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Abstract—In this paper, we accomplish three non-extendable Diophantine triples of the form {a, b, 2(a+b-Square of the 

difference of the ranks)} involving centered square numbers with property D(-Square of the difference of the ranks).  
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I.  INTRODUCTION  

 

Numerous mathematicians considered the problem of the 

existence of Diophantine quadruples with the property D(n) 

for any integer n and furthermore for any direct polynomial 

in n [1-5]. In this unique situation, one may allude for a 

comprehensive review of various problems on Diophantine 

triples [6-10]. In [11], some non-extendable triples were 

analyzed. These outcomes spurred us to search for non-

extendable Diophantine triples with components spoken to 

by centered square numbers. 

 

In this paper, we exhibit three non-extendable Diophantine 

triples of the form {a, b, 2(a+b-Square of the difference of 

the ranks)}involving centered square numbers with property 

D(-Square of the difference of the ranks). 

 

II. BASIC DEFINITION 

 

A set of three distinct polynomials with integer coefficients 

 321 ,, aaa is said to be a Diophantine triple with property 

)(nD  if naa ji  is a perfect square for 

all 31  ji , where n may be non-zero integer or 

polynomial with integer coefficients. 

 

III. METHOD OF ANALYSIS 

 

Section A:  

Construction of Diophantine triples for centered square 

numbers of rank n and 1n : 

Let nCSa  and 
1nCS b  be Centered Square numbers 

of rank n and 1n respectively such that  

  1ranks  theof difference  theof Square  abab is a perfect 

square say
2 . 

 

Let c be any non-zero integer such that  
21 ac        (1) 

21 bc        (2) 

Eliminating ‘ c ’ from (1) and (2), we obtain

 nnnnn 4)122()122( 2222           (3) 

Using the linear transformations 

)4(   )122(&)122( 22 ynnxynnx  

in (3), it leads to the pell’s equation  

1)14( 242  ynx
                                       

(5) 

Let 
2

00 2&1 nxy  be the initial solution of (4) 

Thus (4) yields 124 2

0  nn  

And using (1), we get   1CSCS228 1nn

2  nc
 

Hence,     1CSCS2,CS,CS,, 1nn1nn  cba is a 

Diophantine triple.  with property )1(D  . 

Some numerical examples are given below in the following 

table1. 

Table 1 

n  Diophantine Triples )1(D  

1 (1, 5, 10)  -1 

2 (5, 13, 34)  -1 

3 (13, 25, 74)  -1 
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Hence, 
    ranks  theof difference  theof SquareCSCS2,CS,CS,, 1nn1nn  cba

is a Diophantine triple with property 

ranks)  theof difference  theof Square(D  .
 

 

Non-Extendability: 

We show that the above triple cannot be extended to 

quadruple. 

Let ‘ d ’be any non-zero integer such that 
21 pad            (6) 

21 qbd          (7) 

21 rcd          (8) 

Eliminating ‘ d ’ from (7) and (8), we obtain 

(9)           126)122()28( 22222  nnrnnqn  
Using the linear transformations 

ynxrynnxq )28(&)122( 22              (10) 

in (9), it leads to the pell’s equation  

1)24121616( 22342  ynnnnx     
                  

(11) 

 

Let 124&1 2

00  nnxy be the initial solution 

of (11).  

Thus (10) yields 246 2

0  nnq  

And using (7), we get  5618 2  nnd  

Verify Quadruple: 

Substituting the above value of ‘ d ’in L.H.S of (6), we have 

441624361 234  nnnnad  

Note that the R.H.S is not a perfect square. 

Hence the triple, 
    ranks  theof difference  theof SquareCSCS2,CS,CS,, 1nn1nn  cba

cannot be extended to a quadruple with property 

ranks)  theof difference  theof Square(D  .
 

 

Section B:   

Construction of Diophantine triples for centered square 

numbers of rank n and 2n :
 

        Let nCSa  and 2nCS b be centered square 

numbers of rank n and 2n respectively such that  

  4ranks  theof difference  theof Square  abab is a 

perfect square say
2 . 

 

Let c be any non-zero integer such that  
24 ac

 
   (12) 

24 bc     (13) 

Applying the procedure as mentioned in section A, we have 

 4CSCS2488 2nn

2  nnc
 

Hence,     4CSCS2,CS,CS,, 2nn2nn  cba is a 

Diophantine triple with property )4(D  . 

 

Some numerical examples are given below in the following 

table 2. 

 

Table 2 

n  Diophantine Triples )4(D   

1 (1, 13, 20) -4 

2 (5, 25, 52) -4 

3 (13, 41, 100) -4 

 

Hence, 
    ranks  theof difference  theof SquareCSCS2,CS,CS,, 2nn2nn  cba

is a Diophantine triple with property 

ranks)  theof difference  theof Square(D  .
 

 

Non-Extendability: 

We show that the above triple cannot be extended to 

quadruple. 

 

Let ‘ d ’be any non-zero integer such that 
24 pad     (14) 

24 qbd     (15) 

24 rcd     (16) 

Proceeding as in Section A, we get  173018 2  nnd  

 

Verify Quadruple: 

Substituting the above value of ‘ d ’in L.H.S of (14), we have 

square.perfect a not 4 ad   

Hence the triple, 

    ranks  theof difference  theof SquareCSCS2,CS,CS,, 2nn2nn  cba

cannot be extended to a quadruple with property 

ranks)  theof difference  theof Square(D  .
 

 

Section C:   

Construction of Special dio 3-tuples for centered square 

numbers of rank n and 3n : 

Let nCSa  and 3nCS b  be centered square numbers 

of rank n and 3n respectively such that 

  9ranks  theof difference  theof Square  abab

is a perfect square say
2 . 

 

Proceeding as in earlier cases,  

 9CSCS210168 3nn

2  nnc  
Hence,     9CSCS2,CS,CS,, 3nn3nn  cba is a 

Diophantine triple with property )9(D  . 
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Some numerical examples are given below in the following 

table 3. 

 

Table 3 

n  Diophantine Triples )9(D   

1 (1, 25, 34)  -9 

2 (5, 41, 74)  -9 

3 (13, 61, 130)  -9 

 

Hence, 
    ranks  theof difference  theof SquareCSCS2,CS,CS,, 3nn3nn  cba

 
is a Diophantine triple with property 

ranks)  theof difference  theof Square(D  . 

 

Non-Extendability: 

We show that the above triple cannot be extended to 

quadruple. 

Let ‘ d ’be any non-zero integer such that 
29 pad     (17) 

29 qbd     (18) 

29 rcd     (19) 

Proceeding as in earlier cases, we get  

455418 2  nnd  

Verify Quadruple: 

Substituting the above value of ‘ d ’in L.H.S of (17), we 

have 

9ad  is not a perfect square. 

Hence the triple, 
    ranks  theof difference  theof SquareCSCS2,CS,CS,, 3nn3nn  cba

cannot be extended to a quadruple with 

property ranks)  theof difference  theof Square(D  . 

 

IV. REMARKABLE NOTE 

 

In general, {a, b, 2(a+b-Square of the difference of the 

ranks)} is a non-extendable  Diophantine triple for centered 

square numbers with property D(-Square of the difference of 

the ranks). 

 

V. CONCLUSION 

 

In this paper, we have presented Diophantine triples for 

centered square numbers of different ranks with the property 

D(-Square of the difference of the ranks). To conclude one 

may search for Diophantine triples for other numbers with 

their corresponding properties. 
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