

International Journal of Scientific Research in Mathematical and Statistical Sciences Vol.6, Issue.3, pp.94-96, June (2019) DOI: https://doi.org/10.26438/ijsrmss/v6i3.9496

Separation Axioms in Topological Spaces Via Ideal

J. K. Maitra^{1*}, Rajesh Kumar Tiwari²

^{1,2}Department of Mathematics and Computer Science, Rani Durgawati University, Jabalpur, India

*Corresponding Author: jkmrdvv@rediffmail.com,

Available online at: www.isroset.org

Received: 25/Apr/2019, Accepted: 05/Jun/2019, Online: 30/Jun/2019

Abstract—In this article, D^* sets used to characterize some weak separation axioms in ideal topological spaces and to study some of their essential properties.

Keywords— Ideal topological spaces, Open set.

I. INTRODUCTION

The idea of topology via ideal was presented in 1990 by Jankovic and Hamlet [1]. Setup D^* sets in ideal topological space and built up certain its noteworthy properties. The Concept of the D_{μ} -set was introduced by Sarsak [3] in 2011. We have defined some Separation axioms in ideal topological space using the concept of D_{μ} -set.

II. RELATED WORK

First we review the definition of generalized topological space, g-open sets and g-closed sets.

Definition 2.1 [1] Let X be a non-empty set and let τ be a family of subsets of X. Then τ is said to be a **topology** on X, if following two conditions are fulfilled viz,:

(i). $\phi \in \tau$;

- (ii). $\bigcup_{i \in \Lambda} G_i \in \tau$ for $G_i \in \tau$.
- (iii). $\bigcap_{i=1}^{n} G_i \in \tau$ for $G_i \in \tau$.

Definition 2.1 [2] Let X be a non empty set and I be a family of subsets of X. Then I is said to be an ideal on X, if satisfies the following two conditions viz,:

- (a) $A \in I$ and $B \subset A$ then $B \in I$
- (b) $A, B \in I$ then $A \cup B \in I$.

Then the topology τ with ideal I, (X, τ, I) is known as an **ideal topological space**. The members of ideal topology τ^* are called *-open sets and their complements are called *- closed sets.

Definition 2.2[2]: Let (X, τ, I) be an ideal topological space and $A \subseteq X$. The set $A^* = \{x \in X : A \cap U \in I \text{ for each} neighbourhood U of x\}$ is **Local function of A with respect** to I and τ . The local function A^* is also denoted by $A^*(I)$. **Definition 2.2[2]:** The ideal topology τ^* is characterized as $\tau^* = \{X - Cl^*(A) : Cl^*(A) = A, A \subset X\}, \text{ where } Cl^*(A) =$ $A \cup A^*$ is a topology through ideal concerning topology on X. We denote ideal topological space (X, τ, I) by (X, τ^*) , where τ^* is an ideal topology generated through ideal I with respect to topology τ on X. The ideal topological space τ^* is generated by the basis set $B = \{U - A : U \in \tau \text{ and } A \in I\}$. The ideal Topology τ^* is finer than topology τ i.e., $\tau^* \supseteq \tau$. **Example 2.1** Let $X = \{a, b, c\}$ and let $\tau = \{\emptyset, X, \{a\}, \{b, c\}\}$ ideal $I = \{\phi, \{b\}\}$. and Then ideal topology $\tau^* = \{\phi, \{a\}, \{c\}, \{a, c\}, \{b, c\}, X\}$ is a topology on X.

Definition 2.3[2]: Let(X, τ^*) be an ideal topological space and let $A \subseteq X$. Then the intersection of all *-closed sets in Xcontaining A is *-closure of A. The *-closure of A is symbolized by $c^*(A)$.

Remark [2]: Since arbitrary intersection of *-closed sets is a *-closed set, it follows that the smallest *-closed set in (X, τ^*) containing A is $c^*(A)$.

Definition 2.3: Let (X, τ^*) be a generalized topological space and $A \subseteq X$. Then the union of all *-open sets in *X* contained in *A* is *-interior of *A*. The *-interior of *A* is symbolized by $i^*(A)$.

Remark: Since arbitrary union of *-open sets is a *-open set, it follows that the largest *-open set in (X, τ^*) contained in A is $i^*(A)$.

III. RESULTS AND DISCUSSION

A. D^* -sets and their properties

Definition 3.1: Let (X, τ^*) be an ideal topological space and $B \subseteq X$. Then *A* is a D^* -set if there are two $U, V \in \tau^*$ such that $U \neq X$ and B = U - V.

Remark 3.1: Note that every proper *-open set is a *D**-set

Definition 3.2: An ideal topological space (X, τ^*) is a D_0^* -space if for any pair of distinct points x and y of X there exists a D^* -set of X in which x but not y or a D^* -set of X in which y but not x.

Definition 3.3: An ideal topological space (X, τ^*) is a D_1^* -space if for any pair of distinct points x and y of X there exists a D^* -set A, B of X in which x, y respectively such that $y \notin A$ and $x \notin B$.

Definition 3.4: An ideal topological space (X, τ^*) is a D_2^* -space if for any pair of distinct points x and y of X there exists disjoint D^* -set A, B of X in which x, y respectively.

Definition 3.5: An ideal topological space (X, τ^*) is a T_0^* -space if for any pair of distinct points x and y of X there exists a *-open set of X in which x but not y or a *-open set of X in which y but not x.

Definition 3.3: An ideal topological space (X, τ^*) is a T_1^* -space if for any pair of distinct points x and y of X there exists a \star -open set A and B of X in which x and y respectively such that $y \notin A$ and $x \notin B$.

Definition 3.4: An ideal topological space (X, τ^*) is a T_2^* -space if for any pair of distinct points *x* and *y* of *X* there exists disjoint *-open set *A*, *B* of *X* in which *x*, *y* respectively.

Proposition 3.1: Every T_i^* space is a T_{i-1}^* space. **Proof:** Its immediately follows from definitions.

Proposition 3.2: Every T_i^* space is a D_i^* space. **Proof:** Since every proper *-open set is D^* -set. It means that every T_i^* space is a D_i^* space.

Proposition 3.3: Every D_i^* space is a D_{i-1}^* space. **Proof:** Its immediately follows from definitions.

Theorem 3.1: An ideal topological space (X, τ^*) is D_0^* -space iff it is T_0^* -space.

Proof: suppose that (X, τ^*) is D_0^* -space and $a, b \in X$ then there exists D^* -set G containing one of a, b (say a) but no other (*ie.b* \notin G). Suppose that $G = V_1 - V_2$ where $V_1 \neq X$ and $V_1, V_2 \in \tau^*$. Clearly $a \in V_1$. For $b \notin G$, we have two cases;

(i). $b \notin V_1$.

(ii). $b \in V_1 \& b \in V_2$.

In case (a), V_1 contain *a* but not *b*. In case (ii), V_2 contains *b* but not *a*. Hence (X, τ^*) is T_0^* -space. Conversely follows from proposition 3.2.

Theorem 3.2: An ideal topological space (X, τ^*) is D_1^* -space iff it is D_2^* -space.

Proof: suppose that (X, τ^*) is D_1^* -space and $a, b \in X$ then there exists D^* -set G_1 and G_2 in which a, b but not b, arespectively. Suppose $G_1 = V_1 - V_2$ and $G_2 = V_3 - V_4$. Since $a \notin G_2$ ie. Either $a \notin V_3$ or a in V_3, V_4 both.

When $a \notin V_3$ and $b \notin G_1$, we have following two cases;

- (a) $b \notin V_1$. Since $a \in (V_1 V_2)$ but $a \notin V_3$, then $a \in (V_1 - (V_2 \cup V_3))$. From $b \in (V_3 - V_4)$ but $b \notin V_1$, then $b \in (V_3 - (V_4 \cup V_1))$. Clearly, $(V_1 - (V_2 \cup V_3)) \cap (V_3 - (V_4 \cup V_1)) = \phi$.
- (b) When b in V_1, V_2 both. We have $a \in (V_1 V_2)$ and $b \in V_2$ and $(V_1 V_2) \cap V_2 = \phi$.

When a in V_3 , V_4 both. Then we have $b \in (V_3 - V_4)$, $x \in V_4$ and $(V_3 - V_4) \cap V_4 = \phi$. Hence (X, τ^*) is D_2^* -space. Conversely follows from proposition 3.3.

Corollary 3.1: An ideal topological space (X, τ^*) is D_1^* -space then it is T_0^* -space.

Proof: Since every D_1^* -space is D_0^* -space and by the theorem 3.1 we have D_1^* -space is T_o^* -space.

From the above observation, we have following diagram:

 $\begin{array}{ccc} T_2^{\star} \rightarrow & D_2^{\star} \\ \downarrow & \uparrow \\ T_1^{\star} \rightarrow & D_1^{\star} \\ \downarrow & \downarrow \\ T_0^{\star} \leftrightarrow & D_0^{\star} \end{array}$

Example 3.1:Let $X = \{a, b, c\}$ be ideal topological space with respect to topology $\tau = \{\phi, X, \{a\}, \{b, c\}\}$ and ideal $I = \{\phi, \{b\}\}$. Then the ideal topology is $\tau^* = \{\phi, \{a\}, \{c\}, \{a, c\}, X\}$ on X. Clearly (X, τ^*) is T_0^* -space but not T_1^* and T_2^* . Thus, (X, τ^*) is a D_0^* -space but not D_1^* and D_2^* .

Example 3.2:Let $X = \{a, b, c\}$ be ideal topological space with respect to topology $\tau = \{\phi, X\}$ and ideal $I = \{\phi, \{a\}, \{b\}, \{a, b\}\}$. Then the ideal topology is $\tau^* = \{\phi, \{c\}, \{b, c\}, \{a, c\}, X\}$ on X. Clearly (X, τ^*) is T_0^* -space but not T_1^* and T_2^* . Thus, (X, τ^*) is a D_0^*, D_1^* and D_2^* – space.

Theorem 3.3: An ideal topological space (X, τ^*) is T_0^* iff for each pair of distinct points x, y of $X, c^*(\{x\}) \neq c^*(\{y\})$.

Proof: Suppose (X, τ^*) is T_0^* -space and x, y be a distinct point of X. Then, there exists a *-open set G containing x but not y, therefore x in compliment of G (say G^c) but $y \notin G^c$. Since $c^*(\{y\})$ is smallest *-closed set containing y, ie. $c^*(\{y\}) \subset G^c$. Therefore $x \notin c^*(\{y\})$. Thus, $c^*(\{x\}) \neq$ $c^*(\{y\})$. Conversely suppose x, y be a distinct point of X and $c^*(\{x\}) \neq c^*(\{y\})$. Let point $z \in X$ such that $z \in c^*(\{x\})$ and $z \notin c^*(\{y\})$. Then we will show that $x \notin c^*(\{y\})$. Suppose that $x \in c^*(\{y\})$ then $c^*(\{x\}) \subset c^*(\{y\})$. This implies that $z \in c^*(\{y\})$, which is a contradiction. Thus, $x \in$ $(c^*(\{y\}))^c$ which is *-open set does not contain y. Hence (X, τ^*) is T_0^* . **Theorem 3.4:** An ideal topological space (X, τ^*) is T_1^* iff the singletons of *X* are \star -closed.

Proof: Suppose (X, τ^*) is T_0^* -space and x be a any point of X.Let $y \in \{x\}^c$, then $x \neq y$, so there exists \star -open set U containing y but not x. This implies $y \in U \subset \{x\}^c$, ie. $\{x\}^c = \bigcup \{U: U \text{ containing } y\}$ which is *-open. Conversely let $\{a\}$ is \star -closed set for every $a \in X$. Let x, y be a distinct point of X. Then $\{x\}^c$ is a *-open set containing y but not x. Similarly $\{y\}^c$ is a *-open set containing x but not y. Hence (X, τ^*) is T_1^* .

REFERENCES

- [1]. R. Engelking, "General Topology", second edition, Sigma Series in Pure Mathematics 6, HeldermannVerlag, Berlin, 1989.
- [2]. D. Jankovic and T. R. Hamlet, "New topologies from Old via Ideals", The American Mathematics Monthly, Vol. 97, Issue. 4, pp. 295-310, 1990. Transaction, Vol.31, Issue.4, pp.123-141, 2012.
- [3]. M. S. Sarsak, Weak Separation axioms in Generalized Topological Space, Acta Math. Hungar, 131 (1-2),110-121, 2010.
- [4]. Rajesh Kumar Tiwari1, J. K. Maitra and R. Vishwakarma, A Generalized form of G^* -open Sets, International Journal of Scientific Research Mathematical and Statistical Science, Vol. 5, issue. 6, pp. 53-58, 2018.

AUTHORS PROFILE

Dr. J.K. Maitra pursued his M.Sc., M.Phil and Ph.D. in Mathematics from R.D. University, Jabalpur in 1991, 1994 and 1998 respectively. He is Life member of Indian Mathematical Society. He has published more than 40 research papers in reputed international and national journals and

participated in several conferences including ICM. His research interest on General and Algebraic Topology alongwith Fuzzy Topology. He has 21 years of teaching experience and 26 years of research experience. He is currently working as Associate Professor in Department of Mathematics and Computer Science, R.D. University, Jabalpur.

Rajesh Kumar Tiwari received his B.Sc., M.Sc. and M.Phil in Mathematics from R.D. University, Jabalpur in 2009, 2011 and 2012 respectively. He taught pure and applied mathematics in several colleges of Madhya Pradesh. Now, he is persuing Ph.D. from Department of Mathematics

and Computer Science, R.D. University, Jabalpur.