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Abstract - Linear dependence between predictors is one of the serious issues in regression analysis. Due to near linear
dependence (or multicollinearity) between any two or more predictors, ordinary least squares (OLS) method will yield unstable
estimates to the regression coefficients. In the literature, several techniques like Ridge regression, Principal component
regression, Partial least squares regression, Liu method of regression etc., have been developed to overcome problem of
multicollinearity. Among them Ridge regression is one of the most widely used methods, which will yield more stable
estimate’s as compared to OLS estimator. Here we propose a new ridge estimator based on Harmonic mean method.
Performance of the ridge estimators is evaluated both theoretically and empirically under a wide range of degree of
multicollinearity and error variances. Both methods have indicated that the performance of the suggested estimator is slightly
more stable than some existing estimators, which are considered under study with respect to various degrees of
multicollinearity, sample size, and error variance.
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I. INTRODUCTION OLS estimator yields unstable estimates to the regression

coefficients because sometimes inverse of XX may not

Multicollinearity is one of the severe issues in regression
analysis. To overcome the problem of multicollinearity
several techniques such as, ridge regression (RR), principal
component analysis (PCR), partial least squares regression
(PLSR) etc., have been defined in the literature. Ridge
regression is the one which is most widely used techniques
among the above methods, especially in the areas of
sentiment analysis [1], satellite imagery [2], genetics,
forestry etc. Ridge regression is an alternative method to
ordinary least squares (OLS) regression. Before we study the
ridge regression, consider the standard form of multivariate
linear regression (MLR) model, defined as

y=X§+u )

Where X is a (nx p) data matrix, yis a (nx1) vector of
response, B is ( px1) vector of regression coefficients and
u is a (nx1) vector of random errors which are iid with

zero mean and variance o . If X has full rank, the ordinary
least squares (OLS) method, will yield the estimate for g as

Bos = (XX)'XY. )
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exist due to the near linear dependence between predictors,
and thus to overcome the problem of singularity, X is

standardized such that XX is in the form of a near
correlation matrix.

For simplicity in computation, we express the model defined
in equation (1) in canonical form. Let W be a matrix of
order (px p), such that its columns are normalized eigen

vectors of XX . Suppose Z =XW, thenZZ =WXXW ,
where Z2Z =D =

diag(4, 4, ,.--,4,),and ;' s are the j* eigen value of XX,
then the equation (1) can be written as

y=2r +u, @)
where y =W 8. The OLS estimator for y is now given by

Fos =(22)'2y=D"zY. 4
Sincey =W, implies # =Wy .

The outline of the present article is as follows. In section 2,
the concept of ridge regression is discussed. Section 3, deals
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some ridge estimators. Under some stated conditions,
performance of the proposed estimator is verified
theoretically in section 4. In section 5, simulation study is
conducted and results obtained are tabulated to see the
performance of the suggested and few existing estimators in
terms of their MSE. Some remarks are made on simulation
results in section 6.

1. RIDGE ESTIMATION

There are number of techniques have been proposed in the
literature to overcome the shortcomings of OLS, viz., Ridge
regression, Principal component regression(PCR), Partial
least squares regression(PLSR), etc. Among the above, ridge
regression [3], [4] is the one, which is widely used technique
in the regression analysis when there is a linear dependence
between any two predictors. To overcome the problem of
singularity, a constantk(>0) is to be added to every

jthelement of the diagonal of the matrix X X , so that ridge

estimator becomes more robust to the problem of singularity
and it was shown that MSE of the ridge estimator is
minimum compared to OLS, [5].

The ordinary ridge estimator for the regression coefficients
is given by

Fo=(ZZ+K)Zy=A"ZY (5)

Where A=D+kl , and X =ZW'. Using equation (4), we
write equation (5) as

Po =1 = A K)fos - (6)

It was proved that the ridge estimator is biased and its bias-
square is continuous and monotonically increasing function
2

o
ofk, and for 0 < k <——, the MSE (y.) is minimum,

7 max

where 72, is the largest element of 72 and o is replaced

1, _ 1 ZV
by its estimate 6° = M, [4]. Another estimate of
n-p-1

1, _ o Z ’
o’ was suggested and it is defined as 6 = I Vas ¥ ,
n-p

[6]. Above two estimators of o, may yield negative
estimates to the residual mean square, if N<P and to

overcome this, an estimate of &’ was suggested in [7]

which makes use of ‘hat matrix’, H such that degrees of
freedom for the error aren—tr(2H —HH")=n-p, as it

avoids negative estimates to o’ ,whenn<p.
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I11. SOME RIDGE ESTIMATORS

Several authors have been suggested various methods of
estimating the ridge parameterk, say. Some of the well
known methods in the literature are due to [8, 9, 10, 11, 12,
15, 16, 19, 20, 21, 22, 23, 24] etc.

Following are some of the well-known methods for
estimating the ridge parameterk. Firstly, the estimator
defined as

Kie = o K, (7
ry

This is due to [5]. It is observed that estimator due to [5]
seems to be over shrunken the estimator towards zero, and it
does not perform well if predictors are more than the sample
size in the model.

The ordinary ridge estimator due to [5] was then modified
[8], by making use of Eigen values and is given by

A2
po
kLW = = kz ) (8)

It relies on least-squares estimates of the parameters, and
like the estimator due to [5], it shows poor performance
when the error variance is small and the degree of
correlation is very high. Another estimator which is defined
[9] as

Kk, = bo —k, O
L l.2 22 a2q1/2
E{yj/[1+(l+/1j[yj/0'] )]}

]

This estimator which shrinks less as compared to the
estimator defined in [5], and it is observed that it results in
increased total variance of regression coefficients when
number of observations is more than the predictors and
thereby, far from true parameter value and shows little better
performance when predictors is more than the sample size.
Estimator due to [10], as

k. = i —k (10)
“ n-p-)6*+1_75° ~

max y max

Where 4, is the largest eigen value of XX It shrinks less

as compared to estimator due to [5] but, like the estimator
due to [9], it shows greater variability in total variance for
large error variances. It is observed that the estimator

a2
1
ko = Max| 0, pAaA - =k, (1)
77 NVIF; )
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was proposed by [11], which shrinks less and tend towards
true parameter value, where

variance inflation

VIF, = j=12,...,p;is the

(1-R})’
factor of the jth regressor. It is more stable than the

estimators defined in equations (7) to (10) in both the cases
i.e., when predictors are larger than the sample size and also
when the sample size is more than the predictors. However,
when sample size is more than the predictors it is observed
that it does not dominate but coincides it with the estimator
due to [5]. Estimator due to [12] is defined by

2
o

1y

Mo

=k, (12)

6

2p
ko (HM) = ——
D}

It performs better when number of predictors is more than
the sample size, and when predictors are highly collinear,
but it becomes unstable when n is large.

Estimators due to [13, 14] are defined by

po 1 1
Koy = 7% +@=kHKB+Tw=k7’ (13)
pé’ 1 1
Key, =——+ — =k + — =k, (14)
7 A7 —
A2
po 1 1
Ky, = + =k, + =k,, (15)
Mognoom? Y 2m? Y

where m=,/4_ /A, is called the condition number

[15]. Higher the value ofm, higher is the degree of
multicollinearity. If (30 < m< 100) means a moderate to
strong multicollinearity, and if m> 100 suggests severe
multicollinearity [16].

Few modified ridge estimators were suggested in [13, 14],
and are obtained by modifying the estimator due to [5], and
therefore they also seem to be over shrunken the estimator
due to [5], i.e., more often the estimator tend towards zero
and therefore they seem to be unstable like [5] when number
of predictors exceeds the number of sample observations.
Also, when error follows normal distribution, the estimators

SV,and SV, [14], deviate a little away from the true
parameter value as compared to estimators due to [5, 11].
Ordinary ridge estimator ( SV, ) was suggested [17], which is

obtained by taking the geometric mean of the estimators due
to [5, 11] and is defined by
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kSV3 =GM (k ,k;) =k, xk; =k, (16)

Above estimator seems to be more stable in both the cases
i.e., when the sample size n, is either more or less than the
number of predictors.

IV. PROPOSED ESTIMATOR AND ITS
PERFORMANCE

Here we suggest an ordinary ridge estimator say, SV,

which is obtained by taking the harmonic mean of the
estimators due to [4, 11], and is defined by

K, = HM (k, k) = 2k x k. /(k +k) =k, (17)

SV,

It is noted that the estimators defined in equations (7) to (14)
are verified under very high degree ( o > 0.9 ) of

multicollinearity between the predictors [18], whereas the
performance of the estimators due to [13, 14, 17] are
investigated under various degree of multicollinearity viz.,
low, moderate and high degree of multicollinearity.

The following are the results which prove that under certain
general conditions, the proposed estimator is superior to the
other estimators considered in this study.

Theorem 1: Whenn < pfor the linear regression model
with homoscedastic, k,, is superior to k, in the MSE sense.
That is,

A= MSE(J;HKB)*MSE(J;SVA) >0, if

p ~ ~ P «
_zyf[(k1 + k)4, + 2Kk, Ic;
ol <2 - ,Where
[k, +ky, +24,]c;

M'o

J

) 2,

C. = = = .
Dy +k) (A k)’

Proof: Sincek,, is the harmonic mean of k, landks, and

k, >k implies,

k., <k,. (18)

11 1

Accordingly, it is trivial that
MSE(;?SVA )< MSE(y,45) -

Or alternatively, since k;, <k, consider,
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2 "2 2
R p oA +K Y
MSE (g, ) = 2——5",
= (lj +ky,)
R p O'Zﬂ,j + kAlzyJ?
And MSE(?HKB) = Z—A

19
=L (lj +k1)2 (19)

Then,
A = MSE(f 45 )~ MSE (7, )
0'211. + k”fyf ~ c)'z/”tj + I(Alzlyj2
(A, +k)* (4 k)’
On simplification,
g 0" (K Ky +24,) = A0 T, + Ky )4, + 2K Ky ¢ -k)
A ~ 11 1
(2, +K)2 (2, +K,)2

Mo

j=1

j=1

(20)

Since (k,, —k,) <0, then A >0, if

P " ~ A A *
Zlyf[(kl +kyy )4, + 2Kk, e
=

o < , Where

P A ~ *
2 [k, +kyy +24]c;
j=1

c. 4

T KD (A k)

Hence the theorem is proved.

Theorem 2: For, 0<k; <1 the linear regression model

with homoscedastic k,, is superior to k, in the MSE sense.

That is,
A= MSE()?LW ) - MSE(;?SV4) >0, if

P ~ ~ Aa
Yy 1K, + KA, + 2Kk, ]c]
ol 2 . ,Where
J_2:1[k2 +ky, +21;]c,

A

c ]

T 1K) (A +Ky)

Proof:
Case 1: First to provek , <k, .
A2
. po
Consider, k,,, = T - k,
24,7
j=1

and ksv4 = 2Kpye X Koy [ (Kpyg + K ) =Ky -
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Since k, <k, , and suppose k; <k, , then

kK, +k, <k +k, <k, <k +k,

=1/k, >1/(k, +k,)

= 2k kg /K, > 2K kg / (K, +Kg) = Ky,

<k, <Kk, (21)

1 —

Consider,

MSE(Fg, ) =X ——— - And
(2, +Ky)

MSE(fg, )= X— (22)

Then,

A = MSE(3,,, )~ MSE(fq,, )

p 0'2/1j + Rjyf ~ azlj +|2121yj2
(4, +k,)’ (4, +ky)°

=

On simplification,

O oA (K, + Ky +24,) = A0 K, + KA + 2Kk |
Z ~ 2 ~ D (11_k2)
(4 +K;) 7 (4, +Ky)

=1

(23)

Since (k,, —k,) <0, thenA >0, if

p ~ ~ P «
ny[(kz + kA, + 2K,k I
ol <2 ,where
[k, +k, +22;]c,

M-c

J

) 2,
c. J

T+ K) (A, k)

Case 2: Suppose Kk, >k, then as in above, it can be shown
that
(24)

ThusA >0, if

P ~ A P *
Zlyf[(kz +ky )4, + 2K,k ]e,
J=

UZS

, ,where
2Lk, +k,, + 2/1j ]Cj
j=1

A

* J

C. = = = .
DKy (4 + k)

73



Int. J. Sci. Res. in Mathematical and Statistical Sciences

Hence the theorem is proved.

It is observed that in a similar approach one could compare
MSE (SV4 = kigy with that of MSE of the remaining other
estimators, which are considered under study.

V. SIMULATION STUDY

The simulation study was conducted for various values of n ,
the sample size; p the number of predictors, residual

variance o~ , and p, the degree of correlation, in the
presence of low, moderate and a high degree of
multicollinearity. The results were obtained by generating a
random data matrix X of size (N x P) using the relation:

X, =(1-p° )“Zgij +pEy =120 j=12,..,p;

where &, ‘s are independent standard normal pseudo-random

numbers, p is fixed such that p° is the degree of correlation
between any two predictors. These variables are
standardized such that XX takes up correlation matrix
form, and to generate Y we have assumed vector g as

/ =(0.03,0.5,0.03,0.91,0.59,0.74,0.3,0.95,0.83,0.9,0.5,0.4,0.3,0.5,0.3,0.9)'
The performance of the suggested estimators was evaluated
for various sample size n = 10, 25, 100 and 1000; number of

predictors p =15, and the variance of the residual term o’
5, 25, 100, and 1000; and the degree of correlation p = 0.3,
0.5, 0.7, 0.9, 0.99 and 0.9999. The experiment was
replicated 1000 times each and the average of mean square
error (AMSE) was computed using the relation,

L w0 o a
AVSE() = 1005 2 (B, BV 1)

A%
where, g is any estimator that was used in this study. Ridge
estimates were computed by considering the different

estimators of the ridge parameterk , defined in equations (7)
to (15). The results of the simulation are presented in Table
1. Here, the estimators leading to the maximum ratio of
AMSE of OLS over AMSE of other ridge estimators were
considered to be the best in terms of MSE.

VI. CONCLUSION

The simulation study indicates that the suggested estimator
yields more stable estimates as compared to all the other
estimators which are considered under study in terms of ratio
of AMSE over OLS. It was noticed that (Table 1), when the
sample size n is small (i.e.,n< p), and for small error

variance (0'2:5), the estimators due to [9, 11, 12] have
yielded more unstable estimates for the ridge parameter.
Estimators due to [5, 13, 14, 17] gives more stable estimates
to the regression coefficients, but these estimates over
shrinks when (n < p), and thereby deviated slightly from

© 2019, IISRMSS All Rights Reserved
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the true parameter value. In this context, the suggested
estimator has yielded more stable estimate’s as compared to
all the other estimators which are considered under study for
a wide range of sample size(n), degree of correlation( 0 ),

and error variance(az). Since the performance of the
suggested estimator was verified empirically under various

2 .
values ofn, p ando ™, and also theoretically, we conclude

that the performance of the suggested estimator is better,
satisfactory and comparable to all the other estimators which
are considered under this study. Further in real life situations
there are possibility for further research in the area of
studying inaccuracy of estimates, testing for the significance
of the estimators, and presence of outliers.

Table 1: AMSE ratio of OLSE over different Ridge estimator’s
when error (u) ~ N (0, 6°1), for n=10.

o |AM | p= p= p= p= p= p=
SE 0.3 05 0.7 0.9 0.99 | 0.9999

5 k1 3.5052 3.9484 4.1245 47121 4.7880 4.4881
ka 3.4992 3.8991 4.0960 4.6656 3.7379 1.0154
ks 2.3015 2.8246 3.3689 6.4354 | 14.5040 | 18.1223
ks 1.9289 2.3246 2.1865 2.2704 2.3591 2.2819
ks 7.7626 9.0196 9.2655 | 10.4305 9.0393 7.3488
ke 8.6582 | 10.6234 | 10.7924 | 15.8184 | 18.6218 | 31.3335
k7 3.5119 3.9517 4.1266 4.7167 4.8415 7.2092
ks 3.5054 3.9485 4.1246 47122 47881 4.4881
kg 3.5146 3.9547 4.1285 4.7154 4.7915 4.4917

k1o 3.4295 3.8941 4.0948 4.6636 3.8207 1.0178
ki1 3.4285 3.8911 4.0940 4.6624 3.7395 1.0166

25 ky 4.5073 4.7924 4.4934 4.6348 4.9861 4.7326
kz 4.2380 4.6868 4.3512 4.4955 3.3945 1.0184
ks 2.8982 3.1859 3.7799 6.8787 | 15.3765 | 28.9510
Ks 2.2514 2.3540 2.2857 2.2965 2.2678 2.3069
Ks 13.3060 | 13.2277 | 12.0312 | 10.8080 9.3626 7.9695
ke 24.2855 | 19.4778 | 15.7593 | 18.3605 | 13.9564 | 22.9745
ks 4.5145 4.7958 4.4982 4.6416 5.0413 7.5719
ks 4.5073 4.7924 4.4934 4.6348 4.9861 4.7326
kg 4.5208 4.8006 4.5000 4.6394 4.9895 4.7359

k1o 4.3514 4.7384 4.4171 4.5634 3.6023 1.0218
ki1 4.3233 4.7357 4.4086 4.5602 3.5569 1.0201

kq 4.8054 4.9950 4.7052 4.8531 5.1445 4.7719
100 | ko 4.6798 4.9065 4.5967 4.6430 3.8365 1.0163
ks 3.0156 3.2552 3.9979 7.3391 | 17.0845 | 39.3947
Ks 2.2558 2.4095 2.2541 2.2848 2.4057 2.4421
Ks 13.9265 | 14.4947 | 12.7387 | 11.1766 9.8476 7.9595
ke 27.7249 | 21.8505 | 16.0573 | 21.0466 | 25.3750 | 30.7331
ks 4.8096 4.9979 4.7092 4.8618 5.2192 7.5731
ks 4.8054 4.9950 4.7052 4.8531 5.1445 4.7719
kg 4.8192 5.0031 4.7112 4.8573 5.1477 4.7754

k1o 4.7411 4.9505 4.6500 4.7431 4.0339 1.0190
ki1 4.7379 4.9497 4.6480 4.7311 4.0102 1.0177

1000 | ki 4.6484 4.6762 4.8552 4.6926 4.8502 4.9056
ka 4.5085 4.3757 4.7434 4.4808 3.4806 1.0142
ks 2.8849 3.3872 3.8610 7.0808 | 14.4073 | 38.0209
Ka 2.4028 2.1886 2.3576 2.2841 2.2890 2.3098
Ks 13.8205 | 13.5604 | 12.7824 | 10.8553 9.1894 8.3496
ke 26.8844 | 22.4698 | 16.0421 | 19.5978 | 25.2019 | 52.9182
ks 4.6532 4.6841 4.8596 4.7012 4.9151 7.9087
ks 4.6484 4.6762 4.8552 4.6926 4.8502 4.9056
Ko 4.6617 4.6856 4.8612 4.6971 4.8539 4.9092

k1o 4.5770 4.5102 4.7951 4.5793 3.6948 1.0167
ki1 4.5729 4.4815 4.7918 4.5670 3.6483 1.0155

Table 2: AMSE ratio of OLSE over different Ridge estimator’s
when error (u) ~ N (0, o), for n=25.

g AMS p= p= p= p= p= p=
E 0.3 0.5 0.7 0.9 0.99 0.9999
74




Int. J. Sci. Res. in Mathematical and Statistical Sciences

Vol. 6(4), Aug 2019, ISSN: 2348-4519

=5 | ki 1.0966 | 1.2336 | 1.5706 | 2.5119 | 3.8460 | 4.0615 o= | ki 35072 | 3.6338 | 3.6792 | 3.8057 3.9890 | 3.9478
) 1.0963 1.2334 1.5704 25113 3.8376 3.1381 100 ka 3.5068 3.6336 3.6790 3.8054 3.9872 3.7781
Ks 0.6172 0.6854 0.8168 1.1948 5.2660 | 15.0136 ks 1.0263 1.0367 1.0552 1.1486 25771 | 20.1797
ks 0.6708 | 07702 | 09627 | 14223 | 18313 | 1.9037 Ky 1.0754 | 1.1540 | 1.2967 | 1.5742 1.8178 | 1.8641
Ks 2.2634 2.6651 3.4762 6.3740 | 12.0762 8.5925 ks 9.4578 | 18.0158 | 17.0645 | 16.1660 15.0556 9.1875
ke 1.0752 | 1.1985 | 1.4460 | 2.2302 | 12.0186 | 28.4818 ks 24985 | 19162 | 18441 | 20322 6.2564 | 18.2907
k7 1.0966 1.2336 1.5706 2.5119 3.8461 4.0808 k7 3.5072 3.6338 3.6792 3.8057 3.9890 3.9495
ks 1.0966 | 1.2336 | 1.5706 | 2.5119 | 3.8460 | 4.0615 ke 35072 | 3.6338 | 3.6792 | 3.8057 3.9890 | 3.9478
) 1.0976 1.2342 1.5711 25125 3.8471 4.0627 ko 3.5110 3.6360 3.6805 3.8065 3.9898 3.9485
ko 1.0965 | 1.2335 | 1.5705 | 2.5116 | 3.8418 | 3.5400 ko 35070 | 3.6337 | 3.6791 | 3.8055 39881 | 3.8614
K11 1.0965 1.2335 1.5705 2.5116 3.8418 3.4857 K1 3.5070 3.6337 3.6791 3.8055 3.9881 3.8602
0%=25 | ky 33770 | 35243 | 36864 | 3.8376 | 4.1507 | 4.0701 o= | ki 36794 | 3.6787 | 3.7625 | 3.8500 3.9495 | 3.9542
ka 33756 | 35232 | 36856 | 3.8364 | 4.1408 | 3.1486 1000 | ko 36790 | 3.6785 | 3.7623 | 3.8498 3.9477 | 3.7821
Ks 1.0593 1.0903 1.1533 1.4294 5.8949 | 16.3765 ks 1.0338 1.0402 1.0591 1.1523 2.5472 | 20.3159
ks 1.2111 | 1.3492 | 15839 | 1.7441 | 1.9226 | 1.9033 Ky 1.0828 | 1.1598 | 1.3017 | 1.6043 1.8166 | 1.8695
Ks 28.1625 | 28.8995 | 28.4109 | 23.4998 | 14.3555 | 18.6029 ks 11.6633 | 17.4302 8.9516 9.4455 9.7090 9.1825
ke 3.6256 | 29249 | 27010 | 3.2274 | 13.9508 | 14.4779 ks 24830 | 19109 | 17848 | 2.1669 6.0644 | 17.4241
k7 3.3770 3.5243 3.6864 3.8376 4.1509 4.0891 k7 3.6794 3.6787 3.7625 3.8500 3.9495 3.9560
ks 33770 | 35243 | 36864 | 3.8376 | 4.1507 | 4.0701 kg 36794 | 3.6787 | 3.7625 | 3.8500 3.9495 | 3.9542
) 3.3818 3.5272 3.6883 3.8389 4.1519 4.0712 ko 3.6834 3.6809 3.7638 3.8509 3.9502 3.9549
ko 33763 | 35237 | 36860 | 3.8370 | 4.1458 | 3.5545 ko 36792 | 3.6786 | 3.7624 | 3.8499 3.9486 | 3.8666
K11 3.3763 3.5237 3.6860 3.8370 4.1458 3.5008 K1 3.6792 3.6786 3.7624 3.8499 3.9486 3.8653
o= |k 37285 | 3.7172 | 4.0023 | 4.0213 | 4.0709 | 4.0479 . . . . ,
100 | k, 37269 | 3.7159 | 4.0014 | 4.0200 | 4.0617 | 3.1546 Table 4: AMSE ratio of OLSE over different Ridge estimator’s
ks 1.0957 | 1.1147 | 11781 | 14547 | 5.6495 | 26.0630 when error (u) ~ N (0, 6°1), for n=1000.
Ka 1.2480 1.3882 1.6132 1.8003 1.8784 1.8742 = AM p= P = p= p= p= p=
ks | 51.3975 | 455635 | 41.3902 | 27.0046 | 14.1050 | 85569 SE 03 05 07 09 0.99 0.9999
Ks 4.3790 3.1160 2.7706 3.2837 | 14.2973 | 19.6255
kz 3.7285 3.7172 4.0023 4.0213 4.0711 4.0666 =5 | Kk 0.0608 0.0711 0.0963 0.2266 1.3529 3.8387
ks 3.7285 3.7172 4.0023 4.0213 4.0709 4.0479 ko 0.0608 0.0711 0.0963 0.2266 1.3529 3.8373
Ko 3.7341 3.7205 4.0044 4.0226 4.0721 4.0490 ks 0.0584 0.0686 0.0922 0.2024 0.7374 | 26.1321
kio 3.7277 3.7166 4.0018 4.0206 4.0663 3.5498 Kq 0.0585 0.0687 0.0924 0.2043 0.8593 1.7892
ki1 3.7277 | 3.7166 | 4.0018 | 4.0206 | 4.0663 | 3.5021 ks 0.0944 | 01152 | 0.1591 | 0.3409 | 2.4975 | 11.9403
o= | ki 37276 | 3.8183 | 3.8662 | 3.9286 | 4.0728 | 4.2448 ke 0.0607 | 0.0715 | 0.0961 | 0.2154 | 1.0178 | 53.7723
1000 ) 3.7259 3.8170 3.8653 3.9273 4.0634 3.3299 ks 0.0608 0.0711 0.0963 0.2266 1.3529 3.8387
ks 1.0984 | 1.1184 | 1.1738 | 1.4417 | 5.6510 | 94.8065 kg 0.0608 | 0.0711 | 0.0963 | 0.2266 | 1.3529 | 3.8387
K 1.2482 1.3969 1.5920 1.7785 1.9168 1.9233 ko 0.0608 0.0711 0.0963 0.2266 1.3529 3.8388
ks 53.8947 | 48.7379 | 39.9739 | 26.6138 | 14.1935 9.1099 k1o 0.0608 0.0711 0.0963 0.2266 1.3529 3.8380
Ks 4.4434 3.2807 2.7367 3.2672 | 14.0924 | 15.9370 Kiy 0.0608 0.0711 0.0963 0.2266 1.3529 3.8380
ks 3.7276 | 3.8183 | 3.8662 | 3.9286 | 4.0729 | 4.2639 o%=25 | ki 0.9818 | 1.0931 | 1.3614 | 22360 | 3.6231 | 4.0034
kg 3.7276 3.8183 3.8662 3.9286 4.0728 4.2448 ko 0.9818 1.0931 1.3614 2.2360 3.6231 4.0020
ko 3.7332 | 3.8216 | 3.8683 | 3.9299 | 4.0739 | 4.2459 ks 0.5635 | 0.6135 | 0.6970 | 0.8694 | 1.0874 | 13.1024
kio 37267 | 38176 | 3.8658 | 3.9279 | 4.0681 | 3.7388 ks 0.5646 | 0.6175 | 0.7103 | 0.9443 | 1.4909 | 1.8210
ki 37267 | 38176 | 38658 | 39279 | 40681 | 3.6936 ks 1.9272 | 23914 | 35856 | 82576 | 13.7715 | 12.9191
Ks 0.6522 0.6925 0.7893 1.0235 1.7037 7.1502
Table 3: AMSE ratio of OLSE over different Ridge estimator’s t7 g-ggig i-gggi 1-2212‘ g-gggg ggggi j-gggi
N 2 — 3 . X . . . .
— when error (u) ~ N (0, 6l), for n=100. _ _ ke | 09819 | 10032 | 13614 | 22361 | 36232 | 4.0035
o s p= p= p= p= p= P = koo | 09818 | 1.0931 | 1.3614 | 2.2360 | 3.6231 | 4.0027
03 05 07 09 0.99 0.9999 ku | 09818 | 1.0931 | 13614 | 22360 | 3.6231 | 4.0027
2_
=5 | ki 05371 | 06112 | 0.8020 | 15711 34197 | 3.8714 o= |k 30546 1 31144 1 33425 | 36371 | 39738 | 3.9670
100 | kp 3.0546 | 3.1144 | 3.3425 | 3.6371 | 3.9737 | 3.9656
ka 0.5371 | 06112 | 0.8020 | 15710 3.4183 | 3.7001
ks 0.9564 0.9663 0.9830 1.0051 1.1108 9.7520
ks 0.3819 0.4298 0.5268 0.8186 2.3471 | 12.7263
Ky 0.9591 | 0.9751 | 10081 | 1.1054 | 15295 | 1.8197
Ky 0.3898 | 0.4449 | 05628 | 0.9798 1.7384 | 1.8272 K
s 9.9624 | 16.8922 | 12.8025 | 19.8380 | 17.2263 | 12.7779
Ks 0.9844 1.1736 1.5587 3.3054 11.9150 8.9183 K 1.2
5 2049 | 1.1201 | 1.1393 | 1.2160 | 1.8140 | 6.1615
ke 0.5245 | 05674 | 0.6988 | 1.2482 5.1468 | 16.1818
K ky 3.0546 | 3.1144 | 3.3425 | 3.6371 | 3.9738 | 3.9670
7 05371 | 06112 | 0.8020 | 1.5711 34197 | 3.8731
ks 3.0546 3.1144 3.3425 3.6371 3.9738 3.9670
ke 05371 | 06112 | 08020 | 15711 34197 | 3.8714
kg 3.0551 | 3.1147 | 3.3426 | 3.6372 | 3.9739 | 3.9671
kg 0.5374 | 06114 | 08021 | 15713 34203 | 3.8721
Kio 3.0546 3.1144 3.3425 3.6371 3.9738 3.9663
Kio 0.5371 0.6112 0.8020 1.5710 3.4190 3.7841
ki | 3.0546 | 3.1144 | 3.3425 | 3.6371 | 3.9738 | 3.9663
ki1 05371 | 06112 | 0.8020 | 15710 3.4190 3.7828 —
- o= Ky 3.5234 3.6244 3.5727 3.8064 3.8899 3.8633
0=25 | ki 2.9121 3.0700 3.3203 3.6810 3.9848 3.9387
1000 | ko 35234 | 3.6244 | 35727 | 3.8064 | 3.8899 | 3.8619
ka 29118 | 3.0698 | 3.3201 | 3.6808 3.9831 | 37715
ks 1.0040 1.0053 1.0074 1.0146 1.1095 8.1315
ks 0.9589 0.9817 1.0211 1.1384 25636 | 18.8428
Ky 1.0069 | 10147 | 1.0338 | 11167 | 15239 | 1.8253
Ky 1.0030 | 1.0876 | 1.2503 | 1.5647 1.8747 | 1.8224
Ks 9.1010 7.8982 6.8085 9.6437 7.0370 | 12.2899
ks 9.9761 | 22.9204 | 27.6244 | 31.7710 19.5080 | 9.1642
ke 12339 | 11768 | 11730 | 12371 | 1.7592 | 9.2876
ke 2.0828 | 17809 | 17654 | 2.0874 6.1912 | 17.1139 K
7 35234 | 3.6244 | 35727 | 3.8064 | 3.8899 | 3.8633
k7 2.9121 3.0700 3.3203 3.6811 3.9848 3.9404 K
3.0387 s | 35234 | 36244 | 35727 | 3.8064 | 3.8899 | 3.8633
ks 29121 | 30700 | 33203 |  3.6810 3.9848 k 35240 | 3.6247 | 35729 | 3.8066 | 3.8900 | 3.8634
9 . X . . .
kg 29150 | 3.0716 | 3.3213 | 3.6818 3.9856 | 3.9395 K
3.8536 o | 35234 | 36244 | 35727 | 3.8064 | 3.8899 | 3.8626
kio 29119 | 30699 | 33202 | 36809 3.9839 k 35234 | 3.6244 | 35727 | 3.8064 | 3.8899 | 3.8626
ki 29119 | 3.0699 | 3.3202 | 3.6809 39839 | 3.8524 = : : : : : :
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