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Abstract— In high dimensional regression analysis, a greater number of independent variables occur in many scientific fields 

and machine learning applications. To select predictors that are relevant to the response, statistical feature selection should be 

performed. In the study on variable selection in regression analysis, specifically when there are a greater number of predictor 

variables or highly correlated variables (or both), traditional method includes forward-backward and mixed stepwise variable 

selection procedure fails. There is need of alternatives, that is, L1 penalized regression procedures which provide higher 

prediction accuracy and computational efficiency. This paper demonstrates such procedures, particularly least absolute 

shrinkage and selection operator (LASSO) which does shrinkage and variable selection simultaneously and its variants. In case 

of extreme observations in the data set, robust regression estimators that are adopted in LASSO tolerate outliers with 

comparatively greater accuracy. In this paper, the performance of these procedures has been analyzed using the performance 

measure Median Squared Error (MSE) with numerical illustrations. 
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I.  INTRODUCTION  

 

Datasets with outliers or heavy-tailed errors are commonly 

encountered in many scientific field and real-time 

applications. In regression analysis, those extreme 

observations may appear in the response variable or in the 

predictor variables.  In this case, the Ordinary Least Square 

(OLS) estimators fails to produce true value of an estimator. 

On the other hand, one of the main problems which occur in 

linear regression is variable selection. Variable selection or 

feature selection has become widely used as an important 

task in statistics. Nowadays when it comes to high-

dimensional models, penalized estimators are widely 

considered rather than maximum likelihood estimators. As 

number of predictor variables increases, the predictive model 

becomes less effective due to most covariates being inactive 

in the model. This will cause the problem of over-fitting or 

under fitting, computations become very complex and also 

decrease the prediction power due to the noise. The effects of 

covariates and interpretations would become impossible to 

understand. So, the need for selecting variables in the 

predictive model is necessary and hence there are plenty of 

penalized regression procedures are established in the past 

few decades to perform feature selection in regression model.   

 

Standard lasso and its variants were developed to reduce the 

coefficients in the model towards zero exactly. In some 

cases, it is reasonable to perform feature selection by 

grouping features. Group lasso proposed by Yuan and Lin 

(2006) in which coefficients are grouped. This lasso suffered 

from estimation inefficiency and inconsistency in variable 

selection in the same way as lasso. To overcome these 

limitations, Wang and Leng (2008) proposed adaptive group 

lasso which selects relevant features by adding weight vector 

in a grouped way. This can find the true 

consistency and satisfies oracle property.  

     

Nowadays robust variable selection procedures are playing a 

vital role in the context of regression analysis. Wang et al. 

(2007) suggested that the lasso penalty to the least absolute 

deviation (LAD) estimation in robust linear regression. Zou 

and Yuan (2008) introduced composite quantile regression 

for a particular case where error variance is infinite. A 

unified theoretical structure of penalized techniques studied 

in detail by Negahban et al. (2012). Wang et al. (2013) 

introduced the exponential squared loss estimation for robust 

variable selection. Penalized least trimmed square (LTS) 

procedure was given by Alfons et al. (2013). The penalized 

Huber’s loss for asymptotic contamination was studied by 

Fan et al. (2016). Lozano et al. (2016) worked on penalized 

L2 distance estimation to manage the skewed response 

variable and variable selection. Qin et al. (2017) studied 

maximum tangent likelihood estimator (MTE) and its 

asymptotic properties. It works on variable selection and 

enjoys the oracle property.  

http://www.isroset.org/
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In this paper, Section II briefly recall the various lasso-type 

methods. Section III demonstrates the performance of 

various penalty methods with real data. This paper concludes 

with a discussion in the last section. 

 

II. PENALIZATION METHODS  

 

The lasso and its variants are briefly summarized in this 

section. 

 

A.  LASSO  
Standard lasso is performing well when regression error has 

extreme observations. To obtain a robust estimator, Wang et 

al. combined the least absolute deviation (LAD) and Lasso 

penalty to produce LAD-Lasso estimator which is defined as 

follows 
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the sum of squares with a constraint of the form ti   , 

where 0t is a tuning parameter which controls the amount 

of shrinkage that remains same for all regression coefficients. 

Lasso does not only shrink coefficients towards zero but it 

also provides a selection of the significant covariates. It is 

known that, the OLS estimator criterion used in lasso 

regression is very sensitive to outliers.  

 

B. LAD-lasso 
Standard lasso is performing well when regression error has 

extreme observations. To obtain a robust estimator, Wang et 

al. combined the least absolute deviation (LAD) and Lasso 

penalty to produce LAD-Lasso estimator which is defined as 

follows 
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By using suitable n , LAD-lasso satisfies oracle property. 

Besides as Zou (2006) showed that by using appropriate 

n and a weight vector, ),,...,( 1 pj www


  adaptive LAD-

lasso satisfies the oracle property. Moreover, the resulting 

estimator is not affected by skewed errors since the squared 

loss is altered to L1 loss. However, this loss penalizes 

strongly on small errors. Specifically, when the error is not 

skewed, it suffers from efficiency over adaptive lasso. In this 

case, Huber’s criterion with lasso is preferable.  

 

C. Huber lasso   
The performance of LASSO will be poor if the regression 

response variable suffers from outliers or if the variable is 

skewed. Lambert and Zwald (2011) combined Huber’s loss 

function with adaptive lasso penalty, defined by 
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where weights vector and the Huber’s criterion is defined by 
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where s>0 is a scale parameter for the distribution. The 

criterion Hadl


is a combination of Huber’s loss function and 

adaptive lasso penalty together. Hence, the resultant 

estimator tolerates more extremes and filter variables 

simultaneously. Here, robustness is controlled by the shape 

parameter M. Huber suggested M as 1.345 to get robustness 

efficiently for normally distributed data. Generally, Huber’s 

method tolerates more extreme observations in the dataset. 

But for normally distributed dataset, its efficiency is low. 

 
D. LTS  

LTS estimator is defined by adding a penalty parameter   

which leads to the sparse LTS estimator. Combination of 

Lasso and LTS estimator is defined as 
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where 22 )()(  iii XYr  , i=1, 2, …, n is the squared 

residuals and )(...)( 2

)(

2

)1(  nrr  is their ordered 

statistics. LTS lasso cannot be computed for high-

dimensional data where p > n. It also has a high breakdown 

point. It performs well when the dataset is contaminated with 

multiple regression outliers.  

 

E. MTE 

 
In 2017, Qin et. al., introduced penalized MTE for estimation 

in high-dimensional regression and variable selection. 

Penalized MTE for variable selection defined as     
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where function  .ln t is defined as 























 .0
!

)()ln(
)ln(

,)ln(

)(ln

1

tuif
k

tu

v

v
t

tuifu

u
k

tv

p

k
k

k

t
               (7) 

 

where 0t is a tuning parameter, )(ln ut is a p
th 

order 

Taylor expansion of )ln(u for .0 tu   MTE-Lasso is 

defined as, 
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function. This penalized MTE performs well in robust 

estimation and variable selection under high dimensional 

regression. Also, it enjoys consistency, asymptotic normality 

and oracle property under fixed dimensional regression. 

III. NUMERICAL STUDY  

The performance of various penalization procedures has been 

studied under real data and the results obtained are 

demonstrated in this section. Penalization methods are 

applied to Boston housing price data set which is taken from 

1970 census. There are totally 506 observations, each having 

13 predictor variables namely crim (1), zn (2), indus (3), chas 

(4), nox (5), rm (6), age (7), dis (8), rad (9), tax (10), ptratio 

(11), black (12), lstat (13) and a dependent variable mdev. As 

the dataset contains outliers, they were detected and removed 

by using cook’s distance. Analysis of this study was carried 

out by R software. The results such as variables selection, 

MSE under various procedures by considering with and 

without outliers are summarized in the following table. 

 

Table 1: Analysis results of Boston house data 

Methods 
Selected variables 

MSE 
With outliers Without outliers 

lasso 
1, 2, 4, 5, 6, 8, 9, 10, 

11, 12, 13 (11) 

1, 6, 10, 11, 12, 13 

(6) 
5.81(4.69*) 

lad 
1, 2, 6, 8, 10, 11, 12, 

13 (8) 
1, 2, 6,10, 12,13 (6) 5.12(3.71*) 

adaptive 

lad 

6, 8, 10, 11, 12, 13 

(6) 

6, 8, 10, 11, 12, 13 

(6) 
4.63(3.90*) 

huber 
2, 5, 6, 7, 10, 12, 13 

(7) 

4, 6, 10, 11, 12, 13 

(6) 
4.62(3.65*) 

lts 
1, 6, 10, 11, 12, 13 

(6) 

1,6, 01, 11, 12, 13 

(6) 
5.55(3.92*) 

mte 
1, 2, 5, 6, 8, 11, 13 

(7) 
1, 6, 8, 9, 11, 13 (6) 4.55(3.64*) 

*without outliers 

It is observed that both adaptive LAD and LTS methods 

select the same variables namely crim, rm, tax, ptratio, black 

and lstat under with and without outliers. The variables rm 

and lstat are most important variables, since all methods 

selected these two variables under with and without outliers. 

The variables such as tax, ptratio, black was considered the 

necessary variable for prediction by almost all methods. 

Further it is noted that, there exist in the multicollinearity 

among the variables such as (Indus with nox, dis, tax), (nox 

with age, dis) and (age with dis) and (tax with rad). Robust 

procedures automatically eliminate correlated variables and 

take care of them.  

IV. CONCLUSION  

The performances of various LASSO penalty methods were 

studied with Boston housing price data set with and without 

outliers. From the numerical study, the efficiency of variable 

selection and accuracy of prediction is also compared with 

the standard lasso. All the robust procedures perform well 

when compared with standard lasso by considering the 

median squared error. Further, it is noted that the robust 

procedures MTE and Huber lasso performs better when there 

are extreme observations. It is concluded that the robust 

procedures perform well even with extreme observations and 

the presence of multicollinearity among the variables. 
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