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Abstract— We consider a single floating hollow cylinder in water of finite depth and investigated associated diffraction 

problem due to interaction of water wave with hollow cylinderical structure. This device can be considered as wave energy 

device because a single hollow cylindrical structure represents a particular form of wave energy device (oscillating water 

column). We used the method of separation of variables to obtain the analytical expressions for the diffracted velocity 

potentials in clearly identified regions. By using the appropriate matching conditions along the virtual and physical boundaries 

between the regions, we obtained and then solved a system of linear equations for the unknown coefficients. We obtained wave 

forces which play a significant part for a floating structure. It is observed that the changes in radius and draft of the cylinder 

have significant effect on exciting forces.  For higher range of frequencies, the exciting forces diminished and tends to zero. 

The values of exciting forces with various parameters are depicted graphically and compared with available results. 
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I. INTRODUCTION 

Diffraction of water waves by floating structure has long 

been investigated by many researchers under the assumption 

of linearized water wave theory. The present investigation is 

related to the diffraction of water waves by a single hollow 

cylindrical structure. This model can be referred as one kind 

of wave energy device (Oscillating Water Column). By this 

system of energy device, the power of ocean waves can be 

converted to an electrical energy. Proper positioning of the 

device will allow the device to capture waves as large as 

possible. This type of energy converter assumes immense 

significance for offshore structures also. It is known, in 

general, that corresponding to a coordinate system OXYZ, a 

floating structure undergoes six degrees of freedom: the 

translational motions in the x-, y- and z-directions are 

referred to as surge, sway and heave, respectively and the 

rotational motions about x, y and z axes are referred to as 

roll, pitch and yaw, respectively. 

   Various theoretical investigations have been carried out to 

analyze the wave motion and wave force on a structure. 

Garrett [1] presented the results for the horizontal and 

vertical forces and torque on a dock. He used Galerkin’s 

method to solve the problem numerically. Bhatta and 

Rahman [2] calculated the wave loading due to scattering 

and radiation for a floating cylinder in water of finite depth. 

They decomposed the total velocity potential in to four: one 

due to scattering and the other three due to radiation. For 

each case, they derived the velocity potential by considering 

interior and exterior regions. Wu et. al. [3, 4] investigated the 

problem of diffraction and radiation for two solid cylinders 

under different considerations. They obtained the expression 

for the velocity potential by using the separation of variables 

method and matched eigenfunction expansion method and 

investigated the effect of the caisson, approximated by a 

solid cylinder, on the floating cylinder. Hydrodynamic 

coefficients and exciting forces were presented for some 

ratios of the radius of the submerged cylinder to that of the 

riding one. Mavrakos [5] investigated the diffraction 

problem of the interaction between regular sinusoidal 

incident wave and a bottomless cylindrical floating body 

with a vertical symmetry axis and finite wall thickness. 

Newman [6] presented the hydrodynamic coefficients of a 

special toroidal body under linear water wave theory. He 

investigated hydrodynamic coefficient and elevation to the 

free surface for a range of wavenumbers in the moon pool 

along with singular results. Hassan and Bora [7, 8] 

considered a pair of co-axial hollow cylinder and solid 

cylinder in water of finite depth and presented sets of 

exciting forces for different radii of the cylinders and for 

different gaps between the cylinders. 

Nonlinear water wave theory was employed by Rahman and 

Bhatta [9] in which they derived second order wave forces 

acting on a pair of cylinders. Shen et. al. [10] investigated the 

influence of a bottom sill on the added mass and damping 

coefficient, wave force to a rectangular structure floating on 
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the free surface. Siddorn and Taylor [11] considered array of 

truncated cylinders in water of finite depth and investigated 

the diffraction and radiation problems under linear water 

waves for this structure.  Zhu and Mitchell [12] derived a 

first order analytical solution for the diffraction problem 

around a hollow cylinder. They used a new approach to 

analyze the dependence of the solution upon various 

parameters, as well as the rate of convergence of the series 

solution. Zhang et. al. [13] considered two vertical truncated 

cylinders in water of finite depth.  They presented sets of 

hydrodynamic coefficient and wave forces for various 

parameters. Kumar and Sharma [15] discussed about the 

flow between annular space surrounded by a rotating coaxial 

cylinder with co-axial cylindrical porous medium.  

Remaining part of the paper is organized as follows: Section 

2 describes the mathematical formulation of the problem. 

Methodology of the paper is given in Section 3. The 

governing equation and related physical boundary conditions 

are shown in Section 4.  With the help of diffracted velocity 

potential, we derived the expressions of exciting force in 

Section 5. The numerical results and discussion is given in 

Section 6. The last Section 7 describes the conclusion and 

future work of this paper. 

II. MATHEMATICAL FORMULATION OF THE PROBLEM 

Let us consider linear water wave propagation in an ocean of 

uniform depth 1h . We consider single hollow cylinder of 

radius  R . Some part of the hollow cylinder is above the 

free surface as shown in Figure 1. A right-handed Cartesian 

coordinate system Oxyz  is defined with the origin O  in the 

undisturbed free surface and z -axis measured positive 

upwards, direction of propagation of waves is considered 

along x -axis. The hollow cylinder, occupies the region 

defined by 1,  0 2 , - 0r R e z      . Since we 

consider the motion is irrotational, fluid is incompressible 

and amplitude is small so that we can apply the theory of 

linear water wave. 

III. METHODOLOGY 

We can introduce the total velocity potential 

( , , , ) Re[ ( , , ) ]i tr z t r z e      ,                                (1) 

where Re denotes the real part of the quantity in bracket,   

is the angular frequency of the incident wave  and 

( , , )r z   is the spatial part of the velocity potential. 

Therefore ( , , )r z   satisfy Laplace's equation 
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Since we divide the whole fluid region into to sub regions 

one is exterior and the other is interior regions.  The 

solutions for the boundary value problem are obtained in 

interior and exterior regions. Therefore, the velocity potential 

  is decomposed into two potentials defined on r R  

and r R , respectively: 
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Where the velocity potentials  
int  and 

ext  denote the 

velocity potential in the interior and exterior regions, 

respectively. The incident velocity potential with unit 

amplitude and angular frequency  , propagating along the 

positive x -direction is given by ( MacCamy and Fuch, [14]) 
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where 1i   ,  g is the gravitational acceleration and 

the wave number k  can be determined from the dispersion 

relation  1

2 tanh khgk  and  (.)mJ is the Bessel of 

first kind of order  m and m  is given by 
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Figure: 1: Schematics diagram of the device 

IV.  BOUNDARY VALUE PROBLEM 

 

The governing equation and boundary conditions: 

The diffracted velocity potential d  can be written as 

 ( , , , ) Re[ ( , , ) ]i t

d dr z t r z e      ,  where the spatial 

part d  satisfies the following governing equation and 

boundary conditions: 
2 0,     in the  respective regions d             (5)       
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and the radiation condition is given by 
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Solution to the problem 

 

The fluid domain is divided into two subdomains namely 

interior and exterior regions as indicated in Figure 1. We 

apply the separation of variables method in each subdomain 

in order to obtain expressions for the velocity potential. The 

analytical expression for the diffracted velocity potentials in 

the exterior and interior regions can be obtained as,
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where nmA ,  and nmB ,  are the unknown constants and n  

can be determined from the dispersion relation: 
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The radial functions  .mR  and  .mU  are given by
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where 
(1) (.)mH  and (.)mJ  are the first kind Hankel 

functions of order m and first kind Bessel function of order 

m, respectively, whereas (.)mI  and   (.)mK are the first and 

second kind modified Bessel functions of order m, 

respectively. 

 

Matching conditions: 

 

We can have the appropriate matching conditions by means 

of continuity of pressure and that of velocity along the virtual 

boundaries as depicted in Figure 1. At , r R  i.e., along the 

curved surface of cylinder, extended up to the bottom, we 

have 
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In order to find the unknown coefficients which are present 

in the expression of the diffracted velocity potential, we 

apply these matching conditions.  

                                   

                                                                  

 

V. WAVE FORCE 

Now we proceed to find the wave exciting forces acting on 

the cylinder due to the diffraction taking place on their 

surfaces. Exciting forces are generally due to the combined 

action of an incident velocity potential and a diffracted 

velocity potential on the structure. Let us assume that iF  is 

the horizontal exciting force for an incident velocity potential 

and dF  is the diffraction force due to  diffracted velocity 

potential. 

Therefore, the total horizontal exciting force acting on the 

hollow cylinder can be written as 

h i d i x d x

W W
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where knjninn zyx
ˆˆˆ   is the outward unit normal 

vector on the surface of cylinder, W  is the wetted surface of 

the cylinder and ds is the small surface element and  dF is 

the horizontal diffraction force due to the diffracted velocity 

potential 
ext . 

Now by using equations (4), (10) and (14), we get the total 

horizontal exciting force acting on the hollow cylinder as 
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The dimensionless horizontal exciting force 0/hF w , where 

2

ow g R  , is given by 
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VI. NUMERICAL RESULTS AND DISCUSSION 

Since the expression of the diffracted velocity potentials are  

in the form of an infinite series, therefore, it is need to 

truncate each series suitably to compute the values of the 

coefficients. Hence, all infinite series are truncated after a 

finite number of terms, say, N=30. Subsequently, we arrived 

at a linear system of algebraic equations and then solved this 

system of linear equations with the help of MATLAB 

programme. Once we have the values of all unknowns 

coefficients which are present in the expression of diffracted 

velocity potentials. This allow us to evaluate the exciting 

force acting on the cylinder.   

  

 

 
Figure: 2:  Non-dimensional horizontal exciting force 

0/hF w   acting on the cylinder versus non-dimensional 

frequency /R g    for different values of draft of the 

cylinder with  1/ 0.2R h   

 
Figure: 3: Non-dimensional horizontal exciting force 

1/hF w    acting on the cylinder versus non-dimensional 

frequency 1 /e g     for different values of radius of the 

cylinder with 
1 3h m     1 1/ 0.2e h    

 

Figure 2 represents the non-dimensional horizontal exciting 

force 0/hF w  versus non-dimensional frequency /R g  

with different values of draft of the cylinder and it is 

observed that higher values of the force are attained 

corresponding to the higher values of the draft. The forces 

have higher values corresponding to the lower values of 

/R g . The peak values occurred for smaller values of 

the frequencies. Figure 3 represents the non-dimensional 

horizontal exciting force 1/hF w  where 
2

1 1w g e   

versus non-dimensional frequency 1 /e g  with different 

radii of the cylinder for a fixed draft 1e . In this figure, the 

main observations are that for larger values of radius ratios, 

the concerned force attains higher values. The exciting forces 

are decreasing as frequencies increasing.  

 

VI.       CONCLUSION AND FUTURE SCOPE 

We derived the analytical solution of the diffraction problem 

of water wave by considering a floating single hollow 

cylindrical structure in uniform water depth. We used 

matched eigen function expansion and separation of 

variables methods to solve the problem completely. This 

structure may be considered as one kind of wave energy 

device (Oscillating water column). We have presented the 

influence of various parameters on the exciting forces. Our 

results may give the useful information for engineer to 
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design the device in order to extract maximum energy. One 

can extend this work in two layer fluid.      
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