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Abstract -In this paper some common fixed points theorems have been proved in Hilbert spaces using the definition of normal 

structure etc. 
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I. INTRODUCTION 

 

Recently a large number of literatures are available in the area of fixed point theory which deal with a common fixed point of 

two or more mappings. Actually the notion of commutativity has been weakened in various ways by many research workers 

such as Jungck [1,2], Sessa [6], Sharma and Sahu [7], etc. Using these definition as introduced by the above research workers 

time to time, several authors have proved a large number of common fixed point theorems. For references one can see the 

literatures in the references. 

 

Let S be a closed subset of a Hilbert space H. Let {Tn} be a sequence of mappings of S into itself. Koparde and Waghmode [4] 

have proved common fixed point theorems for a sequence {Tn} of mappings satisfying the condition 
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Pandhare and Waghmade [5] have proved common fixed point theorem for a sequence {Tn} of mapping satisfying the 

condition 
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for all x, y  S and xy, where 0<a, 0<b<1 and a+2b<1. 

Veerapandi and Kumar [9] have generalized the above conditions in the following ways and have proved several fixed point 

theorems. 

There exist real numbers a, b, c, satisfying 0<a,b,c<1 and a+2b+2c<1 such that for each x,yS and xy. 
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(B) There exists a real number h satisfying 0 < h < 1 such that for all x, yS and xy 
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(C) There exists a real number h satisfying 0<h<1 such that for all x,yS and xy 
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(D) There exists a real number h satisfying 0<h<1 such that for all xS 

 ||xTx||h||xTTxT|| i
2

iji  . 

In the above conditions the constants are taken in such a way that their sums is less than one and this helps then to show that 

the sequence of iteration is Cauchy and because the Hilbert space H is complete the converging point ultimately becomes a 

fixed point. In this paper the constants are extended so that the technique of the proof has become non-routine, in the proof of 

our theorems. 
 

II. DEFINITION 
 

Let A be a bounded subset of Banach space X. A point aX is said to be a non-diametral point of A is Sup {||xa||.xa}<(A). 

A bounded convex subset K of X is said to be have normal structure if for each convex subset H of K which contains more 

than one point there exists an xH which is a non-diametral point of H. 

Hilbert space has always a normal structure. 

We have proved the following theorems. 

Theorem 1. Let X be Hilbert space and K be a non-empty bounded closed convex subset of X. Let T1,T2 : KK be such that 
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(B) T1F  F iff T2F  F for every convex subset F of K. 
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for every non-empty bounded closed convex subset F of K which is mapped into itself by T1 or T2. Then T1 and T2 have a 

common fixed point in X. 

Proof. Let Y be the family of all non-empty bounded closed convex subsets of K ordered by set inclusion which are mapped 

into itself by T2. Since X is a Hilbert space, it is a reflexive Banach space and hence by Smulian’s result [8] every decreasing 

sequence of non-empty bounded closed convex subsets of X has non-empty intersection and by Zorn’s lemma, it follows that X 

possesses a minimal element F, say. If F contains only element then that element becomes a fixed point of T2. We shall show 

that F contains only one element. We suppose on the contrary that F contains more than one point, which we will show implies 

a contradiction. 
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. By the condition (C) A > (F) 

We now define the following terms for x  F. 
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We now show that Fc is non-empty closed and convex. For a positive integer n and for xF, let F(x,n) = {yF; ||xy||<(F) + 

1/n} and Cn = 
Fx

F(x,n). 

We show first that Cn is non-empty. If possible let Cn = , then there exist x1 and x2  F such that F(x1,n)  F(x2,n) = . By 

construction F(x1,n) = {yF:||x1y||< (F) + 1/n} and similarly F(x2,n). 
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Therefore (F) < 2(F) + 2/n. So from (1) ||x1x2|| > (F) which is a contradiction because x1,x2F. 

Therefore Cn is non-empty. 

It may further be verified that Cn is closed, convex and that Cn+1  Cn. 

We wish to show that  Fc = 


1n

Cn. 

For this let yFc. Then vy(F) = (F) 
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We verify that yF(x,n) for all xF and for all n. If possible let y F(x,n) for some x and for some n. 

Then  ||xy|| > (F) + (1/n)       (3) 

From (2) we see that ||xy|| < (F) which is a contradiction to (3). 

So y 
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next let y  
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Cn. Then yF(x,n) for all x and for all n and this implies that 
Fx

sup ||xy||<(F). Also A<(F). These two give 

y(F)<(F). But (F)<y(F) always and then y(F) = (F) and this gives Fc. So 
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This equality further gives that Fc is closed and convex and by Smulian’s result [8] non-empty. Next we show that (Fc) < (F). 

Since K has a normal structure and A<(F) three exists a point xF such that x(F)<(F). 

If x1,x2Fc, then ||x1x2|| < 
1x (F) = (F). 

So (Fc) = sup {||x1x2|| : x1,x2Fc} < (F)<x(F)<(F)   (4) 

If xFc and y is an arbitrary elements of F we obtain 
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Taking the positive square root, we get 
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So the set T2(F) is contained in a closed sphere with centre at T1x and radius v(F). We denote this sphere by U . 

Clearly T2 (F U )  F U  and because F is minimal, F U  and so 
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sup ||T1xy|| < (F)       (5) 

Now  xT1
 (F) = max {
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sup ||T1xy||.A} 

  < max {(F),A}, from (5) 

  = (F), because (F) > A. 

Hence xT1
 (F) < (F). But we always have (F) < T1x(F) 

So  xT1
 (F) = (F). 

This implies that T1(x)  Fc and by (B) T2(x)  Fc. 

Therefore Fc is a non-empty, closed, convex subset of F which is mapped into itself by T1 and T2 and because of (4) (Fc) < 

(F). 

Therefore, Fc is a proper subset of F. This contradicts the fact that F is minimal. Therefore, F cannot contain more than one 

element, but F is not empty. Hence F contains only one element which is clearly a fixed point of T1 and T2.  

Note : If T1 = T2 and a2(x,y) = a3 (x,y) = a4 (x,y) = a5(x,y) = 0 for all x,yX and a1(x,y) = a, ‘a’ constant the theorem proved in 

Kirk [3] follows. 

 

Theorem 2. Let X be a Hilbert space and K be a non-empty bounded closed convex subset of X. Let {Tn} be a sequence of 

mappings which map K into itself and satisfy 
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where, ai > 0; i=1,2,3,4,5 and 
Kyx ,

sup  {2a1(x,y)+11a2(x,y)+11a3(x,y)+8a4(x,y)           +8a5(x,y)}<2. 

 

(B) T1F  F iff TjF  F for every convex subset F of K, 

(C) Either  
Fx

sup ||xTix||<(F) 

   
Fx

sup ||xTjx||<(F) 

for every empty bounded closed, convex subset of K which are mapped into itself by either T i or Tj. 

Then {Tn} has a common fixed point in X. 

Proof. Picking any two mappings Ti and Tj from {Tn} and following the proof of the Theorem 1, it follows that T i and Tj have 

a common fixed point in X. Since Ti and Tj are any two mappings it follows that {Tn} has a common fixed point in X.  

This completes the proof. 
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