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Abstract— Statistical Process Control (SPC) tools are applicable in all fields. Process Capability Analysis (PCA) is one of the
essential SPC tools. In Process Capability, it measures the ability of an in-control process to produce the desired product.
Process Capability Indices (PClIs) are defined to measure the capability of the process. Along with in control process PCls also
assumes that the process characteristic is Normally distributed and the observations on characteristic are independent. The
assumption of independent observations has violated in many industrial processes. The present paper focuses on the effect of
this violation of independence which is also known as autocorrelation effect. ARMA models are appropriate for autocorrelated

processes.
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l. INTRODUCTION

Process Capability Analysis (PCA) is an essential Statistical
Process Control (SPC) tool for assessing the ability of the
process. PCA is conducted under the assumption that the
process is under statistical control, observations are
independent, and process characteristic follows Normal
distribution. Many times the assumption of independence is
violated due to some circumstances it may, due to an
industrial process where data exhibits some degree of
autocorrelation. There is voluminous literature available on
process capability indices [1]. Shore [2] First attempted the
concept of Process Capability Indices (PCls) under
autocorrelated data, he described some of the undesirable
effects that autocorrelations may have on the sampling
distribution of estimates of the mean and standard deviation,
and thus on the PClIs calculated using it via Monte Carlo
simulation. He suggested two approaches for studying the
PCls under autocorrelation. He also showed that as the degree
of autocorrelation increases bias in the PCIs increases. The
variance of the estimators of C, and C, under autocorrelated
processes has been found [3] and for also Cyn and Comi [4].
From the study of [3] and [4], it uses the autocorrelated
process of order one AR (1), it has found that for the
autocorrelated process the PCls are biased and that bias
decreases as n increases.
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Similarly, the bias in the indices increases as | ¢ | (degree

of autocorrelation) increases. In many manufacturing
industries, the processes are with the high inertia causing
values of output characteristic to be interrelated; this is known
as a characteristic variable is autocorrelated. Most often the
ARMA models were used for analyzing these types of
processes. AR (1) and AR (2) are common. The objective of
this paper is to study the effect of autocorrelation on different
indices and their estimate of variances. The autoregressive
process of order two AR (2) is used to generate the data.
Extensive simulation work has done for analyzing the effect
of the AR(2) process on the estimators of PCls and their
variances.

In this regard the rest of the paper is organized as follows,
Section 1l contains definitions of basic PCls. Section Il
contains the basic terminology about stationary Gaussian
processes. In section IV, expressions for variances of the
estimators of the PCls C,, Cg, Cym and Cpn are given.
Section V presents a study of the effect of autocorrelation on
PCls Cy, Cy, Com and variances of estimators of C,, Cyy, Cpm
and Cpmc and also on expected values. Section V also contains
standard error of the sample mean and sample standard
deviation. In section VI conclusions are given.
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Il.  PROCESS CAPABILITY INDICES

The Process Capability Indices Cp, Cy, Cpm and Cyny are the
most widely used among several PCls for assessing the
capability of the process defined in (i) —(iv).

(i) c, = USL —LSL

60
(i)  Cpc=min USL=u w-LSL
o 30
B a—|,u—b| _d —|2,u—m
30 60
USL — LSL

ey

B 1+ &2

where T is the target valueand & = %
(iv) Cpmi =min USL-p  p-LSL
o +(u-TP 3o +(u-TF
J1+&2
a—|u-b]

) 3\/02 +(,u—T)2

where USL and LSL are upper and lower specification limits
respectively. p is the process mean, o is the process standard
deviation. Further, the quantities

a_USL—LSL b_USL+ LSL

o2 2

d =USL-LSL, m=USL + LSL

I11.  STATIONARY GAUSSIAN PROCESS
Let {X,} is a process such that Var (X, ) o for each
t eW <R, where R is the set of real numbers, then the
autocovariance function y, (.,.) of {X,} is given as
7x(r,s)=Cov(X,, X)
= E[(Xr - Exr)(xs - Exs)]
r,sew
The time series {Xt t eW} is said to be stationary if
E‘th‘(oo,tez, E(X,)=m,teZ and
7 (r,s)=p,(r+t,s+t), r,s,teZ;therefore u, (t) is
independent of t, and y, (t+h,t) is independent of t for each
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heZ . If {X,} is a stationary process, the autocovariance
function (ACVF) of {X, }is given by

7x (N)=Cov(Xyp, X)
and the autocorrelation function (ACF) is given by [5]

h
px(h>=;z—§0§=cw(xt+h,xt> |

{X,} is a Gaussian process if all of its joint distributions are

multivariate normal. A process is said to be stationary
Gaussian if it is stationary and Gaussian simultaneously. Let

{Xl,Xz,..Xn} be a random sample of size n from a
n
stationary Gaussian process {X,} . Let Y:Zﬁ and
- n
i=1

2

n
1 (Xi —X) be the sample mean and sample

S2=——_
n-1 i=1

variances respectively. The expected values and variances of
X ,S% and S are given [3]:

_ . 2
E(X) = 1, ,V(X):%gm,m

E(S®)=o7f(np;)

20y

V(Y = R0 p)

E(S)z[E(szﬁ“:ax[f(n,pi)]”z
and

ZGf

Vars) | (n-p? A
ar(S) = =

4E(S?) 4ot f(n,p;)

_ b F(n, o)

*2(n-1)%f(n, py)
where p; = py (1) for i= 1,2,...n is the autocorrelation of X
atlagi,

2 &
fnp) =1-C s D (=D

i=l

n-1 n-1 2
F(np) =n+2> (n-i)p +%{n + ZZ(n—i)pi}
i=1 i=1

n-1 n-i
23 3 (=i Dy

i=0 j=0

2t
g(n,pi)=1+ﬁi2_1)(n—n)pi .
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IV. VARIANCE OF ESTIMATORS OF PROCESS
CAPABILITY INDICES

Let {X;,X,,X5,..X,} be a sample of size n from a

stationary Gaussian process {X, } . The usual estimators of C,,
Coks Com, and Cpp are:

ép:USL—LSL
6S
A . fusL—X X -—LSL
Cox =MIM =35 "33
_a—|)7—b|_d—|2)7—m|
B 3s B 6S
s _ USL-—LsL
a 6\/32+(>?—T)2 _
:C—”A where &=2X-T
1+ £2 S
and
¢ —min USL — X X —LSL
m ]
P 3\/32+(>?—T)2 3\/32+(>?—T)2
C i a—|X —b|

\/1+52 3\/SZ+()7—T)2
the approximations for the variances of ép and épk has been
found [3]:

C F(n, o)
Var (C,) =C; 2(n—)2f3(n, p,)

and

F(n!pi)

Var (C,, )~ Coi 9(n.pi) |
P 2(n-1)°£%(n, p;)

f(n.p)| 9nCyy

and also for the variances of C,, and C . [4]:
2F(n, p) N 4g(n, p)&°

2
Var(C,,) ~C?2 (n=1) n
T g+ e
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and

e ]

) F(n, ;) +g(n,pi>{i+ 6 T
20-02[tmp)+e2f O [Co 2[f(np)+&7]

where, §='u—. If £=T then,
o

A F(n, o

Var(Cpm)=CS|: (2 p3,) }which equals the
2(n=1)"f°(n,p;)
variance of(fp , and
. G Fp) ao’gnp)| 1 T

Var(Cpym) = f(n,pi)[z(n—l)sz(n,pi) + . Py

__ Ch Fup) |, 9(np)

f(np)|2(-)2f2(n,p;)  9nC3,

which equals the variance of épk .

V. EFFECTS OF AUTOCORRELATION ON PROCESS
CAPABILITY INDICES PCls

EFFECTS OF AUTOCORRELATION ON SAMPLE MEAN AND
SAMPLE STANDARD DEVIATION

Consider the example [2]; where a quality characteristic is
normally distributed with mean 40 and standard deviation 7.
The specification level are USL = 61 and LSL = 19. Different
target values are considered: T = 40, 41, 42, 43, 44, 45. We
then compare the two processes. A process with independent
observations and a process with observations following an

AR (2) model, X; =@ X1 +@ X, +& where {g} is a
series of uncorrelated errors, & ~ N (0, o) and 6 = 7. In
Table 1 for each process, the mean, the standard deviation and
the capability indices C,, Cp, Cpm and Cpmi are calculated.
The values of Cy and Cyy are not shown here because if the
process is targeted at its mean then, C, = Cpx and Cyn=Cpym.
The second order autoregressive process is stationary if the
parameters ¢, and ¢, are such that ¢, +¢,<1, ¢-¢,<1,
| ¢, <1, so we considered ¢ =0.01, 0.26, 0.51 and ¢, = 0.05,
0.1, 0.15 which satisfy the above constraints.

we have for an AR (2) process X; =@ X4 + @ X, » + &

(-¢) o

) S T 6 ) G d)
__ &

p(0)=1 plt)== e

p(s)=dp(s—1)+g,0(s - 2)

$>3
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where, ?

function.

is white noise variance and p; is autocorrelation

Table 1: Mean, Standard deviation (STD), C, and Cyy, Of a process not
autocorrelated vs. a process following an AR (2) model. *d=p -T

Vol. 6(1), Feb 2019, ISSN: 2348-4519

Table 2: Expected values and standard error of the sample mean and sample
standard deviation for no autocorrelated process.

Mean Std Deviation
n Std Std
Average Error Average Error
15 40.01 1.81 6.84 1.31
50 39.95 1.02 6.95 0.69
100 40 0.7 6.97 0.49
200 40 0.5 7 0.35

Table 3: Expected values and standard error of the sample mean and sample
standard deviation for autocorrelated process following AR (2).

| Mean [ STD Co
No Autocorrelation 40 7 1
$¢,=0.05 40 7.182 0.975
61 =0.01 ¢.=0.1 40 7.379 0.949
$.=0.15 40 7.593 0.922
$.=0.05 40 7.467 0.937
b1 =0.26 ¢.=0.1 40 7.707 0.908
$.=0.15 40 7.975 0.878
$.=0.05 40 8.512 0.822
¢1 =0.26 $,=0.1 40 8.955 0.782
$¢,=0.15 40 9.491 0.738
Com
*=p-T—» | 0 1 2 3 4 5
No Autocorrelation 1 0.99 0.962 | 0.919 | 0.868 | 0.814
¢,=0.05 | 0.975 | 0.965 | 0.939 | 0.899 | 0.851 0.8
¢;=0.01 | ¢,=0.1 | 0.949 | 094 | 0.916 | 0.879 | 0.834 | 0.785
¢=0.15 | 0.922 | 0.914 | 0.891 0.857 0.816 0.77
¢,=0.05 | 0.937 | 0.929 | 0.906 0.87 0.826 | 0.779
¢;=0.26 | ¢,=0.1 | 0.908 | 0.901 | 0.879 | 0.846 | 0.806 | 0.762
¢,=0.15 | 0.878 | 0.871 | 0.851 0.822 0.785 0.744
¢=0.05 | 0.822 | 0.817 | 0.801 0.776 0.744 0.709
¢:=0.26 | ¢,=0.1 | 0.782 | 0.777 | 0.763 | 0.741 | 0.714 | 0.682
¢,=0.15 | 0.738 | 0.734 | 0.722 | 0.703 0.68 0.653

We observe in Table 1 that higher the autocorrelation levels
lower the capability index value. Through simulation study
the effect of autocorrelation on the expected value of the
sample mean and standard error studied. We generated 10000
samples from a no autocorrelated process and 10000 samples
from AR (2) process for each of the following cases: n = 15,
50, 100, 200; ¢, = 0.01, 0.26, 0.51 and ¢, = 0.05, 0.1, 0.15.
Table 2 shows results for no autocorrelated process and Table
3 shows results for the autocorrelated process.

Table 3 shows that the autocorrelation does not
affect the expected value of the sample mean; while a
different situation occurs with the expected value of the
standard deviation. For example, for n = 15 and (¢,, ¢,) =
(0.01, 0.1) the estimated expected value of the standard
deviation is 6.77 in autocorrelated process, for (¢,, ¢, ) =

(0.26, 0.1) is 6.92 and (¢, , ¢, )=(0.51,0.1) is 7.46. For

independent observations, the value is 6.84. As n increases,
the estimated expected value of the standard deviation
increases slightly, for autocorrelated data. For example, for
(¢ ,¢,) = (0.51, 0.15) the estimated expected values for n =

15, 50, 100 are 7.42, 8.4, 8.49 respectively.
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_l Mean Std
n ‘¢1 ¢z 0.05 | 0.1 0.15 | 0.05| 0.1 | 0.15
001 | 39.97 | 39.88 | 39.98 | 6.82 | 6.77 | 6.9
15 [ 026 | 401 | 40.15 | 40.03 | 6.94 | 692 | 7
051 | 39.79 | 39.94 | 402 | 7.47 | 7.46 | 7.42
001 | 40.03 | 4001 | 40 | 695|697 | 7.03
Q‘éee 50 | 0.26 | 40.02 | 39.98 | 40.02 | 7.17 | 7.22 | 7.27
051 | 40.13 | 40.06 | 4001 | 8.03 | 82 | 84
001 | 40.01 | 39.94 | 40 | 697 | 7.03 ]| 7.04
100 | 0.26 | 40.02 | 40.05 | 40.03 | 7.22 | 7.29 | 7.36
051 | 40 | 39.95 | 40.04 | 8.15 | 8.38 | 8.59
001 | 1.9 | 202 | 212 | 133 | 1.25 | 1.31
15 | 026 | 267 | 2.69 | 29 | 141|138 145
051 | 4 | 428 | 484 | 181 | 1.77 | 1.87
; 001 | 1.03 | 111 | 117 | 07 |071]| 07
Es;ﬁor 50 [ 026 | 1.38 | 159 | 1.68 | 0.78 | 0.82 | 0.83
051 | 211 | 244 | 282 | 111|122 | 13
00L | 0.73 | 081 | 084 | 051 | 0.51 | 0.49
100 | 026 | 1.01 | 1.09 | 1.16 | 057 | 058 | 0.6
051 | 155 | 1.79 | 2.01 | 0.79 | 0.88 | 0.92

EFFECTS OF AUTOCORRELATION ON PCIs C;, Cpx AND Cypyy

Through a simulation study, we analyze the effect of the
autocorrelated process of order two AR (2) on capability
indices estimators. Comparing the estimated expected values
of the capability indices estimators shown in table 4, 5 and 6
with the theoretical values in table 1, it has observed that for
autocorrelated processes the estimators are biased, bias that
decreases as n increases. Also bias in the index increases as
the degree of autocorrelation increases. For example, for
(¢ ,4,) = (0,51, 0.15) and n = 15, 50 and 100 the expected

value of ¢ are 1, 0.86, 0.82 while the true value is 0.738.
For (¢,,¢,) =(0.26, 0.1) and n = 15, 50 and 100 the expected
value of (fpk are 0.94, 0.93, 0.93 while the true value is 0.91.
For n =50 and (¢, ,¢,) = (0.26, 0.15) the expected values of

Cpmare 0.95,0.94, 0.88, 0.84, 0.82 and 0.8 when p ~T =0, 1,

2, 3, 4 and 5 respectively while the true values are 0.87, 0.87,
0.85,0.82,0.78, 0.74.
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Table 4: Expected values and standard error of the capability index C,, Cy
and Cpn, for no autocorrelated processes.

Vol. 6(1), Feb 2019, ISSN: 2348-4519

0.1 0.83 0.83 0.82 0.8 0.77 0.72

015 | 082 | 081 | 0.79 | 0.77 | 0.75 | 0.72

Com
*d=p-T
NG| S 1 2 3 4 5
15 | 12 | 1.06 | 1.02 | 1.02 | 099 | 094 | 0.89 | 0.83
g‘éi 50 | 121 | 102 | 101 | 1 | 097 | 093 | 087 | 0.82
100 | 120 | 101 | 1 | 099 | 097 | 092 | 0.87 | 0.82
15 | 028 | 025|021 ] 02 | 019 | 019 | 017 | 0.15
Esrﬁgr 50 (012|012 01 | 01 | 01 | 01 | 0.08 | 0.08
100 | 0.08 | 0.08 | 0.07 | 0.07 | 0.07 | 0.06 | 0.06 | 0.05

Table 5: Expected values and standard error of the capability index Cy, Cy for
autocorrelated processes.

0.05 1 099 | 096 | 092 | 0.87 | 0.82

001 ™51 11 [ o009 | 09 | 092 | 087 | 081
015 | 099 | 099 | 096 | 092 | 086 | 081
005 | 097 | 096 | 093 | 089 | 085 | 08
0.26

100 0.1 0.96 0.95 0.93 0.88 0.84 0.79

0.15 0.94 0.94 0.91 0.88 0.84 0.79

0.05 0.85 0.84 0.83 0.8 0.78 0.73

0.51 0.1 0.83 0.82 0.81 0.79 0.75 0.72

0.15 0.8 0.8 0.78 0.76 0.73 0.7

Co Cox

Table 6b: Standard error of the capability index C,, for autocorrelated

n Only <|22I 005| 01 [ 015 0.05 | 0.1 0.15

0.01 1.06 | 1.07 | 1.07 | 098 | 0.99 | 0.99

15 0.26 1.05 | 1.05 | 1.05 | 095 | 0.94 | 0.93

0.51 1 1.01 1 0.85 | 0.85 | 0.83

0.01 1.01 | 1.02 | 1.01 | 097 | 097 | 097

process.
Standard Error
*d=p-T
n o b 0 1 2 3 4 5
0.05 0.2 0.21 0.21 0.19 0.18 0.16
0.01 0.1 0.2 0.2 0.2 0.2 0.18 0.16
0.15 0.2 0.2 0.19 0.19 0.18 0.17
0.05 0.21 0.21 0.21 0.21 0.19 0.18
15 0.26

0.1 0.21 0.2 0.22 0.2 0.19 0.19

0.15 | 0.21 0.2 0.2 0.21 0.2 0.2

005 | 022 | 021 | 022 | 022 | 021 | 0.21

0.51 0.1 024 | 021 | 021 023 | 022 | 0.22

015 | 023 | 023 | 0.23 024 | 024 | 0.24

2‘; 50 [ 026 | 098098097 | 0903|093 091
051 |08 | 088|086 | 08 | 08 | 0.77

001 |101| ¢ | ¢ | o098 |097] 097

100 [ 026 |097 | 097 | 096 | 093 | 0.93 | 091
051 | 086 | 084|082 08l | 079 | 0.76

001 | 021 | 023023 021|022 022

15 | 026 |023]022|023| 022|021 022

051 | 025|027 | 027 | 024 | 025 | 0.28

001 |o11 |01t |o11 | 011 |01t | 011

Esr:gr 50 | 026 | 01 |01l ] 012 | 01l |012 | 012

0.51 012 | 012 { 013 | 0.13 | 013 | 0.14

0.01 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07

100 0.26 0.07 | 0.08 | 0.08 | 0.08 | 0.08 | 0.08

051 0.09 | 0.08 | 0.09 | 0.09 | 0.09 | 01

Table 6a: Expected values and standard error of the capability index Cyp, for
autocorrelated process.

0.05 0.1 0.11 0.1 0.09 | 0.09 | 0.08

001 ™01 [ o011 | 01 | 01 | o1 | 009 | 008
015 | 01 | o1 | o1 | o1 | 009 | 009
005 | 011 | o1 | 01 | 01 | o1 | 009
50 | 026

0.1 0.11 0.11 0.11 0.11 0.1 0.1

0.15 0.11 0.11 0.11 0.11 0.11 0.11

0.05 0.12 0.12 0.11 0.12 0.11 0.11

0.51 0.1 0.12 0.12 0.12 0.12 0.13 0.12

0.15 0.12 0.13 0.13 0.12 0.13 0.13

Mean

*d=p-T

0 1 2 3 4 5

0.05 1.02 1.01 1 094 | 089 | 0.84

0.05 | 0.07 | 0.07 0.07 0.07 | 0.06 | 0.06

001 ™51 007 | 007 | 007 | 007 | 006 | 006
015 | 007 | 007 | 007 | 007 | 006 | 006
5 | 005 | 008 [ 008 [ 007 | 007 | 007 | 007

100 0.1 0.07 | 0.07 0.07 0.07 | 0.07 | 0.07

0.15 | 0.08 | 0.08 | 0.08 | 008 | 0.08 | 0.08

001 0.1 1.02 1.01 | 098 | 095 | 0.89 | 0.83 005 | 009 | 0.08 | 0.08 | 0.08 | 0.08 | 0.08
015 | 1.01 1 097 | 095 | 0.88 | 0.84 0.51 0.1 009 | 009 | 0.08 | 0.09 | 0.08 | 0.08
15 0.26 0.05 1 098 | 096 | 093 | 0.87 | 0.83 0.15 | 0.09 | 0.09 | 0.09 | 0.09 | 0.09 | 0.09

0.1 098 | 096 | 0.97 | 091 | 0.87 | 0.83

015 | 097 | 097 | 095 | 092 | 0.86 | 0.82

0.05 | 0.89 0.89 | 0.87 0.85 | 0.81 | 0.78

0.51 0.1 0.89 087 | 086 | 0.84 | 0.81 | 0.78

015 | 085 | 0.86 | 0.83 | 0.83 | 081 | 0.77

0.05 1 1 096 | 092 | 0.87 | 0.82

001 o1 T 1 [ 099 | 096 | 092 | 087 | 082

015 | 099 | 098 | 096 | 092 | 087 | 081

50 005 | 097 | 09 | 093 | 09 | 085 | 08
0.26

0.1 0.96 095 | 093 | 0.89 | 0.85 0.8

015 | 095 | 094 | 0.92 0.88 | 0.84 0.8

0.51 0.05 | 0.86 085 | 083 | 0.81 | 0.78 | 0.73

© 2019, IISRMSS All Rights Reserved

EFFECT OF AUTOCORRELATION ON VARIANCE OF ESTIMATORS
OF C;, Cox, Comy Comk UNDER AUTOREGRESSIVE PROCESS OF
ORDER TWO AR (2)

To compare the variances of estimators of C, Cy, Com, Comk @
simulation study was carried out for a second-order stationary
autoregressive process with parameter ¢ and ¢, . For
C,=1.33, ¢ =0.01, 0.26, 0.51, ¢,= 0.05, 0.1, 0.15, and n =
10, 20 ... 200. Figure 1 shows fixing C,, ¢, and n, as ¢,

increases G, . For fixed values of ¢, the variance is larger
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for n <100. Partial results have shown in Figure 1. Similar
results are also obtained for 6., Gpms Tepmi-

$2=0.05
07 +$1=001
06 | ©$1=0.26
X $1=051
80.5 o
) o
Ezo.a
& g ox
w 03 8 X
bS] ngx
D 02 QQ§5é$
SRR 5y og gy
01
0
O O ©O O O O O O © O O O O O o o o o o
RRS88RS58§3335 38R E3F S

n

Figure 1. Gcp as function of the sample size with C;= 1.33, ¢ =0.01,

0.26,0.51, and ¢, = 0.05.

Similar results are obtained for ¢, = 0.1, 0.15.
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Figure 2. G as function of the sample size with Cy= 1.33, ¢ =0.01,

0.26, 0.51, and ¢, = 0.05.

Similar results are also obtained for ¢, =0.1, 0.15.
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Figure 3. 6‘Cpm as function of the sample size with C,= 1.33, ¢ =0.01,

0.26,0.51, and ¢, =0.05, 0.1, 0.15, &=0

Similar results are obtained for &= 5, 10.
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n<100 the variances of the estimators decreases rapidly for all
parameter combinations of AR (2) process. This situation
happens in all the cases of estimators.

In the future scope of this study, one can find the
remedial measures to remove the effect due to autocorrelation
on the estimators of PCls.
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VI. CONCLUSIONS

We observed the effect of autocorrelation and found that it
does not affect the expected value of the sample mean but
affects the estimated expected value of the standard error that
increases slightly for autocorrelated data.

Through a simulation study, we observed that the
higher the autocorrelation level lower the capability index
value. We also observed that for autocorrelated processes the
estimators are biased, bias increases as the degree of
autocorrelation increases and also it decreases as n increases.
The variances of the estimators of Cp, and C,m have studied
through a simulation study. It has found that for sample size
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