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I. INTRODUCTION

A large number of literatures are available which deal with fixed and common fixed points of point-valued mappings in metric
spaces, Banach spaces, Hilbert spaces, etc. Very few literatures are available which deal with common fixed points of point-
valued mappings in Uniform Hausdorff spaces. In this paper attempt has been made to obtain some common fixed point
theorems in sequentially complete Hausdorff Uniform spaces in such a way that they generalize some theorems which have
already been proved in metric spaces.

Let (X, U) is a uniform space.
A family {d, : AeI", T is an index set} of pseudometrices is called an associated family for the uniformity u if the family B =
{v(@,r):iel", r>0}, where V(i,r) = {(x.y) : x,yeX, d(x,y)<r} is a sub-base for the uniformity u.

A family {d,}, e I'", T" is an index set of pseudometrices on X is called an augumented associated family for u if {d.
»e I }is an associated family for u and has the additional property :
Givenabe I, thereisave I such that

dv (X,y) > max {da (va)l db(le)}'

An associated family and an augumented family will be denoted by P and P* respectively. For details one can see
Kelley [2], Thorn [5], etc.

Il. SOME DEFINITIONS

Let S and T be self-mapping of a sequentially complete Hausdorff uniform space (X, U) defined by {d, : AeF} =P*. Sand T
are said to be weakly commutative on X if

d;, (STx, TSX) < d; (Tx, Sx)
forall xeXand AeI.

Further S and T are said to be compatible if lim d, (STx,, TSx,) =0 for all ,.e I" whenever {x.} is a sequence in X and that lim
dy, (Sx,, t) = lim d;, (Tx,, t) for all AeF and for some teA.

The above two definitions are analogous to the definitioins as introduced by Sessa [4] and Jungck [1] in metric spaces while
proving some common fixed point theorems in metric spaces. It is to be noted that weakly commutative mappings are
compatible but the converse is not true [3].
Let w : [0,00) — [0,00) be such that w is continuous and O<w(r) < r for r>0.

We now prove the following theorems :

Theorem 1. Let (X, U) be a sequentially complete Hausdorff uniform space defined by {d; : ,e "} = P*. Let f, g, h and J be

four mappings on X satisfying
dy. (fx, gy) < max {d;. (3, hy), d:. (x, gx), d;. (gy, hy),
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d, (3x, gy) +d, (hy, fx)
2
d; (I, gy) +d, (hy, &)
2
Let h and J be continuous h and g be compatible and f and J be compatible. If f(X) < h(X) and g(X) < J(X) then f,g,h
and J have a unique common fixed point in X.
Proof. Suppose f(X) < h(X) and g(X) < J(X).
Let xo € X. Then there exists a sequence {X,} such that
Yan = fXan = hXzn.q and
Yon+1 = OXon+1 = JXons+o for all n=0,1,2,...
Now for all x,yeX and Ae I" . We have d; (Yo, Yons1) = 0y, (FXan, OXons1)
< max {d;, (IXan, NXzns1), Ay (FX2n, IXan), Ay (9Xan, hXans41), Ay (IX2n, 9Xons1)

. d, (hx,,,fX5,) }
2

} - w[max {d, (Ixhy), dy (x,gx), ds (gy,hy),

} forall x,yeX, ae .

d; (IXpn, OX on,1) +(d; (hX 5, TX50) N

—w [max {d;, (IXzn, NX2n+1), A (FXan, IXzn), Ay (9X2n, NXansa), 5

< max {d;, (9Xan-1, TXan), dy (FXan, 9Xon-1), Ay (GX2n+1, TX2n),
di (gX 2n-11 gx 2n+1) + (dx (fXZn 'fx2n ) }
2

d; (9K ongs KX onpa) + (dy (X5, TX ) N

—w[max{d;(9Xzn-1,fX2n), dr. (FX2n, 9Xon-1), Ay (GX2n+1, TX2n), 5

1T dy. (Yan-1, Yon) < A (Yons Yansa) 1.8, 0F
d?» (gXZn—ln fXZn) < dx (gX2n+1: fXZn): then
d, (9%an-1, OXon+1) < Gy (OXzn-1, TXan) + dy (FX2n, GX2n41)
< dy. (FXan, OXans1) + i (FXan, GXane1)

and di. (Yon, Yone1) < £y (Yon, Yone)} — W [d (Yan-1, Yone1)] < Ao (Yans Yane1),
which is a contradiction and so

dk (yZny y2n+l) S dk (y2n—1y y2n)-
We next show that lim d, (y,_, y») =0 foreach ae T .
n—oo

Since d;. (Ya_1, Yn) is a decreasing sequence of non-negative terms, then lim d, (y,.1, y») = deR, say, we want to
n—o0

prove that d=0.
Suppose d>0 and since d is continuous and

n
since D W(d; (¥2, Y2)) < dh (Yo, Y1) = s (YnYier) < 0 (Yoy),
i=0

o0
the series Z w(d,, (i, Vi+1)) is convergent.
i=0
Hence lim w(d,) = 0.
n—o0
Since {d,} is a decreasing sequence of non-negative terms, we have
limd,=d, say e R
n—o0
Since w is continuous it follows that

lim w(d,) = w(d)
n—o0
and therefore w(d) = 0.
But since w(r) > 0 for r>0 and so
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d=0, i.e., limd, (o1, ys)=0andrel .
N—o0

We now show that {y,} is a Cauchy sequence. Then for every positive number [ and for every positive integer K
there exists two positive integers 2m(k) and 2n(k) such that 2m(k) > 2n(k) > k and d;_ (Yamgq, Yom@) > =
Further let 2m(k) denote the smallest even integer for which 2m(k) >2n(k)>k,
i (Yom@qs Yangg) > [ and dy, (Yamg-2, Yangg) < 0
Now, I < dy, (Yam@ Yangg) < G (Yam@o-2: Yangig) + A (Yomgg-20 Yom-1)
+ 0y (Yam@-1) Yan()-
Letting k—o0, we get

M d;. (Vamg, Yan) = O for each ae T
k—o

By triangle inequality, we have
Idy. (Yom Yango+) = Ar (Yam@q » Yanaodl < i (Yomeyr Yon(o+1)
Idy. (Yomg+r Yango+1) = da (Yange » Yangos)] < A (Yam@er Yome+)s
Idy. (Yomg+: Yongo+2) = da (Yomao+1 » Yangge)| < O (Yomgg+1, Yom@g+2)s
Idy. (Yomg+1r Yango+2) = Aa (Yam@o+1 s Yangge2)| < O (Yomgge1r Yom@g+1),
D= 1imedy (Yams Yangoen)

K—a0

= lim d;, (Yamgs1, Yan+1)
k—o0

1M d;, (Yamgos1s Yanio+2)
k—o0

klim ;. (Yam, Yangy+2) for each ae I
—®

By the given assumption,
dr (Yomeky+1: Yan(y+2)
= dy (9Xomy+1, Xan(ig+2)
< max {d;, (9%an@y+2: NXomy+2),
. (PXan(y+2: IXany+2)s Bo (OXam+1, NXomy+1),

d; (PXanw 2> P amews) + i (MXomag» X o 42)
2
—w [max { dy.(fXangys2, IXang+2)s da (9Xomiig+1, NXomig+a)s
d; (MXonw+2s P amw1) +dr (X omg s Xon+2) Y
2

d; (Yon@s1 Yom@s) + A2 Yomag s Yan+2)

= max{d(Yam@ Yan+1)s d(Yommy+1:Y2no+2), D (Yomar Yom@o+1)s

2
d; (Yanysar ¥ )+d; (Yomy Y )
(k)+1r Y 2m(k)+1 A\Y2m(k)» Yan(k)+2
—Wmax{d; (Yam@Y2ngo+1): 85 (Yam@+1,Yon(+2), 00 (Yomi Yom(i 1) > H
foreach Ae .
Letting k—oo we get,
oogoo-oodoogoon
which is a contradictions. Thus {y,} is a Cauchy sequence.
Since X is sequentially complete, three is a point &eX such that g=lim y,. Consequently {fx,.}
nN—ow

= {hXzn+1} and {gXons1} = {IXane2} CONverge to &. The mapping J is continuous. Then we have forall Ae I™,
dy, (FI%zn, 9X2n+1) < Max {d; (3IXzn, NXone1), Ay (FIX2n, JIXan), di (9X2n, NX2n41),

d; (3IXp0, X on1) +d; (WX 50,1, hIX5, ) }
2

—w[max d;, (fIXzn, 9Xzn+1) < Max {d; (JXzn, WXzn+1), A, (FIXzn, JIXzn),
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dﬂ (‘]‘]XZn ’ gX 2n+1) + dx (hx2n+1’ h‘]XZn) }]

2
Since the mappings f and J are compatible, then we have
d. (JE,&) < max {d;. (JE,&), dy. (JE,JE), dy. (§,8), di (JE,E)}
—w[max d; (J&,€) < max {d; (JE,8), dy (JE,JE), d;. (§,€), di. (JE,E)}]
=dy (JE,8) — w(dy (JE,8)).
Now we consider £=JE. Since (X,U) is a Hausdorff space and £#JE, there is an index [ e I" such that d; (&,J€)=0.
Therefore, we have
dy (JE,E) <d; (JEE) —w (dr (JE,E)) <di (JEE)
which is a contradiction. Hence JE=E.
Further we have for Le I,

d)\. (gX2n1 hx2n+l)y

d,; (IS, 0K 5n,1) +dy (WX 50,4, fE) )
2

d; (I, 0X 50,1) +d, (hX5, 4, TE)
2

d, (f€, 9Xon+1) < max {d,(JE,hXons1), di(NXons1,FE), dp(OXon+1,MXan+1),

—W[max{ dx (f&,: gX2n+1) < max {d).(JaahXZnﬂ): dx(hX2n+1|f§)l dx(gX2n+1,hX2n+1), }]

Taking limit as h—co, we have

1
dk (fE_,,E_,) < max [dk (E.alg)v dx(fé,g), dk (i@)v E dk (fé,é)}

1
-w [max d; (f¢,&) < max [d (€,8), d.(f€,8), dy. (€.9), 5 dy. (f€.9)}]

i.e., . (f€,8) < dy (fE,€) —w (dy (fE.5))
for each Ae I, which is a contradiction. Hence f&é=¢. Thus fE=JE=¢.
Since h is continuous, we can show that g&=h&=¢ and & is a common fixed point of f,g,h and J.
To prove the unicity of &, if possible let & be another common fixed point of f,g,h and J and let £-&'. Then there is an
indexv e T such that

d, (&€ =dy (f6,98")

d, (3 g&) +d, (he', £
< max {d, (Uhe), . (F2.09), d, (g2, hey, JetIe1 9D+ du (e, feh)

5 ¥

d,(J¢,9¢) +d, (he", ££")
2

—w[max{d, (JE,hg’)., d, (f&,J), d, (9¢', h&"), H

=max {d, (&,£"), d, (€,8), dy (€'.€), dv (€€}
- w[max{d, (€.¢), d, (§.), d, (€".8), dy (§,€")}]
=dy (§€) - w(d, (£,8)) <dy(&.8)

which is a contradiction. Hence £=&' and & is the unique common fixed point of f,g,h and J.

Corollary 1. Let (X,U) be a sequentially complete Hausdorff Uniform space defined by {d, : Ae "} = P*. Let f be a mapping

on X satisfying the condition
d,(x,hy)+d,(y, fx
d, (xgy) < max {thxy), 6, (1%, (hyy), S20) — . )y

d, (x.hy) +d, (y, &)
2

—W[maX dk (fX,gy) < max {d}L(X,y), d)\ (hX,X), d?» (hy,y), }]

for all x,yeX, Ae I". Then f has a unique fixed point in X.
Proof. Put f=g and J=h=I, identity mapping in Theorem 1, Corollary 1 follows.

Corollary 2. Let (X,U) be a sequentially complete Hausdorff uniform space defined by {d, : e I" } = P*. Let f,g be mappings
on X satisfying the condition

© 2019, IISRMSS All Rights Reserved 87



Int. J. Sci. Res. in Mathematical and Statistical Sciences Vol. 6(4), Aug 2019, ISSN: 2348-4519

d, (hx,hy) +d, (hy, fx)
2

d, (hx,hy) +d, (hy, )

2

dy. (fx,hy) < max {d; (hx.hy), d;. (fx,hx), d. (fy.hy),

¥

—w[max {d, (hx,hy), d; (fx,hx), d;, (fy,hy),

forall x,yeX, Ael.
Then f and h have a unique common fixed point in X, provided h is continuous, f and h are compatible and f(X) < h(X).
Proof. Put f=g and J=h in Theorem 1, Corollary 2 follows.

}

Corollary 3. Let (X,U) be a sequentially complete Hausdorff uniform space defined by {d; : Ae I"} = P*. Let f, g, h be three
mappings on X satisfying the condition
d, (hx, gy) +d, (hy, fx)

d;. (.fy) < max {d; (hxhy), d; (fxhx), d;. (fy.hy), 5 3
d, (hx, gy) +d, (hy, fx)
H
2
for all x,yeX, AeI". Let h be continuous, h and f be compatible. If f(X)ch(X), then f, g, h have a unique common fixed point
in X.
Proof. Put h=J in Theorem 1, Corollary 3 follows.

—w[max d;, (fx,fy) < max {d, (hx,hy), d, (fx,hx), d, (fy,hy),

Corollary 4. Let (X, U) be a sequentially complete Hausdorff uniform space defined by {d, : Ae I} = P*. Let f, g, h be three
mappings on X satisfying the condition
d, (I, hy)+d, (hy, fx)
}
2
d, (3%, hy) +d,, (hy, )
> 1

forall x,y € X, AeI". Let h and J be continuous, h and f, J and f be compatible. If f(X) < h(X) n J(X) then f, J, h have a
unique common fixed point in X.
Proof. Put f=g in Theorem 1, Corollary 4 follows.

dy. (fx,hy) < max {d;. (Ix,hy), d;. (x,Jx), d; (fy,hy),

—w[max d,, (fx,hy) < max {d; (Ix,hy), d; (fx,Jx), d;, (fy,hy),

REFERENCES

[1]. Jungck, G. Compatible mappings and common fixed points. Internat. J. Math. & Math. Sci., 9, 1986, 771-779.

[2]. Kelley, J.L. General Topology. Van Nostrand Reinholt, Princeton, New Jersey, 1955.

[3]. Sastry, K.P.R., Babu, G.V.R. & Rao, D. Narayana Fixed point theorems in complete metric spaces. Bull. Cal. Math. Soc. 91, 1999, 493-502.
[4]. Sessa, S. On a weak commutativity condition of mappings in fixed point considerations. Publ. Inst. Math. 32, 1982, 149-153.

[5]. Thron, W.J. Topological structure, Rinehart and Winston, New York, 1966.

© 2019, IISRMSS All Rights Reserved 88



