. 

Estimators due to [5, 13, 14, 17] gives more stable estimates 

to the regression coefficients, but these estimates over 

shrinks when ( pn  ), and thereby deviated slightly from 

the true parameter value.  In this context, the suggested 

estimator has yielded more stable estimate‟s as compared to 

all the other estimators which are considered under study for 

a wide range of sample size( n ), degree of correlation(  ), 

and error variance(
2

 ). Since the performance of the 

suggested estimator was verified empirically under various 

values of n ,   and
2

 , and also theoretically, we conclude 

that the performance of the suggested estimator is better, 

satisfactory and comparable to all the other estimators which 

are considered under this study. Further in real life situations 

there are possibility for further research in the area of 

studying inaccuracy of estimates, testing for the significance 

of the estimators, and presence of outliers. 
 

Table 1: AMSE ratio of OLSE over different Ridge estimator‟s 

when error (u) ~ N (0, σ2I), for n=10. 
σ2 AM 

SE 


 

0.3 


 

0.5 


 

0.7 


 

0.9 


 

0.99 


 

0.9999 

5 
 

k1 

k2 

k3 

k4 

k5 

k6 

k7 

k8 

k9 

k10 

k11 

3.5052    

3.4992    

2.3015    

1.9289    

7.7626    

8.6582    

3.5119    

3.5054    

3.5146    

3.4295    

3.4285   

3.9484    

3.8991    

2.8246    

2.3246    

9.0196   

10.6234    

3.9517    

3.9485    

3.9547    

3.8941    

3.8911   

4.1245    

4.0960    

3.3689    

2.1865    

9.2655   

10.7924    

4.1266    

4.1246    

4.1285    

4.0948    

4.0940   

4.7121    

4.6656    

6.4354    

2.2704   

10.4305   

15.8184    

4.7167    

4.7122    

4.7154    

4.6636    

4.6624   

4.7880    

3.7379   

14.5040    

2.3591    

9.0393   

18.6218    

4.8415    

4.7881    

4.7915    

3.8207    

3.7395 

 4.4881 

 1.0154 

18.1223   

2.2819   

7.3488 

31.3335   

7.2092    

4.4881   

4.4917   

1.0178   

1.0166 

25 k1 

k2 

k3 

k4 

k5 

k6 

k7 

k8 

k9 

k10 

k11 

4.5073    

4.2380    

2.8982    

2.2514   

13.3060   

24.2855    

4.5145    

4.5073    

4.5208    

4.3514    

4.3233     

4.7924    

4.6868    

3.1859    

2.3540   

13.2277   

19.4778    

4.7958    

4.7924    

4.8006    

4.7384    

4.7357     

4.4934    

4.3512    

3.7799    

2.2857   

12.0312   

15.7593    

4.4982    

4.4934    

4.5000    

4.4171    

4.4086     

4.6348    

4.4955    

6.8787    

2.2965   

10.8080   

18.3605    

4.6416    

4.6348    

4.6394    

4.5634    

4.5602     

4.9861    

3.3945   

15.3765    

2.2678    

9.3626  

13.9564    

5.0413    

4.9861    

4.9895    

3.6023    

3.5569     

  4.7326  

  1.0184 

28.9510 

  2.3069 

  7.9695 

22.9745  

7.5719    

4.7326 

  4.7359 

  1.0218   

1.0201 

 

100 
 

k1 

k2 

k3 

k4 

k5 

k6 

k7 

k8 

k9 

k10 

k11 

4.8054     

4.6798    

 3.0156    

2.2558   

13.9265   

27.7249    

4.8096   

4.8054    

4.8192    

4.7411    

4.7379  

4.9950    

4.9065    

3.2552    

2.4095   

14.4947   

21.8505    

4.9979    

4.9950    

5.0031    

4.9505    

4.9497  

4.7052    

4.5967    

3.9979    

2.2541   

12.7387   

16.0573    

4.7092    

4.7052    

4.7112    

4.6500    

4.6480  

4.8531    

4.6430    

7.3391    

2.2848   

11.1766   

21.0466    

4.8618    

4.8531    

4.8573    

4.7431    

4.7311  

5.1445    

3.8365   

17.0845    

2.4057    

9.8476  

25.3750    

5.2192    

5.1445    

5.1477    

4.0339    

4.0102    

4.7719      

1.0163 

39.3947    

2.4421        

7.9595 

30.7331 

  7.5731 

  4.7719  

  4.7754 

1.0190 

  1.0177 

1000 

 

k1 

k2 

k3 

k4 

k5 

k6 

k7 

k8 

k9 

k10 

k11 

  4.6484      

4.5085   

2.8849  

2.4028  

13.8205 

26.8844  

4.6532   

4.6484   

4.6617   

4.5770   

4.5729 

4.6762 

4.3757 

3.3872 

2.1886 

13.5604 

22.4698 

4.6841 

4.6762 

4.6856 

4.5102 

4.4815 

4.8552 

4.7434 

3.8610 

2.3576 

12.7824 

16.0421   

4.8596   

4.8552 

4.8612 

4.7951 

4.7918 

4.6926 

4.4808 

7.0808 

2.2841 

10.8553 

19.5978 

4.7012 

4.6926 

4.6971 

4.5793 

4.5670 

4.8502 

3.4806 

14.4073 

2.2890 

9.1894 

25.2019 

4.9151 

4.8502 

4.8539 

3.6948 

3.6483 

  4.9056  

  1.0142  

38.0209 

  2.3098 

  8.3496  

52.9182 

  7.9087  

  4.9056  

  4.9092  

  1.0167  

  1.0155 

 

Table 2: AMSE ratio of OLSE over different Ridge estimator‟s 

when error (u) ~ N (0, σ2I), for n=25. 
 

σ2
 AMS 

E 


 

0.3 


 

0.5 


 

0.7 


 

0.9 


 

0.99 


 

0.9999 
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σ2=5 
 

k1 

k2 

k3 

k4 

k5 

k6 

k7 

k8 

k9 

k10 

k11 

1.0966 

1.0963   

0.6172   

0.6708 

2.2634 

1.0752 

1.0966 

1.0966 

1.0976 

1.0965 

1.0965 

1.2336 

1.2334 

0.6854 

0.7702 

2.6651 

1.1985 

1.2336 

1.2336 

1.2342 

1.2335 

1.2335 

1.5706 

1.5704 

0.8168 

0.9627 

3.4762 

1.4460 

1.5706 

1.5706 

1.5711 

1.5705 

1.5705 

2.5119 

2.5113 

1.1948 

1.4223 

6.3740 

2.2302 

2.5119 

2.5119 

2.5125 

2.5116 

2.5116 

3.8460 

3.8376 

5.2660 

1.8313 

12.0762 

12.0186 

3.8461 

3.8460 

3.8471 

3.8418 

3.8418 

4.0615 

3.1381 

15.0136 

1.9037 

8.5925 

28.4818 

4.0808 

4.0615 

4.0627 

3.5400 

3.4857  

σ2=25 k1 

k2 

k3 

k4 

k5 

k6 

k7 

k8 

k9 

k10 

k11 

3.3770 

3.3756 

1.0593 

1.2111 

28.1625 

3.6256 

3.3770 

3.3770 

3.3818 

3.3763 

3.3763 

3.5243 

3.5232 

1.0903 

1.3492 

28.8995 

2.9249 

3.5243 

3.5243 

3.5272 

3.5237 

3.5237 

3.6864 

3.6856 

1.1533 

1.5839 

28.4109 

2.7010 

3.6864 

3.6864 

3.6883 

3.6860 

3.6860 

3.8376 

3.8364 

1.4294 

1.7441 

23.4998 

3.2274 

3.8376 

3.8376 

3.8389 

3.8370 

3.8370 

4.1507 

4.1408 

5.8949 

1.9226 

14.3555 

13.9508 

4.1509 

4.1507 

4.1519 

4.1458 

4.1458 

4.0701 

3.1486 

16.3765 

1.9033 

18.6029 

14.4779 

4.0891 

4.0701 

4.0712 

3.5545 

3.5008 

σ2= 

100 
 

k1 

k2 

k3 

k4 

k5 

k6 

k7 

k8 

k9 

k10 

k11 

3.7285 

3.7269 

1.0957 

1.2480 

51.3975 

4.3790 

3.7285 

3.7285 

3.7341 

3.7277 

3.7277 

3.7172 

3.7159 

1.1147 

1.3882 

45.5635 

3.1160 

3.7172 

3.7172 

3.7205 

3.7166 

3.7166  

4.0023 

4.0014 

1.1781 

1.6132 

41.3902 

2.7706 

4.0023 

4.0023 

4.0044 

4.0018 

4.0018  

4.0213 

4.0200 

1.4547 

1.8003 

27.0046 

3.2837 

4.0213 

4.0213 

4.0226 

4.0206 

4.0206  

4.0709 

4.0617 

5.6495 

1.8784 

14.1050 

14.2973 

4.0711 

4.0709 

4.0721 

4.0663 

4.0663  

4.0479 

3.1546 

26.0630 

1.8742 

8.5569 

19.6255 

4.0666 

4.0479 

4.0490 

3.5498 

3.5021 

σ2= 

1000 

 

k1 

k2 

k3 

k4 

k5 

k6 

k7 

k8 

k9 

k10 

k11 

3.7276 

3.7259 

1.0984 

1.2482 

53.8947 

4.4434 

3.7276 

3.7276 

3.7332 

3.7267 

3.7267  

3.8183 

3.8170 

1.1184 

1.3969 

48.7379 

3.2807 

3.8183 

3.8183 

3.8216 

3.8176 

3.8176  

3.8662 

3.8653 

1.1738 

1.5920 

39.9739 

2.7367 

3.8662 

3.8662 

3.8683 

3.8658 

3.8658  

3.9286 

3.9273 

1.4417 

1.7785 

26.6138 

3.2672 

3.9286 

3.9286 

3.9299 

3.9279 

3.9279  

4.0728 

4.0634 

5.6510 

1.9168 

14.1935 

14.0924 

4.0729 

4.0728 

4.0739 

4.0681 

4.0681  

4.2448 

3.3299 

94.8065 

1.9233 

9.1099 

15.9370 

4.2639 

4.2448 

4.2459 

3.7388 

3.6936  

 

Table 3: AMSE ratio of OLSE over different Ridge estimator‟s 

when error (u) ~ N (0, σ2I), for n=100. 
σ2

 AM 

SE 


 

0.3 


 

0.5 


 

0.7 


 

0.9 


 

0.99 


 

0.9999 

σ2=5 
 

k1 

k2 

k3 

k4 

k5 

k6 

k7 

k8 

k9 

k10 

k11 

0.5371 

0.5371 

0.3819 

0.3898 

0.9844 

0.5245 

0.5371 

0.5371 

0.5374 

0.5371 

0.5371 

0.6112 

0.6112 

0.4298 

0.4449 

1.1736 

0.5674 

0.6112 

0.6112 

0.6114 

0.6112 

0.6112  

0.8020 

0.8020 

0.5268 

0.5628 

1.5587 

0.6988 

0.8020 

0.8020 

0.8021 

0.8020 

0.8020 

1.5711 

1.5710 

0.8186 

0.9798 

3.3054 

1.2482 

1.5711 

1.5711 

1.5713 

1.5710 

1.5710 

3.4197 

 3.4183 

 2.3471 

 1.7384 

11.9150 

 5.1468  

3.4197 

 3.4197 

 3.4203 

 3.4190 

   3.4190 

3.8714 

3.7001 

12.7263 

1.8272 

8.9183 

16.1818 

3.8731 

3.8714 

3.8721 

3.7841 

3.7828 

σ2=25 k1 

k2 

k3 

k4 

k5 

k6 

k7 

k8 

k9 

k10 

k11 

2.9121 

2.9118 

0.9589 

1.0030 

9.9761 

2.0828 

2.9121 

2.9121 

2.9150 

2.9119 

2.9119  

3.0700 

3.0698 

0.9817 

1.0876 

22.9204 

1.7809 

3.0700 

3.0700 

3.0716 

3.0699 

3.0699  

3.3203 

3.3201 

1.0211 

1.2503 

27.6244 

1.7654 

3.3203 

3.3203 

3.3213 

3.3202 

3.3202  

3.6810 

3.6808 

1.1384 

1.5647 

31.7710 

2.0874 

3.6811 

3.6810 

3.6818 

3.6809 

3.6809  

3.9848  

3.9831 

 2.5636 

 1.8747 

19.5080 

6.1912  

3.9848 

 3.9848 

 3.9856 

 3.9839 

3.9839  

3.9387 

3.7715 

18.8428 

1.8224 

9.1642 

17.1139 

3.9404 

3.9387 

3.9395 

3.8536 

3.8524  

σ2= 

100 
 

k1 

k2 

k3 

k4 

k5 

k6 

k7 

k8 

k9 

k10 

k11 

3.5072 

3.5068 

1.0263 

1.0754 

9.4578 

2.4985 

3.5072 

3.5072 

3.5110 

3.5070 

3.5070  

3.6338 

3.6336 

1.0367 

1.1540 

18.0158 

1.9162 

3.6338 

3.6338 

3.6360 

3.6337 

3.6337  

3.6792 

3.6790 

1.0552 

1.2967 

17.0645 

1.8441 

3.6792 

3.6792 

3.6805 

3.6791 

3.6791  

3.8057 

3.8054 

1.1486 

1.5742 

16.1660 

2.0322 

3.8057 

3.8057 

3.8065 

3.8055 

3.8055  

3.9890  

3.9872 

 2.5771 

 1.8178  

15.0556 

 6.2564  

3.9890 

 3.9890 

 3.9898 

 3.9881 

 3.9881  

3.9478 

3.7781 

20.1797 

1.8641 

9.1875 

18.2907 

3.9495 

3.9478 

3.9485 

3.8614 

3.8602  

σ2= 

1000 

 

k1 

k2 

k3 

k4 

k5 

k6 

k7 

k8 

k9 

k10 

k11 

3.6794 

3.6790 

1.0338 

1.0828 

11.6633 

2.4830 

3.6794 

3.6794 

3.6834 

3.6792 

3.6792  

3.6787 

3.6785 

1.0402 

1.1598 

17.4302 

1.9109 

3.6787 

3.6787 

3.6809 

3.6786 

3.6786  

3.7625 

3.7623 

1.0591 

1.3017 

8.9516 

1.7848 

3.7625 

3.7625 

3.7638 

3.7624 

3.7624  

3.8500 

3.8498 

1.1523 

1.6043 

9.4455 

2.1669 

3.8500 

3.8500 

3.8509 

3.8499 

3.8499  

3.9495 

3.9477 

 2.5472 

 1.8166 

 9.7090 

 6.0644 

 3.9495 

 3.9495 

 3.9502 

 3.9486 

 3.9486  

3.9542 

3.7821 

20.3159 

1.8695 

9.1825 

17.4241 

3.9560 

3.9542 

3.9549 

3.8666 

3.8653  

 

Table 4: AMSE ratio of OLSE over different Ridge estimator‟s 

when error (u) ~ N (0, σ2I), for n=1000. 
σ2

 AM 

SE 


 

0.3 


 

0.5 


 

0.7 


 

0.9 


 

0.99 


 

0.9999 

σ2=5 
 

k1 

k2 

k3 

k4 

k5 

k6 

k7 

k8 

k9 

k10 

k11 

0.0608 

0.0608 

0.0584 

0.0585 

0.0944 

0.0607 

0.0608 

0.0608 

0.0608 

0.0608 

0.0608  

0.0711 

0.0711 

0.0686 

0.0687 

0.1152 

0.0715 

0.0711 

0.0711 

0.0711 

0.0711 

0.0711  

0.0963 

0.0963 

0.0922 

0.0924 

0.1591 

0.0961 

0.0963 

0.0963 

0.0963 

0.0963 

0.0963  

0.2266 

0.2266 

0.2024 

0.2043 

0.3409 

0.2154 

0.2266 

0.2266 

0.2266 

0.2266 

0.2266  

1.3529 

1.3529 

0.7374 

0.8593 

2.4975 

1.0178 

1.3529 

1.3529 

1.3529 

1.3529 

1.3529  

3.8387 

3.8373 

26.1321 

1.7892 

11.9403 

53.7723 

3.8387 

3.8387 

3.8388 

3.8380 

3.8380  

σ2=25 k1 

k2 

k3 

k4 

k5 

k6 

k7 

k8 

k9 

k10 

k11 

0.9818 

0.9818 

0.5635 

0.5646 

1.9272 

0.6522 

0.9818 

0.9818 

0.9819 

0.9818 

0.9818  

1.0931 

1.0931 

0.6135 

0.6175 

2.3914 

0.6925 

1.0931 

1.0931 

1.0932 

1.0931 

1.0931  

1.3614 

1.3614 

0.6970 

0.7103 

3.5856 

0.7893 

1.3614 

1.3614 

1.3614 

1.3614 

1.3614  

2.2360 

2.2360 

0.8694 

0.9443 

8.2576 

1.0235 

2.2360 

2.2360 

2.2361 

2.2360 

2.2360  

3.6231 

3.6231 

1.0874 

1.4909 

13.7715 

1.7037 

3.6231 

3.6231 

3.6232 

3.6231 

3.6231  

4.0034 

4.0020 

13.1024 

1.8210 

12.9191 

7.1502 

4.0034 

4.0034 

4.0035 

4.0027 

4.0027  

σ2= 

100 
 

k1 

k2 

k3 

k4 

k5 

k6 

k7 

k8 

k9 

k10 

k11 

3.0546 

3.0546 

0.9564 

0.9591 

9.9624 

1.2049 

3.0546 

3.0546 

3.0551 

3.0546 

3.0546  

3.1144 

3.1144 

0.9663 

0.9751 

16.8922 

1.1201 

3.1144 

3.1144 

3.1147 

3.1144 

3.1144  

3.3425 

3.3425 

0.9830 

1.0081 

12.8025 

1.1393 

3.3425 

3.3425 

3.3426 

3.3425 

3.3425  

3.6371 

3.6371 

1.0051 

1.1054 

19.8380 

1.2160 

3.6371 

3.6371 

3.6372 

3.6371 

3.6371  

3.9738 

3.9737 

1.1108 

1.5295 

17.2263 

1.8140 

3.9738 

3.9738 

3.9739 

3.9738 

3.9738  

3.9670 

3.9656 

9.7520 

1.8197 

12.7779 

6.1615 

3.9670 

3.9670 

3.9671 

3.9663 

3.9663  

σ2= 

1000 

 

k1 

k2 

k3 

k4 

k5 

k6 

k7 

k8 

k9 

k10 

k11 

3.5234 

3.5234 

1.0040 

1.0069 

9.1010 

1.2339 

3.5234 

3.5234 

3.5240 

3.5234 

3.5234  

3.6244 

3.6244 

1.0053 

1.0147 

7.8982 

1.1768 

3.6244 

3.6244 

3.6247 

3.6244 

3.6244  

3.5727 

3.5727 

1.0074 

1.0338 

6.8085 

1.1730 

3.5727 

3.5727 

3.5729 

3.5727 

3.5727  

3.8064 

3.8064 

1.0146 

1.1167 

9.6437 

1.2371 

3.8064 

3.8064 

3.8066 

3.8064 

3.8064  

3.8899 

3.8899 

1.1095 

1.5239 

7.0370 

1.7592 

3.8899 

3.8899 

3.8900 

3.8899 

3.8899  

3.8633 

3.8619 

8.1315 

1.8253 

12.2899 

9.2876 

3.8633 

3.8633 

3.8634 

3.8626 

3.8626  
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