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Abstract—In this paper, we propose shared frailty models based on reversed hazard rate with exponentiated moment 

exponential distribution as baseline distribution. The Bayesian approach of Markov Chain Monte Carlo (MCMC) technique 

was employed to estimate the parameters involved in the models. A simulation study also performed to compare the true value 

and the estimated value of the parameters. Comparison with the non-parametric model also done by using Bayesian 

comparison techniques . We apply to the Australian twin data set and better model is suggested. 
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I.  INTRODUCTION  

Frailty models provide a very useful way to introduce 

random effects, dependence and unobserved heterogeneity in 

the model for bivariate survival data. For example, in clinical 

studies, the drug effects or treatments are differ substantially 

for each patient. In that case, the patients have different 

frailties and that those who are most frail will die earlier than 

others. The most common model is based on the assumption 

that the frailty is a common random effect, which is acting 

multiplicatively on the baseline hazard function. The model 

assumes that the hazard function for lifetime T given an 

unobserved random variable U = u is h(t=U) = uh0(t), where 

h0(t) is the baseline hazard function. 

In many situations, hazard rate function is not suitable for the 

survival data especially when the survival data is left 

censored. In that case, reversed hazard rate functions are 

more suitable. In the study of time to event or recurrence 

event related with survival status, it is possible to get that 

there are many situations where lifetime data are left 

censored. For example, suppose T represents the lifetime of a 

bulb, the manufacturing company determine that the lifetime 

of bulb would not last more than m months, and then the 

lifetime of this bulb is left censored. In that case, a reversed 
hazard rate is more convenient tool to analyze lifetime data 

than a hazard rate due to the fact that there is instability of 

estimators of hazard rates when lifetime data are left 

censored. Barlow et al. (1963) [3]proposed reversed hazard 

rate (RHR) as a dual to the hazard rate as m(t) = f(t)/F(t) 

where F(t) and f(t) represents the distribution function and 

the probability density function. Block et al. (1998)[4] first 

given the explicit expression of reverse hazard rate for 

lifetime T as 

0

( | )
( ) lim

t

P t t T t T t
m t

t 

   


    (1.1) 

The reversed hazard rate (RHR) specifies the instantaneous 

rate of death or failure at time t, given it failed before time t 

> 0. Thus in a small interval, m(t)Δt is the approximate 

probability of failure in the interval, given failure before the 

end of the interval (t-Δt, t]. Andersen et al. (1993)[1], Gurler 

(1996)[11] and Lawless (2003)[17] have discussed the use of 

reversed hazard rate for the analysis of right truncated or left 

censored data. 

Sengupta and Nanda (2011)[22] also introduced the 

proportional reversed hazards rate model in a semi-

parametric setup. Duffy et al. (1990)[8] considered 

Australian Twin data that incorporates with information 

regarding the age at appendectomy of monozygotic (MZ) and 

dizygotic (DZ) twins. There have been twenty one pairs with 

missing age at onset and those are the left censored 

observations. Duffy et al. (1990)[8] excluded these left 
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censored observations in the analysis. it is therefore, 

appropriate to model common random effect by together 

with those left censored observations, which can done by 

developing frailty models using RHR. Consequently, 

Sankaran and Gleeja (2008)[20] introduced frailty as a 

common random effect that acts multiplicatively on reversed 

hazard rates, that is helpful for the analysis of left censored 

data. In this paper, we consider shared frailty model with 

gamma distribution as frailty distributions and exponentiated 

moment exponential distribution as baseline distribution 

because of the flexibility in modeling real-life data. Pamdey 

et al. (2018) [2] also studied correlated frailty model based 

on logistic exponential baseline distribution. 

In order to compare the proposed Bayesian comparison 

techniques such as Akaike information criteria (AIC), 

Bayesian information criteria (BIC), Deviance information 

criteria (DIC) and Bayes factor were used. Here, parametric 

and semi-parametric methods of estimation is consider, 

though semi-parametric estimation offers more flexibility, 

the parametric estimation is more powerful if the form of 

baseline hazard is known in advance. Besides, it provides 

more simple technique of estimation. 

The remaining sections are categories as follows-the 

introduction of shared frailty model is presented in section-2. 

In sections 3 and 4, the baseline distribution and proposed 

models are given. Estimation strategies are presented in 

section 5, section 6 for simulation study. Sections 7 and 8 for 

applications of the proposed models and conclusion. 

 

II. SHARED FRAILTY MODEL 

The shared frailty models assume that the individuals within 

a group share the same frailty. Which creates dependency 

between the survival times of an individual’s, it means that 

due to frailty or unobserved covariates the survival times are 

dependent. The two survival times are conditionally 

independent, given shared frailty. When there is no 

variability in the frailty variable distribution, the frailty 

variable is said to have degenerate distribution. Otherwise, 

there is positive dependence. A more detailed discussion of 

shared frailty models illustrated with some examples along 

with estimation methods can be seen in the books of 

Duchateau and Janssen (2008)[7], Kheri (2007)[16], Wienke 

(2010)[23], and Hanagal(2011)[12].  

Suppose there are n individuals under study having first and 

second survival times (T1k, T2k) (k = 1, 2,…, n). Suppose X0 

is common covariate, X1 and X2 are the observed covariates 

incorporates with T1k and T2k. Let a vector 

Xlk=(X1lk,…,Xkllk), (l = 0,1,2) for the k
th

 individual where 

Xalk(a = 1,2,3,…,m) represents the value of the a
th

 observed 

covariate for the k
th

 individual. Here we assume that the first 

and the second survival times for each individual share the 

same value of the covariates. Let Uk be shared frailty for the 

k
th

 individual. Assuming that the frailties are acting 

multiplicatively on the baseline RHR and both the survival 

times of individuals are conditionally independent for a 

given frailty, the conditional RHR for the k
th

 individual at the 

j
th

(j = 1, 2) survival time tjk for given frailty Uk = uk has the 

form: 

0 0

0( | , ) ( ) , 1,2
k jk j

X X

kjk k k jkm t u X u m t e j
 

 
 (2.1) 

where m0(t) is baseline reversed hazard at time tjk > 0 and β 

is a vector of order k of regression coefficients. The 

conditional cumulative RHR for kth individual at j
th

 lifetime 

tjk > 0 for a given frailty Uk = uk is 

0 0( | , ) ( )kjk k k jk k jkM t u X u M t    (2.2) 

where 
0 0

0

kX

k e


  , 
jk j

X

jk e


  and M0(tjk) is 

cumulative baseline RHR at time tjk > 0. The conditional 

distribution function for j
th

 individual at k
th

 lifetime t
jk

 > 0 for 

given frailty Uk = uk is 

( | , )
( | , ) kjk kM t u X

kjk kF t u X e  

   
0k jk k jku M

e
 

    (2.3) 

Under the assumption of independence, the bivariate 

conditional distribution function for a given frailty Uk = uk at 

time t1k and t2k is 

1 2 1 2( , | , ) ( | , ) ( | , )k k kk k k k k k kF t t u X F t u X F t u X
    

01 1 1 02 2 2 0( ( ) ( ) )k k k k k ku M t M t
e

   
  (2.4) 

The unconditional bivariate distribution function can be 

obtained by integrating over the frailty variable Uk having 

the probability function fU(uj), for the k
th

 individual: 

1 2 1 2( , | ) ( , | ) ( )

k

kk k k k k U k k

U

F t t X F t t u f u du 
  

01 1 1 02 2 2 0( ( ) ( ) )
( )k k k k k k

k

u M t M t

U k k

U

e f u du
   

   

 01 1 1 02 2 2 0( ( ) ( ) )
kU k k k k kL M t M t      (2.5) 

where LUk is the Laplace transform of the frailty variable Uk 

for the k
th

 individual. Here onwards we represent F(t1k,t2k|Xk) 

as F(t1k, t2k). 
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III. SHARED GAMMA FRAILTY MODEL 

In this paper, we consider gamma distribution as the frailty 

distribution because as the gamma variates are positive, it fits 

the non-negative criterion of frailties with no transformation. 

The gamma distribution is one of the most commonly used 

distributions to model variables that are necessarily positive. 

Gamma distributions have been used for many years to 

generate mixtures in exponential and Poisson models. The 

popularity of the model is due to the fact that the model 

functions are very easy to derive because of the simplicity of 

the derivatives of the Laplace transform. The cross ratio 

function is constant for the gamma frailty model (see 

Clayton, 1978[5]). Sankaran and Gleeja (2006)[19] 

introduced a measure of association based on RHR in a 

similar manner as was introduced by Clayton (1978)[5] 

based on hazard rate. In case of gamma frailty, the measure 

of association given by Sankaran and Gleeja (2006)[19] is 

also constant. Assume that a common continuous random 

variable U follows a gamma distribution. For identifiability, 

we assume U has expected value equal to one. Under this 

restriction, the density function and the Laplace 

transformation of a gamma distribution reduces to 

1

1
1

1

; 0, 0
( ) 1

( )

0 ;

v

v e v
f v

otherwise



 




 



  

 



  

and 
1/( ) (1 )UL s s   with variance of U as  . The 

frailty variable U is degenerate at U = 1 when tends to zero. 

Replacing the Laplace transform in Eq. (2.5), we get the 

unconditional bivariate distribution function for the kth 

individual as 

1/

1 2 0 01 1 1 01 2 2( , ) [1 ( ( ) ( ) )]k k k k k k kF t t M t M t     
 (2.7) 

where M01(t1k) and M02(t2k) are the cumulative baseline 

reversed hazard functions of the lifetime T1k and T2k, 

respectively. 

The bivariate distribution in the presence of covariates, when 

the frailty variable is degenerate is given by 

0 01 1 1 01 2 2( ( ) ( ) )

1 2( , ) k k k k kM t M t

k kF t t e
   

    (2.8) 

IV. METHODOLOGY 

Relevant details should be given including experimental 

design and the technique(s) used along with appropriate 

statistical methods used clearly along with the year of 

experimentation (field and laboratory). 

V. BASELINE DISTRIBUTION 

Exponentiated Moment Exponential Distribution 

If a continuous random variable T follows the two-parameter 

exponentiated moment exponential distribution (EMED) 

proposed by Hasnain et al. (2015)[13], then the 

cumulative distribution function, hazard function and 

cumulative hazard function are, respectively, 

( ) 1 1 , 0, 0, 0
t

t
F t e t



  


  
       

    (3.1) 
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
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





 




 



  
   
   

  
    

    (3.2) 

( ) log 1 1 , 0
t

t
M t e t







  
      

     (3.3) 

where   and   are the scale and shape parameters of 

EMED. The hazard function m(t) is decreasing with time for 

  < 0:5 at first (Burn-in), then remains constant with 

respect to time(useful-life). Monotonically increasing at   = 

0.5 and the hazard function m(t) is increasing with time for 

  > 0.5 at first then remains constant with respect to time. 

The hazard function m(t) is an increasing function of t for 

1  . Furthermore, ( ) 0m t  when 0t  ,   > 1 and 

( ) 1/m t  when t  . 

VI. PROPOSED MODELS 

Substituting cumulative reverse hazard function for the 

exponentiated moment exponential distribution in equations 

(2.7) and (2.8), we get the unconditional bivariate survival 

functions at time t1k > 0 and t2k > 0 as, 

1 2

1 2

1/

1 2
1 2 1 2 0

1 2

( , ) 1 ( ( log[1 (1 ) ] ) ( log[1 (1 ) ] ))
k kt t

k k
k k k k k

t t
S t t e e


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 


  

         
  

      (4.1) 

1 2

1 21 2
1 2 1 2 0

1 2

( , ) exp ( ( log[1 (1 ) ] ) ( log[1 (1 ) ] ))
k kt t

k k
k k k k k

t t
S t t e e

    
 

   
        

     

      (4.2) 



  Int. J. Sci. Res. in Mathematical and Statistical Sciences                                                Vol. 6(2), Apr 2019, ISSN: 2348-4519 

  © 2019, IJSRMSS All Rights Reserved                                                                                                                                   94 

Here onwards we call equation (4.1) and (4.2) as Model I and 

Model II respectively. Model I is model with frailty and 

Model II is model without frailty. The semi parametric 

model with frailty is given by 

 
1 2

1 21 2
1 2 0 1 2

1 2

( , ) exp ( ( log[1 (1 ) ] ) ( log[1 (1 ) ] ))
k kt t

k k
k k k k k

t t
S t t u e e

    
 

   
         

  

 

      (4.3) 

and the semi-parametric model without frailty is given by 

1 2

1 21 2
1 2 0 1 2

1 2

( , ) exp ( ( log[1 (1 ) ] ) ( log[1 (1 ) ] ))
k kt t

k k
k k k k k

t t
S t t e e

    
 

   
         

  

  

      (4.4) 

for more details see Hanagal (2011). Here onwards we call 

Eq. (4.3) as Model III, for U is gamma frailty and Eq. (4.4) as 

Model IV. 

VII. ESTIMATION STRATEGIES AND MODEL 

COMPARISION 

The likelihood function can be obtained by blending 

the failure times of the k
th

 individuals (k = 1, 2, 3. . . 

n) and censoring times by assuming independence 

between censoring scheme and individuals 

lifetimes and is given by 
31 2 4

1 1 2 2 1 2 3 1 2 4 1 2

1 1 1 1

( , , ) ( , ) ( , ) ( , ) ( , )
nn n n

k k k k k k k k

k k k k

L f y y f y d f d y f d d 
   

    

  ,     (21) 

where Ψ , β and   are vectors of baseline parameters, 

regression coefficients  and frailty distribution 

parameter. The likelihood function for without frailty     

is given as 
31 2 4

1 1 2 2 1 2 3 1 2 4 1 2

1 1 1 1

( , ) ( , ) ( , ) ( , ) ( , )
nn n n

k k k k k k k k

k k k k

L f y y f y d f d y f d d
   

    

      (21) 

where n1, n2, n3 and n4 are the random number of 

observations observed  to lie in the range (y1k, y2k) lie in 

the ranges y1k  <  d1k, y2k  <  d2k; y1k  <   d1k, y2k > d2k; 

y1k > d1k, y2k < d2k and y1k > d1k, y2k > d2k respectively 

and the contribution of the k
th

 individual in the 

likelihood function as
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    (22) 

 

Putting equation (22) in equations (20) and (21), we 

get the likelihood function for the mixture shared 

frailty model and shared frailty model. 

The joint posterior density of the parameters given 

failure times is given as 
5

1 1 2 2 1 1 2 2 1 1 2 1 3 2 4 2 5

1

( , , , , , ) ( , , , , , ) ( ) ( ) ( ) ( ) ( ) ( )i i

i

L p p p p p g                  


  

,

 

where pi(.)(i = 1,…,5) indicates the prior density 

function with known hyper parameters of 

corresponding arguments for baseline parameters and 

frailty variance; gi(.) is prior density function for 

regression coefficient βi;  βi represents a vector of 

regression coefficients except βi, i = 1, 2,…,a and 

likelihood function (.) is given by equation (19) or 

(20). Here it is assumed that all the parameters are 

independently distributed. 

 

The expression of the likelihood function in equations 

(20) and (21) are not easy to solve by using the 

Newton-Raphson method. MLEs fail to converge as it 

involved a large number of parameters. Therefore, 

the Bayesian approach was utilized to estimate the 

parameters involved in the models, which does not 

endure any such kind of troubles. 

 

Prior distributions are used as follows - gamma 

distribution with mean 1 and large variance G (Ψ, Ψ ) is 

used as a prior distribution for frailty parameter with a 

small value of Ψ . Normal distribution with mean zero 

and large variance is used as prior for the regression 

coefficient, say ϕ
2
. The same type of prior distributions 

considered in Ibrahim et al. (2001)[14] and Sahu et al. 

(1997)[18] and non- informative prior assumed as the 

baseline parameters since we do not have any information 

about the baseline parameters. G(a1, b1) 
and U (a2, b2) are 

used as non-informative prior distributions. All the 

hyper-parameters Ψ, ϕ, a1, a2, b1 and b2 are assumed to 

be known. Here G(a1, b1) 
represents gamma distribution 

with shape parameter a1 and scale parameter b1 and U 

(a2, b2) is the uniform distribution over the interval a2 to 

b2. We set hyper-parameters as Ψ = 0.0001, ϕ
2
 = 1000, 

a1 = 1, b1 = 0.0001, a2 = 0, and b2 = 100. 

 

To estimate the parameters in the models fitted with 

the above prior density function and likelihood 

equations (20) and (21), Metropolis-Hasting 

Algorithm and Gibbs Sampler was utilized. The 

convergence of the Markov chain to a stationary 

distribution is also observed by Geweke test and 

Gelman-Rubin Statistics as suggested by Geweke 

(1992)[10] and Gelman et al. (1992)[9]. To check the 

behavior of the chain, to decide burn-in period and 

autocorrelation lag, we used trace plots, coupling 
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| 

| 

from the past plots and sample autocorrelation plots 

respectively. 

 

It is important to decide which model provides the 

best fit to the dataset; the model comparison was 

done by using Akaike Information Criteria (AIC), 

Bayesian Information Criteria (BIC), Deviance 

Information Criteria (DIC) and Bayes factor. 

Suppose there are P parameters in a model and n 

observations in a dataset. AIC, BIC and DIC are 

elucidated as 

AIC = −2logL(y |θ̂) + 2P, (23) 

BIC = −2logL(y |θ̂) + log(n)P, (24) 

DIC = −2logL(y|θ̂) + 2PD, (25) 

where [2log ( | )] 2log ( | )DP E L y L y    

Smaller values of AIC, BIC and DIC for the models are 

considered as better models than higher values. 

Bayes factor also employed for selection of Model Mu 

against Model Mv and defined as 

 
( | )

( | )

u
uv

v

P y M
BF

P y M


,   

     

  (26) 

( | ) ( | , ) ( | )k k k

Q

P y M P y M M d   
, 

where Ω represents the number of unknown 

parameters of the model Mk, π(Ω|Mk) is the density of 

prior distribution of the model Mk and Q is the 

bolster of the parameters Ω. 

 

In spite of the fact that, 2logBFuv  is roughly equal to the 

differences in  the values of BIC for the given models, we 

utilized the strategy given by Kass and Raftery (1995)[15], to 

compute P (y M ) from the MCMC sample gotten from 

each of the model parameters. 
1

1

1

( | )

( | )

N
k

k
k

L y

P y M
N







 
 

 
 
 
 



,

 

where Ω
k
 and N symbolize sample and sample size 

of the posterior distribution. 

 

A value of 2logBFuv more than 10 shows that greatly 

strong positive to favor model Mu over model Mv, 

whereas a value between 0 and 2 is adequate to prove 

to favor not one or the other model. A value between 

2 and 6 or 6 and 10 shows a mellow or modestly 

strong confirmation respectively, to favor the 

numerator model. 

VIII. SIMULATION 

To evaluate the performance of the Bayesian estimation 

procedure we carry out a simulation study. For the 

simulation purpose we have considered only one covariate 

X0 which we assume to follow normal distribution for Model 

I. The frailty variable U is assumed to have gamma 

distribution for Model I with known variance. Lifetimes 

(T1k,T2k) for the k
th 

individual are conditionally independent 

for a given frailty Uk = uk . We assume that Tjk(j = 1, 2; k = 

1,2,...,n) follows one of the baseline distribution 

exponentiated moment exponential distribution. 
 

A widely used prior for the frailty parameter   is the 

G(0.0001, 0.0001). In addition, we assume that the prior for 

regression coefficient is N(0, 1,000). Similar types of the 

prior distributions are used in Ibrahim et al. (2001), Sahu et 

al. (1997), and Santos and Achcar (2010). We also employ 

the same non-informative prior for the frailty parameter and 

the regression coefficients. Since we do not have any prior 

information about the baseline parameters, the prior 

distributions are assumed to be at. We consider two different 

non-informative prior distributions for the baseline 

parameters, one is G(a1, b2) and another is U(a2, b2). All the 

hyper-parameters a1, a2, b1, and b2 are known. Here G(a, b) is  

Table 1: Simulation study for Model-I 

 

the gamma distribution with the shape parameter a and the 

scale parameter b and U(a2,b2) represent the uniform 

distribution over the interval a2 to b2. For Model I, we set α1 = 

1.2, λ1 = 8.12, α2 = 1.2, λ2 = 8.12, ζ = 0.0025, and β = 0.033 

and X~Normal(12, 0.45), censoring distribution as the 

exponential distribution with the parameter 0.02 each. We 

assume the value of the hyper-parameters as a1 = 1, b1 = 

0.0001, a2= 0, and b2 = 100.  

We run two parallel chains for Model I using two sets of the 

prior distributions with the different starting points using the 

Metropolis-Hastings algorithm and the Gibbs sampler based 

on normal transition kernels. We iterate both the chains for 

100,000 times. There is no effect of the prior distribution on 

the posterior summaries because the estimates of parameters 

are nearly the same and the convergence rates of the Gibbs 

sampler for both the prior sets are almost the same. Also for 

both the chains the results were somewhat similar. For all 

models, the trace plots, the coupling from the past plots, the 

Parameter 

(value) 

Estimate SE LCL UCL Geweke 

values 

P 

values 

GR 

values 

burn in period = 6800 ; autocorrelation lag = 320 

α1 (2.0010) 

α2 (0.1380) 

λ1 (0.1810) 

λ2 (4.7500) 

ζ(0.0018) 

β (0.0007) 

2.0017 

0.1372 

0.1816 

4.7592 

0.0018 

0.0007 

0.0567 

0.0423 

0.0525 

0.5405 

0.0005 

5.4e-

05 

1.9034 

0.0909 

0.1115 

4.0073 

0.0010 

0.0006 

2.0934 

0.2492 

0.2980 

5.7916 

0.0028 

0.0008 

0.0129 

0.0115 

-0.0001 

-0.0151 

0.0100 

-0.0055 

0.5051 

0.5046 

0.4999 

0.4939 

0.5040 

0.4977 

1.0003 

1.0003 

1.0034 

1.0011 

1.0054 

1.0003 
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running mean plots, and the sample autocorrelation plots for 

the simulation study are not provided due to lack of space. 

Table 1 present the estimates, the credible intervals, the 

Geweke test (Geweke 1992[10]), and the GelmanRubin 

statistics (Gelman and Rubin, 1992[9]) for all the parameters 

of the Model I based on the simulation study. 

Estimated values of the parameters are close to the true values 

and the biases for the estimated values are small. Standard 

errors for the estimated values are quite small. The Gelman-

Rubin convergence statistic values are nearly equal to one and 

also the Geweke test values are quite small and the 

corresponding p-values are large enough to say that the chain 

attains stationary distribution. 

IX. ANALYSIS OF AUSTRALIAN TWIN DATA 

Now we apply the proposed models to the Australian twin 

data given in Duffy et a1. (1990)[8]. The data consists of six 

zygote categories. We consider the subset of the data with 

zygote category 2. The data consists of male’s gender only 

and consist of 567 pair of twins with 23 and 17 censored in 

twin 1 and twin 2, respectively. An individual’s having age at 

onset less than 11 are considered as left censored 

observations. The data has information on the age at 

appendectomy of twins. The genetic effect involved in the 

risk of appendectomy is the frailty variable. Here there is a 

common covariate age for both T1 and T2 and one covariate 

each for T1, T2, i.e., presence or absence of appendectomy. To 

check goodness of fit of Australian twin data set, we obtain 

Kolmogorov-Smirnov (KS) statistics and their p-values for T1 

and T2 separately. For Model I observe that p-values for 

lifetimes T1 and T2 are 0.69714 and 0.47366, respectively. For 

Model II observe that p-values for lifetimes T1 and T2 are 

0.71885 and 70278, respectively. Thus from p-values of KS 

test are quite high. We can say that there is no statistical 

evidence to the reject the hypothesis that data are from these 

two models, in the univariate case and we assume that they  

 

Figure 1: Non parametric versus parametric survival function 

for Australian twin data set. 

also fit for bivariate case. Figure 1 shows the plot of the 

KaplanMeier estimates, and hypothesized theoretical 

distribution for the marginal distributions of Models I and II, 

respectively, demonstrates consistency between the two, i.e. 

non parametric and parametric survival curves, and assumes 

the same case with bivariate case also. 

As in the case of simulation, here also we assume the same set 

of prior distributions. We run two parallel chains for all 

models using two sets of prior distributions with the different 

starting points using the Metropolis-Hastings algorithm and 

the Gibbs sampler based on normal transition kernels. We 

iterate both the chains for 100,000 times. As seen in 

simulation study, here also we got nearly same estimates of 

parameters for both the set of priors, so estimates are not 

dependent on the different prior distributions. Convergence 

rates of Gibbs sampler for both the prior sets are almost the 

same. Also both the chains show somewhat similar results, so 

we present here the analysis for only one chain with G(1, 

0.0001) as prior for the baseline parameters and G(0.0001, 

0.0001) as the prior for the frailty parameter . Due to lack of 

space, we are presenting only for Model I (trace plots, 

coupling from the past plots, autocorrelation plots, 

autocorrelation plots after thinning and running mean plots) 

for the parameters in Figs. 2(a)-2(d). The Gelman-Rubin  

 

Figure 2: (a) Trace plot (b) Coupling from the past plot (c) 

ACF plot (d) Running mean plot for Model I. 

Table 2: Posterior summary for Australian data set for 

Model-I 
Param

eter 
Estimate SE LCL UCL 

Geweke 

values 

P 

values 

GR 

values 

burn in period = 9200; autocorrelation lag = 350 

α1 

λ1 

α2 

λ2 

ζ 

β0 

β1 

β2 

2.4484 

8.1946 

0.8981 

9.9627 

0.0018 

0.0310 

-1.5930 

0.0020 

0.0429 

0.1789 

0.0482 

0.3249 

0.0004 

0.0015 

0.0509 

0.0004 

2.3412 

7.8445 

0.8068 

9.3118 

0.0010 

0.0279 

-1.6720 

0.0011 

2.4974 

8.5642 

0.9845 

10.617 

0.0027 

0.0337 

-1.4775 

0.0030 

0.0034 

0.0023 

0.0026 

0.0004 

-0.0016 

-0.0033 

0.0014 

-0.0014 

0.5013 

0.5009 

0.5010 

0.5001 

0.4993 

0.4986 

0.4986 

0.4994 

1.0001 

1.0001 

1.0029 

1.0035 

1.0003 

1.0000 

1.0003 

1.0001 
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Table 3: Posterior summary for Australian data set for 

Model-II 

Parameter Estimate SE LCL UCL 
Geweke 

values 

P 

values 

GR 

values 

burn in period = 9800; autocorrelation lag = 360 

α1 

λ1 

α2 

λ2 

β0 

β1 

β2 

2.3903 

8.2737 

1.2320 

8.6888 

0.0300 

-1.5705 

0.0020 

0.0368 

0.0555 

0.0495 

0.0488 

0.0010 

0.0538 

0.0005 

2.2897 

8.1783 

1.1559 

8.58.9 

0.0279 

-1.6513 

0.0011 

2.4289 

8.3663 

1.3359 

8.7561 

0.00321 

-1.4553 

0.0030 

0.0063 

0.0055 

0.0103 

-0.0041 

-0.0026 

-0.0150 

-0.0040 

0.5025 

0.5022 

0.5041 

0.4983 

0.4989 

0.4989 

0.4983 

1.0002 

1.0010 

1.0002 

1.0001 

1.0004 

1.0001 

1.0034 

 

convergence statistic values are nearly equal to one and the 

Geweke test statistic values are quite small and the 

corresponding p-values are large enough to say the chains 

attain stationary distribution. The posterior mean and standard 

error with 95% credible intervals for the baseline parameters, 

the frailty parameter and the regression coefficients are 

presented in Tables 2-5. The posterior summary of all the four  

 

Table 4: Posterior summary for Australian data set for 

Model-III 

Parameter Estimate SE LCL UCL 
Geweke 

values 

P 

values 

GR 

values 

burn in period = 6500; autocorrelation lag = 300 

ζ  

β0 

β1 

β2 

0.5202 

0.0244 

-1.6707 

0.0025 

0.0423 

0.0019 

0.0584 

0.0005 

0.4357 

0.0205 

-

1.7573 

0.0016 

0.6064 

0.0285 

-

1.5328 

0.0034 

0.0120 

-0.0033 

-0.0018 

0.0075 

0.5047 

0.4986 

0.4986 

0.5030 

1.0025 

1.0004 

1.0005 

1.0010 

 

Table 5: Posterior summary for Australian data set for 

Model-IV 

Parameter Estimate SE LCL UCL 
Geweke 

values 

P 

values 

GR 

values 

burn in period = 7900; autocorrelation lag = 290 

β0 

β1 

β2 

0.0294 

-1.4908 

0.0031 

0.0010 

0.0455 

0.0005 

0.0275 

-

1.5583 

0.0022 

0.0314 

-

1.3901 

0.0040 

-0.0064 

0.0022 

0.0078 

0.4974 

0.4974 

0.5031 

1.0001 

1.0003 

1.0000 

models are given in Tables 2-5. Tables 2-5 present the 

estimates, the credible intervals, the Geweke test, and the 

GelmanRubin statistics for all the parameters of the all the 

four models based on data. For Model I and Model II, the 

estimates of the shared frailty parameter (  ) are, 

respectively, 0.0018, 0.5202. This shows that there is 

heterogeneity between the pairs of twins. Bayes factor for 

Model I against Model II is 13.8990, Model I against Model 

III is 83.6493 and Model I against Model IV is 11.4289. This 

is also a Bayesian test based on Bayes factor for testing   = 

0 against   > 0 and which supports the alternative 

hypothesis, i.e., models with frailty fit better. The credible 

interval of the regression coefficient, 0 , 1 and 2 does not 

contain zero for all models. Hence age of the patient and 

presence and absence of appendectomy are the significant 

covariates for all the models. The age at onset affects 

positively as the age of patient increases as the presence and 

absence of appendectomy on the age at onset. To compare six 

models, we first use AIC, BIC, and DIC values which are 

given in Table 6 and Bayes factor in Table 7. The AIC, BIC, 

and DIC values for Model I is least among all four models. 

On the basis of AIC, BIC, and DIC values, Model I is the best 

among all four models. Similarly the Bayes factors show that 

models with frailty (Model I and Model III) are better than the 

models without frailty. The parametric models are also better 

than semi-parametric models. 

X. CONCLUSION 

Our main aim of the study is to examine the role of the 

shared frailty model based on the RHR in the survival 

studies. For this, we used the shared gamma frailty model 

with the exponentiated moment exponential distribution as a 

baseline distribution and these models are compared with 

their baseline model based on the RHR. We also compare the 

parametric models with the semi-parametric models. We 

found that the parametric models are better than the semi-

parametric models. We also found that the shared frailty 

models are better models as compared to their baseline 

model on the basis of AIC, BIC, and DIC values for 

Australian twin data set. The Bayes factors also support the 

shared frailty models. The simulation results indicate that the 

performance of the Bayesian estimation method is quite 

satisfactory. Bayes factor is used to test the frailty parameter 

  = 0 and it is observed that the frailty parameter is 

significant in all frailty models. 
 

The choice of the best model for Australian twin data is 

based on AIC, BIC, DIC, and the Bayes factor values. We 

found that Model I (shared frailty model based on reversed 

hazard rate) is a best model on the basis of AIC, BIC, DIC, 

and the Bayes factor values. The age of the patient and 

presence and absence of appendectomy are the significant  

 

Table 6: AIC, BIC and DIC values for all the models 

fitted to Australian data set. 
Model No. AIC BIC DIC 

Model I 

Model II 
Model III 

Model IV 

8611.658 

8626.130 
8621.069 

8625.269 

8646.381 

8656.512 
8655.792 

8655.651 

8603.539 

8615.897 
8613.178 

8614.949 
 

Table 7: Bayes factor values and decision for test of 

significance fitted to Australian data set 
numerator model 

against 

denominator 

model 

2loge(Buv) range 

Evidence against 

model in 

denominator 

MI against MII 

 

MI against MIII 

 

MI against MIV 

 
MII against MIII 

 

MIV against MII 
 

MIII against MIV 

13.8990 

 

83.6493 
 

11.4289 

 
69.7503 

 

2.4701 
 

72.2204 

> 10 

 

> 10 
 

> 10 

 
> 10 

 

≥ 2 and < 6  
 

> 10 

Very Strong 

Positive 

Very Strong 
Positive 

Very Strong 

Positive 
Very Strong 

Positive 

Positive 
Very Strong 

Positive 
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covariates for all models. The age at onset affects positively 

as the age of patient increases and also effected by presence 

and absence of appendectomy. By referring all the above 

analysis now we are in a position to say that, the shared 

gamma frailty model based on the RHR with the 

exponentiated moment exponential baseline is more suitable 

model for Australian twin data set, with left censored 

observations. It is also worth to be mentioned that shared 

gamma frailty model with exponentiated moment 

exponential is fit better to Australian twin data than Hanagal 

and Pandey (2016)[6]. The methods discussed in this paper 

may be extended into other frailty models and correlated 

frailty models with different baseline distributions, using the 

Bayesian approach, provided the models fit to the data. 
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