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Abstract— In this paper we presented Nano δG-continuous functions and discussed some of their properties.  Also we 

investigate the relationships between the other existing Nano continuous functions .Further, we define and study the concept of 

Nano δG-irresolute functions in Nano topological spaces and studied some of their characterizations. 
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I.  INTRODUCTION  

 

The concept of Nano topology was introduced by Lellis 

Thivagar [6]which was defined in terms of approximations 

and boundary region of a subset of an universe using an 

equivalence relation on it. Nano generalized  closed sets 

introduced by K. Bhuvaneswari[1] et.al.,LellisThivagar  

introduced Nano continuous functions in Nano topological 

spaces. In this paper we presented Nano δG-continuous 

functions and discussed some of their properties.  Also we 

investigate the relationships between the other existing Nano 

continuous functions .Further, we define and study the 

concept of Nano δG-irresolute functions in Nano topological 

spaces and studied some of their characterizations. 

 

II. PRELIMINARIES  

 

Definition 2.1 [6]:  

Let U be a non-empty finite set of objects called the universe 

and R be an equivalence relation on U named as the 

indiscernibility relation. Then U is divided into disjoint 

equivalence classes. Elements belonging to the same 

equivalence class are said to be indiscernible with one 

another. The pair (U, R) is said to be the approximation 

space. Let X ⊆ U. 

 

(i) The lower approximation of X with respect to R is the set 

of all objects, which can be for certain classified as X with 

respect to R and it is denoted by   (X)  

That is   (X) =   
   

* ( )  ( ) ⊆X}. Where R(x) denotes 

the equivalence class determined by x U. 

(ii) The upper approximation of X with respect to R is the set 

of all objects, which can be possibly classified as X with 

respect to R and it is denoted by ⋃ ( )  = 
 
   

* ( )  ( )  

   + 
(iii) The boundary region of X with respect to R is the set of 

all objects, which can be classified neither as X nor as not-X 

with respect to R and it is denoted by   ( ). That is   ( ) = 

  ( ) -   ( ). 
 

Property 2.2 [6] 

If (U, R) is an approximation space and X, Y ⊆ U, then 

i)   ( ) ⊆  ⊆   ( ) 
ii)   ( )     ( )     

iii)   ( )     ( )     

iv)   (   ) =   ( )     ( ) 
v)   (   ) ⊆   ( )     ( ) 
vi)   (   )     ( )     ( ) 
vii)   (   )     ( )     ( ) 
viii)   ( )  ⊆    ( )  and   ( )  ⊆    ( ) 

whenever X ⊆ Y. 

ix)   ( 
 )   ,  ( )-

  and   ( 
 )   ,  ( )-

  

x)   (  ( )) =   (  ( )) =    ( ) 
xi)   (  ( )) =   (  ( )) =   ( ) 

 

Definition 2.3 [6] 

Let U be a non-empty, finite universe of objects and R be an 

equivalence relation on U. Let X⊆ U.  
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Let    ( )     *      ( )   ( )   ( )+.  
Then   ( ) is a topology on U , called as the Nano topology 

with respect to X.  

Elements of the Nano topology are known as the Nano open 

sets in U and (U,   ) is called the Nano topological space. 

,  -  is called as the dual Nano topology of   . Elements of 

,  -  are called as Nano closed sets. ` 

 

Definition 2.4  

Let (U, N ) be a  Nano topological space with respect to X 

where  X ⊆ U and if A ⊆U,then A is said to be 

 (i) .Nano semi-open set[6] if A  Ncl(Nint(A)).  

(ii). Nano-regular open set  [6]if A=Ncl(Nint(A)). 

(iii).Nano Pre-open set if [6]AN int(Ncl(A)) 

(iv).Nano α-open set  [6]if ANint(Ncl(Nint(A)) 

(v).The finite union of Nano regular open sets is said to be   

       [8]Nano π-open  

  

Definition 2.5 

 Let (U, N ) be a  Nano topological space with respect to X 

where X ⊆ U and if A ⊆U, then A is said to be 

(i).Nano g-closed [1]if Nano cl(A)⊆Q whenever A⊆Q and Q  

      is Nano open. 

(ii)Nano gp-closed[2] if Nano pcl(A)⊆Qwhenever A⊆Q and  

      Q is Nano open. 

(iii)Nano  πgp-closed[9] if Nano pcl(A)⊆Q whenever A⊆Q  

      and Q is Nano π -open 

(iv)Nano πgs-closed [10]if  Nano scl(A)⊆Q whenever A⊆Q  

      and Q is Nano π -open 

 (v)Nano gα-closed set [11]if  Nano αcl(A)⊆Q whenever  

     A⊆Q and Q is Nano α open . 

 

Definition 2.6 

Let (U, N ) be a  Nano topological space with respect to X 

where X ⊆ U and if A ⊆U, then A is said to be 

(i).Nano δ-closed if A=Nclδ(A), where  

    Nclδ (A)={x∈U:Nint(Ncl(Q)) A ≠ϕ, Q∈N and x∈Q}. 

(ii).Nano δG-closed set if  Nδcl(A)⊆Q whenever A⊆Q,Q is   

      Nano open in (U, N ). 

(iii).Nano Gδ-closed set  if Ncl(A)⊆Q whenever A⊆Q , Q is  

       Nδ-open in (U,N ). 

 

III. ON NANO δ GENERALIZED CONTINUOUS  

 

In this section we Introduce new forms of continuity namely, 

Nano δG-continuous in nano topological spaces and study 

some of their properties. 

 

Definition 3.1  

A function f : (U, N  )→ (V, Nσ) is said to be Nano δG-

continuous if the inverse image  of every Nano open set in 

(V, Nσ) is Nano δG-open in (U, N  ). 

Example 3.2  

Let U= {a1, a2, a3,a4} with U/R= {{a1},{a3},{ a2,a4} } 

Let X={a1, a2}⊆ U.  

Then  N  ={U,   ,{a1},{a2, a4},{a1, a2,a4}}.  

Let V= {b1, b2, b3,b4} with V/R= {{b1, b2},{ b3,b4} } 

Let X={b1, b2}⊆ V.  

Then Nσ ={U,   ,{b1, b2}}. 

Let f : (U, N  )→ (V, Nσ) be defined by f(a1)= b1, f(a2)= b2, 

f(a3)= b3, f(a4)= b3. Then f is δG-continuous 

 

Definition 3.3  

A function f : (U, N  )→ (V, Nσ) is said to be  

(i). Nano δ-continuous if the inverse image of every 

Nano open set in (V, Nσ) is Nano δ-open in (U,N  ). 

(ii). Nano g-continuous if the inverse image of every 

Nano open set in (V, Nσ) is  Nano g-open in (U,N  ) 

(iii). Nano Gδ-continuous if the inverse image of every 

Nano open set in (V, Nσ) is Nano Gδ -open in  

(U, N  ). 

(iv). Nano gp-continuous if the inverse image of every 

Nano open set in (V, Nσ) is Nano gp-open in  

(U,N  ). 

(v). Nano πgp-continuous if the inverse image of every 

Nano open set in (V, Nσ) is  Nano πgp -open in  

(U, N  ). 

(vi). Nano πgs -continuous if the inverse image of every 

Nano open set in (V, Nσ) is Nano πgs-open in (U, N  

). 

 

Theorem.3.4 

Every Nano δ-continuous function is Nano δG-continuous 

Proof:  

Assume f is a Nano δ-continuous function. Let H be any 

Nano open set in (V, Nσ).Then f
-1
(H) is δG-open in (U, N  ). 

Since every Nano δ-open set is Nano δG-open, f
-1

(H) is Nano 

δG-open in (U, N  ).Therefore f is Nano δG-continuous. 

Example 3.5 

Let U= {a1, a2, a3,a4, a5} with U/R= {{a1},{a2}, {a3,a4, a5}} 

Let X={a1, a3}⊆ U.  

Then  N  ={U,  ,{a1},{ a3,a4, a5}{a1, a3,a4, a5} }.  

Let V= {b1, b2, b3, b4, b5} with V/R={{b1}, {b2 ,b3},{b4, b5}} 

Let X={b4, b5}⊆V.  

Then Nσ={U,  ,{b4, b5}}. 

Let f : (U, N  )→ (V, Nσ) be defined by f(a1)=b1, f(a2)=b2, 

f(a3)=b3, f(a4)=b4, f(a5)=b5 Then f is δG-continuous . 

f
-1

{{ b1,b2 ,b3}}}={ a1,a2, a3} is  Nano Gδ-continuous but not 

Nano δ continuous 

 

Theorem 3.6 

 Every Nano δG-continuous function is Nano Gδ-continuous 

Proof:  

Assume f is a Nano δG-continuous function. Let H be any 

Nano open set in(V, Nσ). Then f
-1
(H) is Nano δG-open in (U, 

N  ). Since every Nano δG-open set is Nano Gδ-open, 

f
-1

(H) is Nano Gδ-open in (U, N ). Therefore f is Nano Gδ-

continuous. 
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The converse of the above theorem need not be true as seen 

from the following example. 

Example 3.7 

Let U= {a1, a2, a3} with U/R= {{a1},{a2,a3} } 

Let X={a1}⊆ U.  

Then  N  ={U,   ,{a1}}.  

Let V= {b1, b2, b3} with V/R= {{b1},{b2,b3}} 

Let X={b2, b3}⊆ V.  

Then Nσ ={U,   ,{b2, b3}}. 

Let f : (U, N  )→ (V, Nσ) be defined by f(a1)= b1, f(a2)=b2, 

f(a3)=b3.  

Then f is Nano Gδ-continuous but not Nano δG-continuous, 

since f
-1

({b1})={a1} is not Nano δG -closed set in (U, N  ). 

 

Theorem 3.8 

Every Nano δG-continuous function is Nano πgp-continuous 

Proof:  

Assume f is a Nano δG-continuous function. Let H be any 

Nano open set in (V, Nσ). Then f
-1

 (H) is Nano δG-open in 

(U, N  ).Since every Nano δG-open set is Nano πgp-open, f
-

1
(H) is Nano πgp-open in (U, N ). Therefore f is Nano πgp -

continuous. 

The converse of the above theorem need not be true as seen 

from the following example. 

Example 3.9 

Let U= {a1, a2, a3} with U/R= {{a1,a2},{a3} } 

Let X={a3}⊆ U.  

Then  N  ={U,   ,{a3}}.  

Let V= {b1, b2, b3} with V/R= {{b1,b2},{b3}} 

Let X={b1, b2}⊆ V.  

Then Nσ ={U,   ,{b1, b2}}. 

Let f : (U, N  )→ (V, Nσ) be defined by f(a1)= b1, f(a2)=b2, 

f(a3)=b3.  

.Then f is Nano πgp-continuous but not Nano δG-continuous, 

since f
-1

({b3})={a3} is not a Nano δG-closed set in (U, N  ). 

 

Theorem 3.10 

Every Nano δG-continuous function is Nano πgs -continuous 

Proof:  

Assume f is a Nano δG-continuous function. Let H be any 

Nano open set in (V, Nσ).Then f
-1
(H) is Nano δG-open in (U, 

N ). Since every Nano δG-open set is Nano πgs -open,  

f
-1
(H) is Nano πgs -open in (U, N  ). Therefore f is Nano πgs 

-continuous. 

The converse of the above theorem need not be true as seen 

from the following example. 

Example 3.11 

Let U= {a1, a2, a3} with U/R= {{a1,a3},{a2} } 

Let X={a1,a3}⊆U.  

Then  N  ={U,  ,{a1,a3}}.  

Let V= {b1, b2, b3} with V/R= {{b1,b2},{b3}} 

Let X={b1, b2}⊆ V.Then Nσ ={U,   ,{b1, b2}}. 

Let f : (U, N  )→ (V, Nσ) be defined by f(a1)= b1, f(a2)=b2, 

f(a3)=b3.  

Then f is Nano πgs-continuous but not Nano δG-continuous, 

since f
-1

({b3}) ={a3} is not a Nano δG -closed set in (U, N  ). 

 

Theorem 3.12 

Every Nano δG-continuous function is Nano gp-continuous 

Proof:  

Assume f is Nano δG-continuous function. Let H be any 

Nano open set in (V, Nσ).Then f
-1
(H) is Nano δG-open in (U, 

N  ). Since every Nano δG-open set is Nano gp-open,f
-1

(H) 

is Nano gp -open in (U, N  ). Therefore f is Nano gp-

continuous. 

The converse of the above theorem need not be true as seen 

from the following example. 

Example 3.13 

 Let U= {a1, a2, a3,a4} with U/R= {{a1, a2},{ a3,a4}} 

Let X={a1, a2}⊆U.  

Then  N ={U,   ,{a1, a2}}. 

Let V= {b1, b2, b3,b4} with V/R={{b1, b3,b4},{b2}} 

Let X={ b1, b3,b4}⊆ V. Then Nσ ={U,   ,{ b1, b3,b4}}. 

Let f : (U, N  )→ (V, Nσ) be defined by f(a1)=b1, f(a2)=b2, 

f(a3)=b3, f(a4)=b4, Then f is Nano gp-continuous but not 

Nano δG-continuous, since f
-1

({b2})={a2} is not a Nano δG-

closed set in (U, N ). 

Diagram-I 

Here the following diagram shows the relationships of Nano 

δG continuous sets with other sets.  

 

 
 

Theorem 3.14 

A function f : (U, N  )→(V, Nσ) is Nano δG-continuous if 

and only if the inverse image  of every nano  closed set in V 

is Nano δG-closed in U. 

Proof:  

Assume that f is Nano δG-continuous. Let K be a nano 

closed set in V. Then F
C
 is nano open in V. Since f is Nano 

δG-continuous, f
-1

(F
C
)=U\f

-1
(K) is Nano δG-open in (U,N  ) 

.Hence f (K) is Nano δG-closed in (U, N  ). 

 

Conversely assume that the inverse image of every Nano 

closed set in V is Nano δG-closed in U. Let H be an Nano 

open set in V, then V
C 

is Nano closed in V. By assumption f
-

1
(V

C
) is Nano δG-closed in U. But f

-1
(V

C
)=U\f

-1
(H) and so f

-

1
(H) is Nano δG-open in U . Thus f is Nano δG-continuous. 
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IV.NANO δ GENERALIZED IRRESOLUTE 

FUNCTIONS 

 

In this section, we Introduce new forms of irresolute 

functions namely, Nano δG- irresolute functions in nano 

topological spaces and study some of their properties. 

 

Definition 4.1   

A function f : (U, N )→(V, Nσ) is called Nano δG-irresolute  

if f
-1

 (H) is Nano δG-closed in  (U, N  ) for every Nano δG 

closed set H of (V, Nσ). 

Example: 4.2 

Let U= {a1, a2, a3,a4} with U/R= {{a1, a2},{ a3,a4} } 

Let X={a1, a2}⊆ U.  

Then  N ={U,   ,{ a1, a2}}.  

 Nano δG-closed set ={ U,  ,{a3},{a4}, {a1, a3},{a1, a4}, 

{a2, a3},{a2, a4},{a3, a4},{a1, a2,a3}, {a1, a3,a4}, {a1, a2,a4},{a2, 

a3,a4}} 

 Let V={b1, b2, b3,b4} with V/R={{b1}, {b2,b4},{b3}} 

Let X={ b1, b3,b4}⊆ V.  

Then Nσ ={U,  ,{b1},{b2,b4},{ b1,b2,b4}}. 

Nano δG-closed set ={U,  ,{b3},{b1,b3},{ b3,b4}, { b1,b2,b3}, 

{ b1,b3,b4},{b2,b3,b4}}. 

Let f : (U, N  )→ (V, Nσ) be defined by f(a1)=b1, f(a2)=b2, 

f(a3)=b3, f(a4)=b4, 

Then f is Nano δG-irresolute. 

 

Theorem 4.3 

Let A be a subset of (U, N  ) and x U. Then x N-δGCl(A) 

if and only if H A ≠ϕ for every Nano δG-open set H 

containing x. 

Proof: 

 Let A be a subset of (U, N  )and x N-δGCl(A). Suppose 

that there exists a Nano δG-open set H containing x such that 

H A=ϕ. Then A⊆U\H,N-δGCl(A)⊆U\H and then x  N-

δGCl(A), a contradiction. 

Conversely, suppose that x   N-δGCl(A). Then there exists a 

Nano δG-closed set K contains A such that x   K. Since x   

U\K andU\K is N-δG-open,(U\K) A=ϕ, a Contradiction. 

 

Theorem 4.4 

(a). The following statements are equivalent  

      (i).f is Nano δG-continuous  

      (ii).The inverse image of every Nano open set in V is    

            Nano δG-open in U. 

(b). If f:(U, N  ) (V, Nσ) is Nano Gδ-continuous, then     

        f(NδGCl(A)) ⊆Ncl(f(A)) for every subset  A of U 

(c). The following statements are equivalent 

      (i).For each x U and each Nano open set H containing    

           f(x) there exist a Nano δG-open set G containing x   

           such that f(G)⊆H  

     (ii).For every subset A of U,f(NδGCl(A))⊆Ncl(f(A)) 

Proof: 

  (i) (ii) is obvious. 

     (b).Let A⊆U.Since f is NanoGδ-continuous and A⊆f
-1

(N-

cl(f(A))),N-δGcl(A) ⊆ f(N-cl(f(A))) and hence f(N-  

δGcl(A))⊆Ncl(f(A) 

 (i) (ii) Let y   f(N-δGCl(A)) and let H be any Nano open 

neighbourhood of y .Then there  exist a x U and a Nano δG-

open set G such that f(x)=y, x G, x N-δGCl (A) and           

f(G)⊆H   By theorem 3.14, G A≠ϕ and hence f(A) H ≠ ϕ. 

Hence y = f(x) N-cl(f(A)). 

(ii)  (i) Let x  U and H  be any Nano open set containing 

f(x). Let A = f
-1

(V\H).Since  f(NδGCl(A))⊆Ncl(f(A))⊆V\H, 

NδGCl(A)=A. Since x  NδGCl(A), there exists a N-δG-open  

set G containing x such that G  A=ϕ and hence 

f(G)⊆f(U\A)⊆H . 

 

Theorem 4.5 

 Let f : (U, N  ) → (V, Nσ) and g : (V, Nσ) → (Z, Nρ) be any 

two functions. Then 

(i).g o f is Nano δG-continuous, if g is Nano continuous and f  

     is Nano δG-continuous. 

(ii).g o f is Nano δG-irresolute, if g is Nano δG-irresolute and     

       f is Nano δG-irresolute. 

(iii).g o f is Nano δG-continuous, if g is Nano δG-continuous     

        and f is Nano δG-irresolute. 

Proof  

(i). Let H be Nano closed in (Z, Nρ). Then g
-1

(H) is Nano     

      closed in  (V, Nσ), since g is Nano continuous. Nano δG- 

      continuity of f implies that f
-1

(g
-1

(H )) is Nano δG-closed  

       in (U,N  )    . Hence gof  is    Nano δG-continuous. 

(ii).Let H be Nano δG-closed in (Z, Nρ). Since g is Nano δG- 

      irresolute. Then g
-1
(H ) is    Nano δG-closed in (V,  

      Nσ). Since f is N-δG-irresolute,f
-1

(g
-1
(H)) is Nano δG- 

      closed in  (U, N ).  Hence g o f is Nano δG-irresolute. 

(iii).Let H be Nano closed in (Z, Nρ). Since g is N-δG-     

      continuous,  g
-1

(H) is N-δG-closed in (V, Nσ). As f is N- 

      δG-irresolute f
-1

(g
-1

(H)) is N-δG-closed in (U, N ).  

      Hence gof is   N-δG-continuous. 

 

V. CONCLUSIONS 

 

Many different forms of continuous functions have been 

introduced over the years. Various interesting problems arise 

when one considers openness. Its importance is significant in 

various areas of mathematics and related sciences, In this 

paper we presented Nano δG-continuous functions and 

discussed some of their properties.  Also we investigate the 

relationships between the other existing Nano continuous 

functions. This shall be extended in the future Research with 

some applications 
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