International Journal of Scientific Research in
Research Paper

Some Non-Extendable Diophantine Triples Involving Centered Square Numbers

C. Saranya ${ }^{1{ }^{*}}$, G. Janaki ${ }^{2}$
${ }^{1,2}$ Dept. of Mathematics, Cauvery College for Women (Autonomous), Trichy-18
*Corresponding Author- c.saranyavinoth @gmail.com

Available online at: www.isroset.org

Received: 05/Dec/2019, Accepted: 18/Dec/2019, Online: 31/Dec/2019

Abstract

In this paper, we accomplish three non-extendable Diophantine triples of the form $\{\mathrm{a}, \mathrm{b}, 2(\mathrm{a}+\mathrm{b}$-Square of the difference of the ranks) $\}$ involving centered square numbers with property $\mathrm{D}(-$ Square of the difference of the ranks).

Keywords- Diophantine Triples, Centered Square Number, Non-extendability.

I. INTRODUCTION

Numerous mathematicians considered the problem of the existence of Diophantine quadruples with the property $D(n)$ for any integer n and furthermore for any direct polynomial in n [1-5]. In this unique situation, one may allude for a comprehensive review of various problems on Diophantine triples [6-10]. In [11], some non-extendable triples were analyzed. These outcomes spurred us to search for nonextendable Diophantine triples with components spoken to by centered square numbers.

In this paper, we exhibit three non-extendable Diophantine triples of the form $\{a, b, 2(a+b-S q u a r e ~ o f ~ t h e ~ d i f f e r e n c e ~ o f ~$ the ranks) \}involving centered square numbers with property $\mathrm{D}(-$ Square of the difference of the ranks).

II. BASIC DEFINITION

A set of three distinct polynomials with integer coefficients $\left(a_{1}, a_{2}, a_{3}\right)$ is said to be a Diophantine triple with property $D(n)$ if $a_{i} * a_{j}+n$ is a perfect square for all $1 \leq i<j \leq 3$, where n may be non-zero integer or polynomial with integer coefficients.

III. METHOD OF ANALYSIS

Section A:

Construction of Diophantine triples for centered square numbers of rank n and $n+1$:

Let $a=\mathrm{CS}_{\mathrm{n}}$ and $b=\mathrm{CS}_{\mathrm{n}+1}$ be Centered Square numbers of rank n and $n+1$ respectively such that $a b+(-$ Square of the difference of the ranks $)=a b-1$ is a perfect square say α^{2}.

Let c be any non-zero integer such that

$$
\begin{align*}
& a c-1=\beta^{2} \tag{1}\\
& b c-1=\gamma^{2} \tag{2}
\end{align*}
$$

Eliminating ' c, from (1) and (2), we obtain

$$
\begin{equation*}
\left(2 n^{2}+2 n+1\right) \beta^{2}-\left(2 n^{2}-2 n+1\right) \gamma^{2}=-4 n \tag{3}
\end{equation*}
$$

Using the linear transformations

$$
\begin{equation*}
\beta=x+\left(2 n^{2}-2 n+1\right) y \& \gamma=x+\left(2 n^{2}+2 n+1\right) y \tag{4}
\end{equation*}
$$

in (3), it leads to the pell's equation

$$
\begin{equation*}
x^{2}=\left(4 n^{4}+1\right) y^{2}-1 \tag{5}
\end{equation*}
$$

Let $y_{0}=1 \quad \& x_{0}=2 n^{2}$ be the initial solution of (4)
Thus (4) yields $\beta_{0}=4 n^{2}-2 n+1$
And using (1), we get $c=8 n^{2}+2=2\left(\mathrm{CS}_{\mathrm{n}}+\mathrm{CS}_{\mathrm{n}+1}-1\right)$
Hence, $\{a, b, c\}=\left\{\mathrm{CS}_{\mathrm{n}}, \mathrm{CS}_{\mathrm{n}+1}, 2\left(\mathrm{CS}_{\mathrm{n}}+\mathrm{CS}_{\mathrm{n}+1}-1\right)\right\}$ is a
Diophantine triple.
Some numerical examples are given below in the following table1.

Table 1

n	Diophantine Triples	$D(-1)$
1	$(1,5,10)$	-1
2	$(5,13,34)$	-1
3	$(13,25,74)$	-1

Hence,
$\{a, b, c\}=\left\{\mathrm{CS}_{\mathrm{n}}, \mathrm{CS}_{\mathrm{n}+1}, 2\left(\mathrm{CS}_{\mathrm{n}}+\mathrm{CS}_{\mathrm{n}+1}-\right.\right.$ Square of the difference of the ranks) is a Diophantine triple with property D (-Square of the difference of the ranks).

Non-Extendability:

We show that the above triple cannot be extended to quadruple.
Let ' d 'be any non-zero integer such that

$$
\begin{align*}
& a d-1=p^{2} \tag{6}\\
& b d-1=q^{2} \tag{7}\\
& c d-1=r^{2} \tag{8}
\end{align*}
$$

Eliminating ' d ' from (7) and (8), we obtain
$\left(8 n^{2}+2\right) q^{2}-\left(2 n^{2}+2 n+1\right) r^{2}=-6 n^{2}+2 n-1$
Using the linear transformations
$q=x+\left(2 n^{2}+2 n+1\right) y \quad \& r=x+\left(8 n^{2}+2\right) y$
in (9), it leads to the pell's equation
$x^{2}=\left(16 n^{4}+16 n^{3}+12 n^{2}+4 n+2\right) y^{2}-1$

Let $y_{0}=1 \quad \& x_{0}=4 n^{2}+2 n+1$ be the initial solution of (11).
Thus (10) yields $q_{0}=6 n^{2}+4 n+2$
And using (7), we get $d=18 n^{2}+6 n+5$
Verify Quadruple:
Substituting the above value of ' d ' in L.H.S of (6), we have
$a d-1=36 n^{4}-24 n^{3}+16 n^{2}-4 n+4$
Note that the R.H.S is not a perfect square.
Hence the triple,
$\{a, b, c\}=\left\{\mathrm{CS}_{\mathrm{n}}, \mathrm{CS}_{\mathrm{n}+1}, 2\left(\mathrm{CS}_{\mathrm{n}}+\mathrm{CS}_{\mathrm{n}+1}-\right.\right.$ Square of the difference of the ranks $\left.)\right\}$ cannot be extended to a quadruple with property
$D(-$ Square of the difference of the ranks).

Section B:

Construction of Diophantine triples for centered square

 numbers of rank n and $n+2$:Let $a=\mathrm{CS}_{\mathrm{n}}$ and $b=\mathrm{CS}_{\mathrm{n}+2}$ be centered square numbers of rank n and $n+2$ respectively such that $a b+(-$ Square of the difference of the ranks $)=a b-4$ is a perfect square say α^{2}.

Let c be any non-zero integer such that

$$
\begin{align*}
& a c-4=\beta^{2} \tag{12}\\
& b c-4=\gamma^{2} \tag{13}
\end{align*}
$$

Applying the procedure as mentioned in section A , we have

$$
c=8 n^{2}+8 n+4=2\left(\mathrm{CS}_{\mathrm{n}}+\mathrm{CS}_{\mathrm{n}+2}-4\right)
$$

Hence, $\{a, b, c\}=\left\{\mathrm{CS}_{\mathrm{n}}, \mathrm{CS}_{\mathrm{n}+2}, 2\left(\mathrm{CS}_{\mathrm{n}}+\mathrm{CS}_{\mathrm{n}+2}-4\right)\right\}$ is a Diophantine triple with property $\mathrm{D}(-4)$.

Some numerical examples are given below in the following table 2.

Table 2

n	Diophantine Triples	$\mathrm{D}(-4)$
1	$(1,13,20)$	-4
2	$(5,25,52)$	-4
3	$(13,41,100)$	-4

Hence,
$\{a, b, c\}=\left\{\mathrm{CS}_{\mathrm{n}}, \mathrm{CS}_{\mathrm{n}+2}, 2\left(\mathrm{CS}_{\mathrm{n}}+\mathrm{CS}_{\mathrm{n}+2}-\right.\right.$ Square of the difference of the ranks $\left.)\right\}$
is a Diophantine triple with property $D(-$ Square of the difference of the ranks).

Non-Extendability:

We show that the above triple cannot be extended to quadruple.

Let ' d 'be any non-zero integer such that

$$
\begin{align*}
a d-4 & =p^{2} \tag{14}\\
b d-4 & =q^{2} \tag{15}\\
c d-4 & =r^{2} \tag{16}
\end{align*}
$$

Proceeding as in Section A, we get $d=18 n^{2}+30 n+17$

Verify Quadruple:

Substituting the above value of ' d 'in L.H.S of (14), we have $a d-4=$ not a perfect square.
Hence the triple, $\{a, b, c\}=\left\{\mathrm{CS}_{\mathrm{n}}, \mathrm{CS}_{\mathrm{n}+2}, 2\left(\mathrm{CS}_{\mathrm{n}}+\mathrm{CS}_{\mathrm{n}+2}-\right.\right.$ Square of the difference of the ranks $\left.)\right\}$ cannot be extended to a quadruple with property
D (-Square of the difference of the ranks).

Section C:

Construction of Special dio 3-tuples for centered square numbers of rank n and $n+3$:
Let $a=\mathrm{CS}_{\mathrm{n}}$ and $b=\mathrm{CS}_{\mathrm{n}+3}$ be centered square numbers of rank n and $n+3$ respectively such that $a b+(-$ Square of the difference of the ranks $)=a b-9$ is a perfect square say α^{2}.

Proceeding as in earlier cases,

$$
c=8 n^{2}+16 n+10=2\left(\mathrm{CS}_{\mathrm{n}}+\mathrm{CS}_{\mathrm{n}+3}-9\right)
$$

Hence, $\{a, b, c\}=\left\{\mathrm{CS}_{\mathrm{n}}, \mathrm{CS}_{\mathrm{n}+3}, 2\left(\mathrm{CS}_{\mathrm{n}}+\mathrm{CS}_{\mathrm{n}+3}-9\right)\right\}$ is a Diophantine triple with property $\mathrm{D}(-9)$.

Some numerical examples are given below in the following table 3.

Table 3

n	Diophantine Triples	$\mathrm{D}(-9)$
1	$(1,25,34)$	-9
2	$(5,41,74)$	-9
3	$(13,61,130)$	-9

Hence, $\{a, b, c\}=\left\{\mathrm{CS}_{\mathrm{n}}, \mathrm{CS}_{\mathrm{n}+3}, 2\left(\mathrm{CS}_{\mathrm{n}}+\mathrm{CS}_{\mathrm{n}+3}-\right.\right.$ Square of the difference of the ranks $)$ numbers $\left(J_{2 n-1}, J_{2 n+1}-3,2 J_{2 n}+J_{2 n-1}+J_{2 n+1}-3\right)$ ", International is a Diophantine triple with property D (-Square of the difference of the ranks).

Non-Extendability:

We show that the above triple cannot be extended to quadruple.

Let ' d 'be any non-zero integer such that

$$
\begin{align*}
& a d-9=p^{2} \tag{17}\\
& b d-9=q^{2} \tag{18}\\
& c d-9=r^{2} \tag{19}
\end{align*}
$$

Proceeding as in earlier cases, we get $d=18 n^{2}+54 n+45$
Verify Quadruple:
Substituting the above value of ' d 'in L.H.S of (17), we have
$a d-9$ is not a perfect square.
Hence the triple,
$\{a, b, c\}=\left\{\mathrm{CS}_{\mathrm{n}}, \mathrm{CS}_{\mathrm{n}+3}, 2\left(\mathrm{CS}_{\mathrm{n}}+\mathrm{CS}_{\mathrm{n}+3}-\right.\right.$ Square of the difference of the ranks) cannot be extended to a quadruple with property $\mathrm{D}(-$ Square of the difference of the ranks).

IV. REMARKABLE NOTE

 ranks) $\}$ is a non-extendable Diophantine triple for centered square numbers with property $\mathrm{D}(-$ Square of the difference of the ranks).

V. CONCLUSION

In this paper, we have presented Diophantine triples for centered square numbers of different ranks with the property D (-Square of the difference of the ranks). To conclude one may search for Diophantine triples for other numbers with their corresponding properties.

REFERENCES

[1] Carmichael, R.D. "History of Theory of numbers and Diophantine Analysis", Dover Publication, Newyork, 1959
[2] Mordell, L.J. "Diophantine equations", Academic press, London, 1969
[3] Nagell, T. "Introduction to Number theory", Chelsea publishing company, Newyork, 1981
[4] Hua, L.K. "Introduction to the Theory of Numbers", SpringerVerlag, Berlin-Newyork, 1982
[5] Oistein Ore, "Number theory and its History", Dover publications, Newyork, 1988
[6] Fujita, Y. "The extendability of Diphantine pairs $\{k-1, k+1\}$ ", Journal of Number Theory, 128, 322-353, 2008
[7] Gopalan, M.A. and Pandichelvi, V., "On the extendability of the Diophantine triple involving Jacobsthal Journal of Mathematics \& Applications, 2(1), 1-3, 2009
[8] Janaki, G. and Saranya, C., "Special Dio 3-tuples for pentatope number", Journal of Mathematics and Informatics, vol.11, Special issue, 119-123, 2017
[9] Janaki, G. and Saranya, C., "Construction of the Diophantine Triple involving Pentatope Number", International Journal for Research in Applied Science \& Engineering Technology, vol.6, issue III, 23172319, 2018
[10] Saranya, C. and G.Janaki, G., "Integer triples comprising of Jarasandha numbers in Arithmetic progression \& Geometric progression", International Journal of Research and Analytical Reviews, vol.6, issue 1, 751-752, 2019
[11] Gopalan, M.A, Vidhyalakshmi, S. and Thiruniraiselvi, N., "Some non-extendable diophantine triples in special number patterns", International Journal of Innovative research and Review, Vol. 2 (3), pp.1-7, 2014

AUTHORS PROFILE

Ms.C.SARANYA received the B.Sc., M.Sc., And M.Phil., degree in Mathematics from Bharathidasan University, Trichy, South India. Her ongoing research focusing on the \} subject of Number Theory.

Dr.G.JANAKI received the B.Sc., M.Sc and M.Phil., degree in Mathematics from Bharathidasan University, Trichy, South India. She completed her Ph.D., Degree from Bharathidasan University/National College. She has published many Papers in International and National level Journals. Her research area is Number Theory.

