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I. INTRODUCTION 

Infectious diseases are spread by carriers which are present in the environment [3]. Carriers are individuals who are able to 

transmit the disease but do not show any symptoms. Infectious diseases are also known as transmissible disease or 

communicable disease. Infectious disease can be caused by bacteria, viruses, fungi or parasites. Some infectious diseases can 

be passed from person to person and some are transmitted by bites from insects or animals. Infectious diseases are also 

transmitted by contaminated food or water. The spread of such diseases is very much dependent on the carrier population, the 

density of which increases due to environmental factors such as temperature, humidity, rain, vegetation, etc [13, 15]. The per 

capita growth rate and the modified carrying capacity of carrier population are taken to be functions of human population 

density and assumed to increase as the human population density increases [10,11]. Many infectious diseases are prevented by 

vaccination. The modeling and analysis of infectious disease have been done by many researchers [2, 4, 6, 8, 12, 14]. 

Infectious diseases model with population dependent death rate and logistic population growth studied by Greenhalth [1] and 

Gao et al. [7] . Zhou and Hethcote [5] introduced the various kinds of demographics for infectious diseases. Ghosh et al. [9] 

studied the spread of carrier dependent infectious diseases with environmental effects using variable carrier population. 

Naresh et al. [16] considered a following vaccination model for carrier dependent infectious diseases with 

environmental effects: 
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where )(tN  be the total human population at any time t, which is divided into three subclasses: the susceptible )(tX , 

the infectives )(tY , and the vaccinated individuals )(tV . )(tC  represent the density of carrier population, which is 

governed by a generalized logistic model. It is further assumed that the susceptible are vaccinated at a constant rate and 

some of them may again become infected while coming in contact with infectives or with carriers due to inefficacy of 

vaccines. 
 
and  are transmission coefficients due to infectives and carrier population respectively. The parameters 

, and d represent vaccination coverage, therapeutic treatment coverage and natural deaths respectively,  is the 

disease related death constant, 
 
and 1  denote the transmission coefficient of vaccinated individuals due to interaction 

with infectives and carrier population respectively. However, the rate with which vaccinated persons become infected is 

very small as compared to the rate with which susceptible get infected i.e.   and  1 . The constant 1s
 
is the 

death rate coefficient of carriers due to natural factors as well as by control measures. Here, )(Ns  denotes growth rate 

per capita of the carrier population density. It may be noted that if the growth rate and death rate due to natural as well 

as control measure of carrier population are balanced, then it may tend to zero. Similarly, )(NL
 
is the modified 

carrying capacity of the carrier population. It has been pointed out in the introduction, that as the human population 

increases, the effects of human population related factors enhance the changes of growth of carrier population. 

     1.1 The model 

In this study, consider a saturated incidence rate 
1

XY

aY




, where a  is the psychological effect rate. The model 

dynamics is governed by following system of nonlinear ordinary differential equations: 
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where a is the psychological effect rate and rest of the parameters are describes in above model (*). Thus, in the model (1), 

)(Ns  and )(NL
 
are taken to be functions of total human population instead of infective population. Assume that the 

growth rate per capita increase as the human population density increase, we have 
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0)0( ss   and ( ) 0,                                                     (2)s N 
 

where 0s
 
is the value of )(Ns  at 0N  and () denotes the derivatives of the function with respect to its argument. We also 

assume that the modified carrying capacity increase with human population density, so that 

0)0( 0  LL and ( ) 0,                                                             (3)L N   

where 0L
 
is the value of )(NL  when  0N  From equation (1),(2) and(3)  , we see that even if human population 

related factors are absent, carrier population density increase in its natural environment and it tends to 
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which may 

become zero if 01 ss  . In the model, all the dependent variables and parameters are assumed to be non negative. 

II. EQUILIBRIUM ANALYSIS 
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There exist following three non negative equilibria of the system (4) 
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2. Carrier free equilibrium 0,,,(
___
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This equilibrium may be obtain by solving the following algebraic equations, 
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Using equation (6) and (7) in equation (5), we get an algebraic equation in single variable N . i.e.  0)( NF where 

0)( NF is given by the following equation. 

( ) [ ( )(1 )] ( ) 0                     (8)F N N d aY V Y             
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From  equation  (6) and (7), we note that Y  and V will be positive only when ( ) 0F N   has a root in the interval 
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unique positive root N given by ( ) 0F N  . Knowing the value of N , we can compute the values of Y  and V from 

equations (6) and (7), respectively. 
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2.1. Endemic equilibrium 
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We may reduce equation (9) in a single variable N  i.e. ( )F N by using equations (10),(11) and (12), where 
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III. STABILITY ANALYSIS 

Now we analyze the stability of equilibria  1, EEo  
and  2E . The local stability results of these equilibria are stated in the 

following theorem: 

Theorem 3.1. The equilibrium 0E
 
is unstable whenever 1E  or 2E exists, 1E is unstable whenever 2E exists and the 

equilibrium 0E and 0E are locally asymptotically stable provided the following conditions are satisfied. 
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Proof: the general variational matrix M for the system is given as follows: 
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Since all the model parameters are assumed to be non negative, it follows that 0. 43  . Thus, the stability of 0E will 
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We note that, 
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The expression for (0)
 
is the threshold vaccination rate given by the term 1c . We have already shown the uniqueness of Y  
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We choose 1k  and 3k  such that 
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Hence 
dt

dU1

 

is a negative definite under the conditions as stated in the statement of the theorem, showing that 2E is locally 

asymptotically stable. 

To study the non linear asymptotic stability of endemic equilibrium 2E , we require the bounds of dependent variables. For 

this , we state the following lemma giving the region of attraction, with out proof. 

Lemma 3.2. the region of attraction for the system is given by, 

( , , , ) : 0 ,0 ,0
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Y N V C Y N V C C

d d d
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Which attracts all the solutions initiating in the positive orthant, where 
 

  1

0

/
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C s A d s
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Theorem 3.3.  In addition to assumptions (2) and  (3), let )(Ns  and )(NL satisfy pNs  )(0 '
and qNL  )(0 '

for 

some positive constant p and q  in  , then 2E is nonlinearly asymptotically stable in   provided the following inequalities 

are satisfied: 
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it is clear from (19) that in the absence of human related factors, i.e. 0p q  , the inequality is automatically satisfied. This 

implies that human population related factors, conductive to the growth of carrier population, have a destabilizing effect on the 

system. Here we also note that due to presence of a vaccinated class, a condition (20) is required for the nonlinear stability 

which further destabilizes the system. 
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where  )(Nf and )(Ng  are defined as follows 
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Then by using assumptions of the theorem and the mean value theorem ,we have , 
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The stability conditions can then be easily  obtained, as given in the statement of the theorem.Thus  negative definite under the 

conditions (18)-(20). Hence proof. 

The above theorem implies that under appropriate conditions, if the carrier population density increases, then the number of 

infectives in human population also increases leading   to fast spread of carrier dependent infectious diseases. 

 

IV. VACCINE INDUCED REPRODUCTION NUMBER 

 

We define 
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Thus ( )R  is a decreasing function in 0.   This indicates the impact of vaccination in reducing the vaccine induced 

reproduction number. Moreover, in the absence of vaccination i.e., 

0   , 
0( )

( )

A
R R

d d




 
 

 
 

From the definition of ( )R  and 0R , it is clear that the introduction of vaccination implies 
0( )R R  and consequently, if 

10 R then ( ) 1R   when 0  . Thus 0E
 
is locally asymptotically stable as long as ( )R  is less than one. 

V. NUMERICAL SIMULATION 

 

Let us take the parameters 100, 0.001, 0.1, 0.8, 1.8, 1.9, 2,A d v           

10.001, 2v   , then we obtain ( ) 0.263 1R    . In this case disease dies out 

Again take the parameters 100, 0.001, 0.0166, 0.65, 0.9, 0.8, 2,A d v           

10.001, 2v   , then we obtain ( ) 3.4962R   . In this case disease persist 

VI. CONCLUSIONS 

In this paper, we have analyzed a vaccination model for carrier dependent population with a saturated incidence rate. We have 

shown that there are three non-negative equilibrium, namely disease free (DFE), carrier free (CFE) and the endemic 

equilibrium. The stability analysis has shown that the disease free and endemic equilibriums are locally asymptotically stable 

under certain condition by using Routh Hurwitz criterion. 
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