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Abstract: In this paper, we study the asymptotic behaviours of generalized hypergeometric polynomial Set Sp(x,y) for
large value of n, the order of the polynomial sets. Generating function is generally used for the determination of the
asymptotic behaviours of the polynomial set as the order of the polynomial set tends to infinity. Hence if the radius of
convergence is finite, then the generating function has one or several singularities on the circle of convergence and the
location and nature of these singularities determine the behaviours of the polynomial set when the order tends to infinity,
But here we have obtained the asymptotic behaviours not from the generating function but by another method directly from
the polynomial set. These behaviours for large n have been given in the form of Theorem. A number of well known results
for orthogonal and non-orthogonal polynomials have been deduced as particular cases of these theorems.
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I. INTRODUCTION

Suman and Singh [1] defined the generalized hypergeometric polynomial set Sn (X, y) by means of the generating
functions,
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Where A, 7‘1’ 7‘2’ k3 are real and ey, ey, ez are positive integers.

The left hand side of (1.1) contains Appell function [2] of two variables in the notation of Burchnall and Chaundy[3]. The
polynomial set contains a number of parameters, for simplicity, we shall denote.
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Sn,e;el;ez;eS;(Hs)(bq);(Bk);(DV) (X’ Y)
by Sp (X, y).

Where n denote the order of the polynomial set.
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After little simplification (1.1) gives
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The polynomial set Sh (x, y) happens to the generalization of as many as forty-one orthogonal and non- orthogonal
polynomials.
Il. NOTATIONS
1) (my=1,2,3,......,m.
(ii) (Ap):Al,Az,A3, ...... Ap.
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I1l. BEHAVIOURS OF S (x, y) FOR LARGE VALUE OF n

Theorem: 1(a) If e, > 1, them
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Proof : We have from (1.2)
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Therefore,
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Hence the proof.
Particular Cases of (3.1) :
1. OnPuttingp=0=g=h=k=u=v;m=1=m;=e; =e3=hhly=1=eyhy=—1,y=x,,in(3.1)we

get
1
r!i_r)rgo{(an)_n H, (nx)} —e 4
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2. Ifwetakep=0=g=h=k=u;v=1=m=m =e| =hky=ey;D=1; k3 =1;y=2xe, =2, and -— for
\/xz—l

X, in (3.1),we get

n'Ln;wx)“{X2<“2-1)*1}2"”{x2<n2n—xl>+1}"°{ sz_l}

where 1y (x) is the modified Bessel function of the first kind of Index zero.

3. Onputtingh=0=u;k=1=v= e3=Vy; and writing for xand y in (3.1) , we get

| M 1) 27 ng){ ] }

el (k)" (20), J(? -1)(x? +1)

where C* ( x)are the Gagenbauer polynomials.
n

Theorem: 1(b) Ife2 =1, then
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Hence the proof.
Particular Cases of (3.4) :
1. OnPuttingh=0=k=u;v=1=n=%3; L, =1, foryin (3.4), we achieve

L(na)(yj —a 1
lim{—%/ —yZJC{Zy?]

h—w (X + 1)a

where J,x) are the Bessel function of the first kind of index a.
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2. OntakinthOZu;k:1:v:e3; ,D1:1+[3in(3.4),weget

lim () (-] p(a,ﬁ)[(x+1)+(><—1)nz]

h—>a0 (x—l)n (1+B), "

B
X+1)2 X+1
zr(1+[3)(—x_1j '5(2 —X_J

where In(x) are the modified Bessel function of the first kinds of index n.
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3. Onputtingh=0=u;k=1=v= e3; By =1+ B;Dy=1+ o and instead of x and y in (3.4), we get

lim -
h—o (x+1)" (1+ oc)n

n!|:(X+1)—n2(X—1):|n Pn(“’m(nz(x +1)+(x—1)]

n®(x+1)—(x-1)

~I(1+ a)@—;ﬂ ’ h{z ;(—:]

4. On making the substitutions h=0=u; k=1=v = e3 =y, and writing for x and y in (3.4), we get

- n![(x Jrl)—nz(x—l)]n C(x)[nz(x +1)+(x—1)J

| (), (k) —(x+1)

At
ZF[MEJ(X_—ljz L=
2 )\ x+1 X—E X+1

where C% (X) are the Gagenbauer polynomials[4].

Theorem: 2(a) If we take ey> 1, we have

on ![(bq )]n [(Be)] 25" (cosrzlj_ne3
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Proof: We have from (3.4)
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After writing cos — for n, in the above result, we obtain.
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Hence the proof .
Similarly
Theorem: 2(b)
—neg
n Z

_ n![(bq)}n [(Bk)]n Ka (Cosnj S n(h—k+|o—q+1) COSE nP-d COSE
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Particular Cases of (3.6) :
I. OnPuttingp=0=gq=h=k=u=v;m=1 =my=e :e3:7»; 7»3: 1 :eZ;XZZ—l,y:xin(3.6),weget

n 1

. z Z n
lim (chos—j Hn(cos—] =e4
h—w n n

1. Ifwetakep=0=q=h=k=u;v=l=m=ml=el=7»2=e3;Dl=l;k3=l;y:2x,

e, =2, and X
2T o and T
Vx2-1

for x in (3.6), we get

N N ncos—
lim{| ncos= | |n?cos?~-1|" P, 0 = 1o (1)
n n

h—o0
- \/(nz coszz—lj
n

I11. On making the substitutionsh=0=u;k=1=v= eg=Yy; and writing for x and y in (3.6), we get

0 . , : ncos >
lim —(ncos—j [nzcosz——lJ cM|——n_
hoe | (21) n n n? cos? Zl

= 0F1

NG

o 1
— 2 -
2 F(“z)'x;(')

k+l;
2

where sz (x) are the Gagenbauer polynomials.

IV. CONCLUSION

In this paper we studies the asymptotic behaviours of generalized hypergeometric polynomial set S,(x,y) for large value of
n, where n is the order of the polynomial set. These behaviours for large n have been given in the form of theorems. A
number of well known results for orthogonal and non-orthogonal polynomials have been deduced as

particular cases of these theorems.
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