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Abstract- In the present investigation, we have considered state dependent unreliable bulk queueing model with two phase of 

service and m phase of repair. The server provides first phase of service to each arriving unit while second phase is optional, 

provided as per demand of the unit. The server is subject to breakdown at any instant of services; whenever the server gets 

break down during the service (any phase), then it is immediately send for repair. The repair of server done in m different 

phases. We obtain the steady state queue size distribution in explicit and closed form in terms of the probability generating 

functions for the number of customers in the queue. Various performance indices viz. average number of customers in queue 

and system, long run probabilities of server being in different states, availability, mean time to failure etc. Some special cases 

of interest are discussed by setting appropriate parameters. To validate the analytical results, numerical results are obtained by 

taking an illustration. 
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I. INTRODUCTION 

 

 In most studies on the queueing system, it is assume that after getting essential service units leave the system. However, in 

many practical systems, we encounter situation where units demands for optional service apart from essential one. To illustrate 

we site the example of a call centre where server (machine) interact with their customer to resolve their queries. If the customer 

does not satisfy, he may further approach to next level machine (or customer executive) to get satisfactory answer. Queueing 

modelling with provision of optional service arises as one of the important areas of queueing theory in past few years.  

 

It is general assumption in analysis of any queueing model that units arrive at service station with uniform arrival rate. 

However, in real life scenario we come across many queueing situation where the units arrive with varying rate. For example at 

the teller counter of the bank, the arrival rate of the customer at particular counter, depends upon the servers status i.e. whether 

the server is on vacation, breakdown or under repair  and service rate of the server. Further, in some queueing situation units 

join the system in a group of random size. 

 

While analyzing a queueing model it one of the general assumption that server is reliable i.e server work regularly without any 

random failure. However, in day-to-day life, one can easily observe that server failure is always associated with any working 

server. To illustrate we cite the example of manufacturing industry, where production of items stopped due random failure of 

any particular machine. Similar situation can be observe in telecommunication network, where communication is interrupted 

due random failure of any modem. Once the server failed it immediately send for repair. At the repair station, if the channel is 

free then the repair of the server starts immediately, otherwise the server has to wait for repair. The repair station facilitates the 

repair in single phase or  multiphase as per requirement. The multiphase repair requirement can be observed in many real time 

systems including at motor vehicles servicing center where each failed vehicle has to go through a number of different phases 

of repair such as fixing of faulty part, washing, oiling, painting etc. 

 

Choudhury and Tadj  (2009) considered a model in which they have assumed that units arrive one by one with uniform arrival 

rate. But in real life we observe that some time the units may also join the service station in batch and arrival rates may be 

affected by server status, which may be busy in rendering  services to another unit, may be waiting for repair or under the 
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repair. Also in some real life congestion problem  repair of server is done in different phases, for example at vehicle  servicing 

center, each unit has to pass through a number of service. These fact motivates us to develop a model dealing with queueing 

situation, where in units arrive in bulk with state dependent arrival rate may demand optional service with unreliable  server, 

delay time and m phase repair of the server.     

 

The single server queue with uniforms arrival rate (single arrival or batch arrival) have been studied by numerous authors 

including Gaver [11], Choudhury [7], Avi-ltzhak [2], Bhorthakur[4] and many other. But in real life there may be different 

queueing scenario  i.e. the unit may demands for additional optional service or arrival rate may not be uniform. Keilson and 

Kooharian [13] Choudhury [8], Baba [3], Medhi [21], Madan [19] have studies   various form of second optional service under 

different assumptions. Rajadurai et.al [22] investigated retrial bulk queue model with modified vacation policy and option re 

service. They assume that units can rejoin the service without joining the orbit. Recently Chakravarthy[5] study a retrial queue 

model with optional cooperative service, in which  arrival can demands for individual service or cooperative service. 

 

       Server failure is one of the important aspect that cannot be ignored in dealing with real life congestion situations. The 

queueing model with server breakdowns and repairs are more realistic representation of the real life queueing situations.  

Queueing models with unreliable server are effective tools for performance analysis of manufacturing systems, local area 

networks, and data communication systems. In queueing literature many prominent researcher contributed in this direction; to 

refer important contribution, we mention notable worksdone by Jayawardene and Kella [12], Aissani and Artalejo [1],  Takine 

and Sengupta [23],  Ke  [13,14,15], Federgruen and So [9], Maraghi and Madan [20],Chaun [6] . Wang et al. [28] presented the 

cost analysis of a queueing system with some specific assumptions subject to server breakdowns. Madan [19] provided the 

time dependent as well steady state results for a queueing system, in which the service channel can break at any time, even in 

idle state. Huang et.al.(2014) considered  multi-server unreliable queueing model with infinite capacity in which failed servers 

are sent for repair only if number of failed server reaches some threshold. Further Yang et.al.(2015) investigated an unreliable 

retrial queue model with assumption that server may take J optional vacation after the first essential vacation. More recently 

Kuo et.al.(2016) analyses a queueing model in which an unreliable server perform the repair or monitoring work of the failed 

components. The repairable system includes primary and standby components, in which failed primary component are 

immediately replaced by stand by components. 

 

       In this paper, we study a bulk queue with second optional service. The unit arrives at the service station in batch with state 

dependent arrival rate. The server is subject to breakdown at any instant during any phase of service. The breakdown server is 

it immediately sent for repair where it may have to wait some time for the repair called delay time. At the repair station, the 

repair of server is completed in m  different compulsory phases (i.e. once the repair start it must have to pass through all the 

different phases of repair.) 

 

II. MATHEMATICAL MODEL 

 

In real life we face with many queue where service is provided in two phases. Furthermore flow of the units is influenced by 

the server status. Keeping in view above , Here we investigating a single server queueing system with two phase service, where 

server is subject to breakdown during any phase of service. The units arrive in batches of random size X  according to Poisson 

process with different rates 1 , 2 or 3  depending upon the status of the system, which may be busy in providing service , 

waiting for repair or under repair respectively. The following notation are used to formulate the model:  

 

jc : Probability that the batch of size j  arrives 

)(zX  = probability generating function for batch arrival 

)( )( jXE  :
thj  moment of the random variable  X  

)(xBi : The commutative distribution function of the service time for  
thi  phase service.  

)( yDi : The commutative distribution function of the waiting time of the server for repair                                                              

during 
thi   phase of service. 

)(, yG li :The commutative distribution function of the 
thl  phase repair during  

thi   phases of service. 

)( j

ilg   : 
thj  moment of  )(, yG li  
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)(* sBi :Laplace transform of )(xBi .  

)( j

i : 
thj  moment of service time distribution of   

thi  (i=1,2) phase service . 

)(* sDi : Laplace transform of )( yDi  

)(*

, sG ji
: Laplace transform )(, yG li  

 

Let  )(tN Q  be the queue size (including one being served) at time t . Let )(ti  denote elapsed service time of the 

customer for ith phase of service  at time t   and   )(ti , mltli ...2,1,)(,    denote the elapsed delay time , elapsed 

repair time of the server respectively for ith  phase of service during which breakdown occur in the system  at time t, Here 

index i=1,2 denotes first phase service and second phase service respectively. Also we introduce a random variable  

 



























servicephaseofondtheduringfailsitwhen

ttimeatrepairphasemjjthunderisservertheifjm

servicephaseoffirsttheduringfailsitwhen

ttimeatrepairphasemiithunderisservertheifi

ttimeatservicephaseondtheduringrepairforwaitingisservertheif

ttimeatservicephasefirsttheduringrepairforwaitingisservertheif

ttimeatservicephaseondwithbusyisservertheif

ttimeatservicephasefirstwithbusyisservertheif

ttimeatidleisservertheif

t

sec

),...2,1(,5

),...2,1(,5

sec,4

,3

sec,2

,1

,0

)(  

 

Then we have bivariate markav process )}(),({ tXtNQ where 

lyrespective

mtiftttttttttX mm 25,...2,1,0)()(),...,(),(),..(),(),(),(),(,0)( )(

2

)1(

2

)(

1

)1(

12121  
With 

assumption that steady state exist we define the following limiting probabilities 

}0)(,0)(.{Prlim)0(

0 


tXtNP Q
t

  

}2,1{,0,1};)();()(,)(.{Prlim)()( 


ixndxxtxttXntNdxxP iiQ
t

i

n   

}2,1{,0,0,0

};)(/)();()(,)(.{Prlim)()(






iyxn

xtdyytyttXntNxD iiiQ
t

i

n 
                                                                                     

mli

yxxtdyytyttXntNdyyxR i

l

i

l

iQ
t

i

nl

...3,2,1and}2,1{for

0),(};)(/)();()(,)(.{Prlim),( )()()(

,







 

 

Here we assumed that 
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 of iB , iD  and liR ,  respectively for 1,2i   

 

Further we define the following probability generating functions;  
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III. GOVERNING EQUATIONS 

 

The steady state equations governing the model are; 
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where ji ,  denotes kronecker’s delta function 

 

These set of equations (3.1)-(3.7) are to be solved under the boundary condition at 0x   
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With normalizing condition is given by 
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IV. MATHEMATICAL ANALYSIS 

 

For brevity, we introduce some notation as follows; 

))(1()( 11 zXz   ,   ))(1()( 22 zXz   ,  ))(1()( 33 zXz    

Multiplying equations (2)-(3), (7)-(9) by suitable powers of 
nz   and adding, after simplification we get 
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Multiplying equation (1) by suitable powers of 
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Using above values from (24) to (29) in normalizing condition (10) we have 
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is the stability condition of the system.       

From equations (16), (19)-(21) and (30), we get following result.        

Theorem 1:Under the stability condition   1    the joint distribution of the server and the queue size has the following 

partial PGFs  given by 
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Theorem2: Under the  stability condition 1    the marginal PGF of the queue size distribution of server state are given by 
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Proof: Appendix A. 

    

Theorem 3: The probability generating function of the stationary queue size at departure epoch under the stability condition 

1   is given by 
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Proof: Appendix B. 

 

 

V. PERFORMANCE MEASURES 
 

In this section we derive the expressions for long run probabilities of the server states  and various performance measures as 

follows;  

(a) Long run Probabilities of the server state: 

                                                                                                                                                                                (i) The 

probability that the server is busy with first phase of service. 
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(ii) The probability that  the server is busy with second phase service. 
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(iii) The probability that the server is waiting for repair during the first phase service. 
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(iv) The probability that the server is waiting for repair when failed during the  

     second phase service. 
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(v) The probability that server is under l  phase repair when failed  during 

      the first phase service.  
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(vi) The probability that server is under l  phase repair when failed  during 

      the second  phase service. 
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The probability that server is idle is given by 
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 (b)  Mean queue length 

On differentiating equation (43) with respect to z and setting z=1 we get the mean queue length  
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 Proof: See appendix D. 
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(c). Reliability indices 

Let )(tA  be the system availability at time  t . Then steady state availability vA ,which is the probability that the server is 

either working for a unit or in an idle state, as 
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Now, steady state failure frequency Ff  is obtained using 
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VI. SPECIAL CASES 

 

In this section, we evaluate some special case by setting appropriate parameter to validate our result with existing models.  

Case (i): For 1321  mand  and ,1)(,)(  XEzzX ; equation (43) provides 
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The present model reduces to the model  studied by Chaudhury and Tadj (2009). 

Case (ii): If 1321  mand  and 0,1)(,)( 21  XEzzX in equation (43) we get 
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This model reduced to model obtained by Medhi (2002) for single optional service. 

 

VII. NUMERICAL ILLUSTRATION 

 

In this section we present some tables and graph to show the effect of various parameters on the queue length, response time. 

To facilitate numerical results, first all we assume that batch size follows geometrical distribution with parameter a  then the 

first and second moment of the batch size distribution is given by 
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To develop computer program, the coding is done in MATLAB. Now we summarize the numerical results to show the effect of 

various parameter  on the various performance. 

For figures 1-4, we set the default parameters as follows: 

,2.1,1,8.0,,1.0,2,6.0,2.1,3)( 12112   kmpXE  

  8.0, 32   

In Figure (1),we examine the effect arrival rate on the average queue length )( qL  . By increasing , initially average  queue 

length increase gradually then increases sharply;, further, as the number of phases of service increase the queue length decrease 

. Figure(2) show the effect of  failure rate on the average queue length for different distribution; it is found that there is  

significant increase in the average queue length )( qL  with the  increase in failure rate )(  . Figure (3) reveals the  effect of 

number of phases of repair on the queue length )( qL . It clear that  with the increase in number of phases of repair, the  

average queue length goes on increasing, As the number of phases of repair increase the server require more time under repair 

and hence queue length goes on increasing ; the increasing trend is more prominent for higher value of  . 

 Figure (4) shows the effect of optional probability )(p on the average queue length )( qL ; the increasing trend of  )( qL  is 

quite significant for higher value. 

 

 

 

          

 

 

                                                             

 

 

 

 

  

 

 

 

 

 

Fig. 1: qL vs. for different service time                                   Fig. 2: qL vs. for different service time 

    

                                                                                                  

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3: qL vs for different phases of repair                Fig. 4: qL vs p for different service time 
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In tables 1 – 7, we summarize the performance indices by setting the fixed values of default parameters as follows: 

 

Table 1: .2.1,7,2,6.0,8.0,,1.0,3)( 12121   mpXE   

 

Table 2: ,2.1,1,4.8,2,6.0,8.0,,1.0,3)( 1221   kmpXE  

                8.0, 32  . 

 

Table 3: ,2.1,1,7,2,6.0,8.0,,1.0,3)( 1121   kmpXE  

                8.0, 32  . 

 

Table 4:  ,2.1,1,4.8,7,2,6.0,8.0,,3)( 12121   kmpXE  

               8.0, 32  . 

 

Table 5:  8.0,,2.1,8.0,,1.0,2,6.0,3)( 32121  mpXE              

 

Table 6:  8.0,,2.1,1,4.8,7,1,2,3)( 32121  kmXE   

 

Table 1 displays the effect of state dependent arrival rate on the queue length and response time. Tables 2 and 3 exhibits the 

effect of service rates on the long run probabilities of the server states for different arrival rates. From table 2, we observe that 

as 1  increases )(IP  increases but )(),(),( 1

11 RPDPBP decrease. It is noticed that )(),(),( 2

22 RPDPBP  remain 

almost constant. In table 3 we observe that as 2  increases, )(),(),( 2

22 RPDPBP  decrease but )(),(),( 1

11 RPDPBP  

remain almost constant. 

 

 Table 4 exhibits the variation in long run probabilities with failure rate . From the table we see that as   

increases ),(IP )( 1BP and )( 2BP  decrease while )(),(),( 1

21 RPDPDP  and )( 2RP increase. Table 5 displays the 

effect of service rate )(  and arrival rate )(  on the queue length ).( qL  we observe that the queue length increases with the 

increase in arrival rate; on the contrary it decreases with the increase in the service rate. Further, the queue length also 

decreases with the increase in the number of phases  )(k  of service time. Table 6 displays the effect of failure rate on steady 

state availability )( vA  and on failure frequency )(Ff . 

Table 1: Effect of arrival rates on the average queue length ( )qL  and waiting time )(WE  

 1// 1EM  1// 2EM  1// DM  

1  2  3  qL  )(WE  
qL  )(WE  

qL  )(WE  

1.20 0.80 1.00 16.65 4.63 16.22 4.51 15.79 4.39 

1.25 0.80 1.00 19.59 5.24 19.05 5.09 18.50 4.94 

1.30 0.80 1.00 23.74 6.10 23.03 5.92 22.32 5.74 

1.35 0.80 1.00 30.00 7.43 29.05 7.19 28.09 6.95 

1.30 1.10 1.10 23.89 6.14 23.18 5.95 22.47 5.77 

1.30 1.15 1.10 23.91 6.14 23.19 5.95 22.48 5.77 

1.30 1.20 1.10 23.92 6.14 23.20 5.96 22.49 5.77 

1.30 1.25 1.10 23.93 6.14 23.21 5.96 22.50 5.78 

1.35 1.10 1.10 30.25 7.48 29.28 7.24 28.31 7.00 

1.35 1.10 1.15 30.32 7.50 29.35 7.26 28.38 7.02 

1.35 1.10 1.20 30.39 7.51 29.42 7.27 28.45 7.03 

1.35 1.10 1.25 30.46 7.53 29.49 7.29 28.51 7.05 
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Table 2: Effect of arrival rate (  ) service rate )( 1  on the long run probabilities of server states 

  
1  )(IP  )( 1BP  )( 2BP  )( 1DP  )( 2DP  )( 1RP  )( 2RP  

0.5 

7.0 0.6107 0.2568 0.1284 0.0006 0.0002 0.0024 0.0008 

7.1 0.6144 0.2532 0.1284 0.0006 0.0002 0.0024 0.0008 

7.2 0.6180 0.2497 0.1284 0.0006 0.0002 0.0023 0.0008 

7.3 0.6215 0.2463 0.1284 0.0006 0.0002 0.0022 0.0008 

7.4 0.6249 0.2430 0.1284 0.0005 0.0002 0.0022 0.0008 

 

1.0 

7.0 0.2223 0.5131 0.2566 0.0012 0.0004 0.0049 0.0016 

7.1 0.2297 0.5059 0.2565 0.0012 0.0004 0.0048 0.0016 

7.2 0.2368 0.4989 0.2565 0.0012 0.0004 0.0046 0.0016 

7.3 0.2438 0.4921 0.2566 0.0011 0.0004 0.00450 0.0016 

7.4 0.2506 0.4854 0.2566 0.0011 0.0004 0.0044 0.0016 

 

Table 3: Effect of arrival rate (  ) and service rate )( 2  on the long run probabilities of server states 

  
2  )(IP  )( 1BP  )( 2BP  )( 1DP  )( 2DP  )( 1RP  )( 2RP  

0.5 

8.4 0.6107 0.2569 0.1284 0.0006 0.0002 0.0024 0.0008 

8.5 0.6122 0.2568 0.1269 0.0006 0.0002 0.0024 0.0008 

8.6 0.6137 0.2568 0.1254 0.0006 0.0002 0.0024 0.0008 

8.7 0.6152 0.2568 0.1240 0.0006 0.0002 0.0024 0.0008 

8.8 0.6166 0.2568 0.1226 0.0006 0.0002 0.0024 0.0007 

 

1.0 

8.4 0.2223 0.5130 0.2565 0.0012 0.0004 0.0049 0.0016 

8.5 0.2254 0.5130 0.2535 0.0012 0.0004 0.0049 0.0016 

8.6 0.2284 0.5130 0.2506 0.0012 0.0004 0.0049 0.0016 

8.7 0.2313 0.5131 0.2477 0.0012 0.0004 0.0049 0.0015 

8.8 0.2341 0.5131 0.2449 0.0012 0.0004 0.0049 0.0015 

 

 

Table 4: Effect of arrival rate ( ) and failure rate )( on the long run probabilities of the server states 

    )(IP  )( 1BP  )( 2BP  )( 1DP  )( 2DP  )( 1RP  )( 2RP  

0.5 

0.1 0.6107 0.2569 0.1284 0.0006 0.0002 0.0024 0.0008 

0.2 0.6071 0.2566 0.1283 0.0012 0.0004 0.0049 0.0016 

0.3 0.6035 0.2562 0.1281 0.0018 0.0006 0.0073 0.0024 

0.4 0.5999 0.2559 0.1280 0.0024 0.0008 0.0097 0.0032 

0.5 0.5963 0.2556 0.1278 0.0030 0.0010 0.0122 0.0041 

1.0 

0.1 0.2223 0.5130 0.2566 0.0012 0.0004 0.0049 0.0016 

0.2 0.2161 0.5118 0.2559 0.0024 0.0008 0.0097 0.0032 

0.3 0.2099 0.5106 0.2553 0.0036 0.0012 0.0146 0.0049 

0.4 0.2037 0.5093 0.2546 0.0049 0.0016 0.0194 0.0065 

0.5 0.1976 0.5081 0.2540 0.0060 0.0020 0.0242 0.0081 

 

Table 5: Effect of arrival rate ( ), service rate ( ) and k on the qL  

 

  

00.7  25.7  50.7  

1k  2k  k  1k  2k  k  1k  2k  k  

1.00 16.62 16.19 15.76 14.73 14.37 14.02 13.30 13.00 12.70 

1.05 20.31 19.74 19.16 17.48 17.02 16.55 15.45 15.06 14.68 

1.10 25.99 25.19 24.39 21.42 20.80 20.18 18.37 17.87 17.37 

1.15 35.86 34.67 33.47 27.52 26.66 25.80 22.56 21.90 21.24 

1.20 57.28 55.22 53.15 38.25 36.95 35.66 29.11 28.18 27.26 

1.25 139.18 133.78 128.37 62.10 59.84 57.58 40.77 39.37 37.98 
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          Table 6: Effect of failure rate and optional probability ( p ) on steady state availability ( vA ) of the server and failure 

frequency )(Ff  
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Appendix A 

Proof of Theorem 3: Integrating (31) and (32) with respect to x  and using the result 
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we get required equation (37) and (38). 

Here )(* sA  denote laplace transform of  ).(xA  

Similarly integrating equations (33)-(36) with respect to y and using (58), then repeating the same process on resulting 

equation for integral with variable x  , we get equations (39)-(42).  

 

Appendix B 

Proof of Theorem 4: To obtain the queue size distribution at departure epoch we will use the  PASTA result. A departing 

customer will see’ j ’ customer in the queue just after a departure if and only if there’ j ’ customer in the FPS and SPS just 

before a departure. Now denoting   };{ Zjj  as the probability that there are j units in the queue at a departure epoch, 

then for  
Zj  we may write  
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Where  0k  is the normalizing constant 

Multiplying (59) by 
jz  and using 
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j zz    and after simplification we get 
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Utilizing the normalizing condition, (1) 1    we get 
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Putting the value of  (60) in (61) we get equation (43).       
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