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Abstract—In this article,    sets used to characterize some weak separation axioms in ideal topological spaces and to study 

some of their essential properties. 
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I. INTRODUCTION 

 

The idea of topology via ideal was presented in 1990 by 

Jankovic and Hamlet [1]. Setup    sets in ideal topological 

space and built up certain its noteworthy properties. The 

Concept of the   -set was introduced by Sarsak [3] in 2011. 

We have defined some Separation axioms in ideal 

topological space using the concept of   -set. 

 

II. RELATED WORK 

 

First we review the definition of generalized topological 

space, g-open sets and g-closed sets. 

 

Definition 2.1 [1] Let X be a non-empty set and let    be a 

family of subsets of X. Then   is said to be a topology on X, 

if following two conditions are fulfilled viz,: 

(i).    ; 

(ii).          for     . 

(iii).      
      for     . 

Definition 2.1 [2] Let X be a non empty set and I be a family 

of subsets of X. Then I is said to be an ideal on X, if satisfies 

the following two conditions viz,: 

(a)     and      then     
(b)       then      . 

 

Then the topology   with ideal I,         is known as an 

ideal topological space. The members of ideal topology 

  are called  -open sets and their complements are called  -

closed sets. 

 

Definition 2.2[2]: Let         be an ideal topological space 

and    . The set               for each 

neighbourhood   of    is Local function of A with respect 

to I and  .  The local function    is also denoted by      . 

 

 

Definition 2.2[2]: The ideal topology    is characterized as 

                            , where        
     is a topology through ideal concerning topology on 

 . We denote ideal topological space         by       ,  

where    is an ideal topology generated through ideal I with 

respect to topology   on X. The ideal topological space   is 

generated by the basis set                    . 

The ideal Topology    is finer than topology   i.e.,     . 

Example 2.1 Let           and let   {             } 

and ideal   {     } . Then ideal topology 

  =                          is a topology on  . 

 

Definition 2.3[2]: Let       be an ideal topological space 

and let    .Then the intersection of all  -closed sets in   

containing A is  -closure of A. The  -closure of A is 

symbolized by        
Remark [2]: Since arbitrary intersection of  -closed sets is a 

 -closed set, it follows that the smallest  -closed set in 
       containing   is       . 

 

Definition 2.3: Let        be a generalized topological space 

and      Then the union of all  -open sets in   contained 

in   is  -interior of  . The  -interior of A is symbolized by 

       
Remark: Since arbitrary union of  -open sets is a  -open 

set, it follows that the largest  -open set in        contained 

in   is      . 

 

III. RESULTS AND DISCUSSION 

 

A.   -sets and their properties 

Definition 3.1:  Let        be an ideal topological space and 

   . Then   is a   -set if there are two        such 

that     and      . 

Remark 3.1: Note that every proper  -open set is a   -set  
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Definition 3.2:An ideal topological space        is a   
 - 

space if for any pair of distinct points   and   of   there 

exists a   -set of   in which   but not   or a   -set of   in 

which   but not  . 

 

Definition 3.3: An ideal topological space        is a   
 - 

space if for any pair of distinct points   and   of   there 

exists a   -set     of   in which     respectively such that 

    and      
 

Definition 3.4: An ideal topological space        is a   
 - 

space if for any pair of distinct points   and   of   there 

exists disjoint   -set     of   in which     respectively  
 

Definition 3.5: An ideal topological space        is a   
 - 

space if for any pair of distinct points   and   of   there 

exists a  -open set of   in which   but not   or  a  -open set 

of   in which   but not  . 

 

Definition 3.3: An ideal topological space        is a   
 - 

space if for any pair of distinct points   and   of   there 

exists a  -open set   and    of   in which   and    

respectively such that     and      
 

Definition 3.4: An ideal topological space        is a   
 - 

space if for any pair of distinct points   and   of   there 

exists disjoint  -open set     of   in which     respectively  
 

Proposition 3.1: Every   
  space is a     

  space. 

Proof:Its immediately follows from definitions. 

 

Proposition 3.2: Every   
  space is a   

  space. 

Proof: Since every proper  -open set is   -set. It means that 

every   
  space is a   

  space. 

 

Proposition 3.3: Every   
  space is a     

  space. 

Proof:Its immediately follows from definitions. 

 

Theorem 3.1: An ideal topological space        is   
 -space 

iff it is   
 -space. 

Proof: suppose that        is   
 -space and       then 

there exists   -set G containing one of     (say  ) but no 

other          . Suppose that         where    
  and         . Clearly     . For    , we have two 

cases; 

(i).     . 

(ii).           . 

In case (a),     contain   but not  . In case (ii),   contains   

but not    Hence        is   
 -space. Conversely follows 

from proposition 3.2. 

 

Theorem 3.2: An ideal topological space        is   
 -space 

iff it is   
 -space. 

Proof: suppose that        is   
 -space and       then 

there exists   -set   and    in which     but not     

respectively. Suppose         and         . Since 

    ie. Either     or    in       both.  

When      and     , we have following two cases; 

(a)     . Since           but     , then 

  (          ) . From         ) but 

    , then   (          ) . Clearly, 

(          )  (          )   . 

(b)  When   in       both. We have           and 

    and             . 

When   in       both. Then we have          ,      

and             . Hence        is   
 -space. 

Conversely follows from proposition 3.3. 

Corollary 3.1: An ideal topological space        is   
 -space 

then it is   
 -space. 

Proof: Since every   
 -space is   

 -space and by the theorem 

3.1 we have   
 -space is   

 -space. 

 

From  the above observation, we have following diagram: 

  
     

  

               

  
     

  

                

  
     

  

 

Example 3.1:Let           be ideal topological space 

with respect to topology   {              }  and ideal 

         . Then the ideal topology is 

                       on X. Clearly        is   
 -space 

but not   
  and   

   Thus,        is a   
 -space but not   

  and 

  
   

 

Example 3.2:Let           be ideal topological space 

with respect to topology         and ideal   
                 . Then the ideal topology is    
                      on X. Clearly        is   

 -space but 

not   
  and   

   Thus,        is a   
 ,   

  and   
         

 

Theorem 3.3: An ideal topological space        is   
 iff for 

each pair of distinct points    of  ,                . 

Proof: Suppose        is   
 -space and     be a distinct 

point of  . Then, there exists a  -open set   containing   but 

not  , therefore   in compliment of   (say    but     . 

Since         is smallest  -closed set containing  , ie. 

          . Therefore          . Thus,         
       . Conversely suppose     be a distinct point of  and 

               . Let point     such that          and 

         . Then we will show that          . Suppose 

that          then                . This implies that 

         , which is a contradiction. Thus,   

(       )
 
which is  -open set does not contain  . Hence 

      is   
 . 
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Theorem 3.4: An ideal topological space        is   
 iff the 

singletons of   are  -closed. 

Proof: Suppose        is   
 -space and   be a any point of 

 .Let       , then    , so there exists  -open set   

containing   but not  . This implies         , ie. 
           containing   which is  -open. Conversely let  

    is  -closed set for every    . Let     be a distinct 

point of  . Then      is a  -open set containing   but not  . 

Similarly      is a  -open set containing   but not  . Hence 
      is   

 . 
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