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Abstract— Behl’s method is a third-order iterative method involving three functional evaluations for solving nonlinear 

equation. In this paper, we presented a new iterative method free second derivative with three real parameters  by using second-

order Taylor expansion. In order to avoid the second derivative, it is approximated by using equality of Chun-Kim’s method 

and Newton-Steffensen’s method. The result of study shows that the proposed method converges quartically and requires three 

evaluation of functions per iteration with efficiency index equal to 1.587401.  Numerical simulation is presented to examine the 

performance of the proposed method by using several real test functions. The final results show that the proposed method is 

more efficient and perform better  than  some other kind of methods.  
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I.  INTRODUCTION  

Nonlinear equation is mathematical model in many problems 

of sciences, engineering and technology.  For the most actual 

cases, an engineer frequently encounter the problem because 

of the complicated nonlinear equations cannot be solve using 

an analytical procedure. So, finding a solution of nonlinear 

equation is one of the important topics that is often discussed 

in numerical analysis  [1]. 

 

The problem of nonlinear equation is how to solve the 

equation as form  

 f (x) = 0, (1) 

where f : D  R  R is the scalar function in the open 

interval D. 

The alternative solution to find a root of (1) is calculated by 

arithmetics processing that is known as an iterative method. 

 

Generally, the various classical iterative method are 

constructed by using Taylor series expansion. 

 

Let   be a solution of nonlinear equation (1) and xn is an 

approximation solution at n-th iteration, then Taylor series 

expansion for f(x) about xn  as following 

 2''( )
( ) ( ) '( )( ) ( )

2!

n
n n n n

f x
f x f x f x x x x x       (2) 

The classical iterative method that known widely as basic 

approximation to solve (1)  is written as form  

 
1

( )

( )

n
n n

n

f x
x x

f x
  


. (3) 

The method of (2) converges quadratically with efficiency 

index equal to 2
1/2

  1.414213.  

 

The Newton method in (2) is a second-order iterative method 

which is constructed by using first-order Taylor expansion. 

Other second-order iterative methods are Schroder’s method 

[2] and Steffensen’s method [3]. 

 

Then from the second-order Taylor expansion, we get an 

iterative method having cubically convergence. It is known 

as Chebyshev’s, Halley’s and Euler’s (Irrational Halley) 

method that are written as 

 1

( )
1 ,  0,  1,  2,

2 '( )

f n
n n

n

L f x
x x n
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

 
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 
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and 
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Recently, some reseacher have been used several technical 

approximation to construct either  the family of second-order 

or the family of third-order iterative methods, such as : 

geometrical intepretation [4, 5, 6, 7, 8, 9, 10, 11],  circle of 

curvature [12], Homotopy pertubation method [13, 10], 

Adomian decomposition method [13, 14, 15, 16], modified 

Adomian decomposition method [17], and variant of 

Newton’s method  [18, 19, 20, 21].   

 

Now, Behl [6] use an exponential function to construct a 

third-order iterative method in form 

 1

4 ( )

4 3 ( )

f n
n n

f n

L f x
x x

L f x


 
  

   

. (7)  

 

All of the third-order iterative method above involves three 

evaluation of functions. Based on Kung-Traub [22] 

conjectured that a multipoint iterative method without 

memory  based on n functional evaluations will be to achieve 

an optimal order of convergence 12n . So, the methods don’t 

have an optimal order of convergence.   

 

The aim of this paper is to develop third-order iterative 

method in (7) by using second-order Taylor expansion with 

three real parameters. The proposed method has second 

derivative, then we reduced its second derivative by using 

approximation of equality of two third-order iterative method 

[23, 24, 25]. 

 

This paper is organized as follows. In Section 2, we provide 

the short reviewing for some definitions and the describing 

of the proposed iterative method. Section 3 describes the 

analitycal method used to find the order of convergence. The 

examining performance of the proposed method by using  

numerical simulation is shown in Section 4. Finally, A 

conclusion is presented in Section 5. 

 

II. PRELIMINARIS AND THE PROPOSED METHOD  

In this section, we give some basic definitions which will be 
used in this paper. Furthermore, we  construct a fourth-order 
iterative method with optimal order of convergence. 

Definition 1. A sequence of iterates { xn :  n  0} is said to 

converge with order p  1 to a point  if  

 1
lim

n

pn
n

x
c

x













,     (3) 

and the error equation is 

 1
1 ( )p p

n n ne ce O e 
   , (4) 

where n ne x    and c is the asymptotic constant error. 

For some c  0. If p = 1, the equance is said to converge linearly to 

. In that case, we require c < 1; the constant c is called the rate of 

linear convergence of  xn  to  . 

 

Definition 2. Let  be a root of the function f and suppose 

that xn1, xn, xn+1 are closer to the root , then the 

computational order of convergence (COC)  can be 
approximated using the formula  

 1

1

ln ( ) ( )

ln ( ) ( )

n n

n n

x x

x x

 


 





 


 
. (5)  

Definition 3. Let d be the number of new pieces of 
information required by a method. A piece of information 
typically is any evaluation of a function or one of its 
derivatives. The efficiency of the method is measured by the 
concept of efficiency index [11] and is defined by 

 
1

dE p , (6) 

where p is the order of the method. 

 

To develop the two-point iterative method (7) with optimal 

order of convergence, we begin deriving the third-order 

iterative method  [6]. 

 

Consider an exponentially fitted straight line that is written 

as 

  ( )
( ) ( )np x x

ny x e A x x B


   , (7) 

with its first derivative  and second derivative 

  ( ) ( )
'( ) ( )n np x x p x x

ny x pe A x x B e A
 

    , (8) 

  ( ) ( )2''( ) ( ) 2n np x x p x x
ny x p e A x x B pe A

 
    . (9) 

Substitute x = xn into (7) and (8) and suppose ( ) ( )n ny x f x ,  

'( ) '( )n ny x f x , we get 

 '( ) ( ),  ( )n n nA f x pf x B f x   . (10) 

Suppose that the straight line (7) through the x-axis at 

1nx x  , then 1( ) 0ny x   . So, we have 

 1n n

B
x x

A
   , (11) 

or 

 1

( )
, 0

'( ) ( )

n
n n

n n

f x
x x n

f x pf x
   


. (12) 

Iterative method (12) is the well-known one parameter 

family of Newton’s method. 

 

Again, from (9) we find 

 2 ( ) 2 '( ) ''( ) 0n n np f x pf x f x   , (13) 

when | | 1p , then p
2
 can be negleted. So, we get p in form 



  Int. J. Sci. Res. in Mathematical and Statistical Sciences                                              Vol. 6(1), Feb 2019, ISSN: 2348-4519 

  © 2019, IJSRMSS All Rights Reserved                                                                                                                                157 

 
''( )

2 '( )

n

n

f x
p

f x
 . (14) 

Based on (13), we can write (13) as 

  ( ) 2 '( ) ''( ) 0n n np pf x f x f x   . (15) 

From (15), we find implicit form of p that is written as 

 
''( )

2 '( ) * ( )

n

n n

f x
p

f x p f x



, (16) 

where p* is defined by (14). 

Substitute (14) into (16), we get a new form of p, 
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p
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
 (17) 

Based on (12) and (17), we get  
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. (18) 

Equation (18) is third-order convergence including three 

functional evalutions. 

 

To improve (18), we consider third-order iterative method 

(18) with two real parameter that is written as 
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1 2
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n n n n
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. (19) 

 

Furthermore, we construc a iterative method by using Taylor 

expansion. So, we consider second order Taylor series 

expansion  f(x) about xn as form:     
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2!

n
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f x f x x x f x f x


     ,  (20) 

If xn+1 is an approximation root at (n+1) iteration, then (20) 

can be written as 

2
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Let xn+1 is closely to , then 1( ) 0nf x   , So, from (21) we 

get 
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. (22)  

where *
1nx  is third-order iterative method thas is defined by 

(19). 

 

Subtitute (19) into (22), we find a new iterative  method with 

second derivative as following  
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  (23) 

 

Equation (23) still  contains  second derivative  of  f (xn). 

Therefore, we reduce it by using equality of Newton 

Steffensen’s method [3] with one real parameter and Halley’s 

method  [4] that are written in form
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and  

 

1 2

2 ( ) '( )

2 '( ) ( ) ''( )

n n
n n

n n n

f x f x
x x

f x f x f x
  


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where yn is defined by (2), respectively. 

 

Using  (24)  and  (25),  we  have  a  new  approximation   for  

f (xn)  in form  

 

2
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2 '( ) ( )
"( )

( )

n n
n

n

f x f y
f x

f x


 .  (26) 

Based on (26), susbtitute it into (23) and simplify it, then we 

get a new iterative method with three real parameters 
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 (27) 
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,(28) 

where , ,   R. 

Equation (28) is a two point iterative methods involving 

three evaluation of functions namely  f (xn),   f (xn)  dan  f 

(yn). 

III. ORDER OF CONVERGENCE  

Based on the Kung and Traub [22], the convergence order of 

a two point iterative method will be optimal if the method 

converges quartically. 

 

Theorem following will describe the convergence order of  

the method in (28).  

 
Theorem 1.  Let f : D     be a differentiable function 

in open  interval  D.  Then  asume  that  is  a simple  root of   

f (x) = 0.  Suppose 0x  is a  given value that is sufficiently 

close to , then iterative method (18) has fourth-order of 
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convergence for  = 1,  = 0 and  = 2 that satisfy the 

following error  

3 4 5
1 2 3 2( 4 ) ( )n n ne c c c e O e     .  (29) 

where 
( ) ( )

! '( )

k

k

f
c

k f




 , 2,3,4,5,...k  . 

Proof :  Let    is  an exact  root  of  f (x)  then  f () = 0. 

Furthermore, assume  f '()  0 and xn = en + , then Taylor 

series expansion for  f (xn) and   f ' (xn)  about , we have 

  2 3 4 5
2 3 4( ) '( ) ( )n n n n n nf x f e c e c e c e O e     , (30) 

and 

 
 2 3 4 5

2 3 4 4'( ) '( ) 1 2 3 4 5 ( )n n n n n nf x f c e c e c e c e e      . 

   (31) 

Use (30) and (31), we find   
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f x
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 5 ( )nO e  (32) 

From (27)  and n nx e   , we get 

 2 2 3 5
2 2 3( 2 2 ) ( ))n n n ny c e c c e e       . (33)

 Furthermore, by using Taylor series expansion f(x) about  at 

x = yn, we get  

  2 2 3
2 3 2( ) '( ) (2 2 )n n nf y f c e c c e  

  

 3 4 5
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By using (30), (31), and (34) we get 
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Equation (34) is divided by (35), and is found 
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Furthermore, by using (23) and (28), we get: 
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 5( )nO e   (37)
 

Substitute (37) into (28) and take 1 1n nx e     and 

n nx e   , then we get convergence order of (18) in form 

 2 2 2 3
1 2 2 3 ( 1) ( 2 4 (3 )) 2( 1)               n n ne c e c c e
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
  

  + 5( )nO e  (38) 

Equation (38) give an information that the convergence order 

of (28) will increase if we take  = 1. So, by subtituting the 

value of  into (38), we get  

    2 3 2
1 2 22 3 7 12 4   
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4
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   5 ( )nO e . (39) 

 

Base on (39), the convergence order of the proposed method 

is at least three. So, (33) still involve two real parameters, the 

we  get  increase  again  by  using  relationship   = 3 + 2,  

  . Substitute it into (39), then we get 

  3 4 5
1 2 2 3(4 3 ) ( )n n ne c c c e O e     .   (40)   

The proof is completed.   □ 

Equation (40) is the convergence order  of  (27) – (28)   for  

  = 1,   = 3 + 2, and  .  

 

 

2

1 2
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 (41) 

Furthermore by taking any value of , it will apperar some 

fouth-iterative methods. 

For  = 0,  
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For  = 
2

3
 , 

 
 

1 2

( ) ( ) ( )
1

( )( ) ( )

n n n
n n

nn n

f y f x f x
x x

f xf x f x

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. (43) 

IV. NUMERICAL SIMULATION 

 

In this section, numerical examples are presented to 

illustrate the efficiency of the proposed method in (27) – (28) 

by using several test functions. The zeros approximation of 

the test functions was displayed  round up to 16th decimal 

places. 

 

To show the performance of Eq. (27) - (28)  for  = 1,  = 0 

and   = 2 (MBM4), we compare it with Newton’s method 

(NM)[11], classical Chebyshev-Halley’s method with  = 

1/2 (HM)[3],  Newton-Steffensen’s method (NSM)[20],  

third-order iterative method (BM3)[6].  

 
Table 1 Comparison of efficiency index 

Iterative 

Method 

Orde of 

Convergence 

Functional 

evaluation 

Efficiency 

index 

NM 2 2 1.41421356 

HM 3 3 1.44224957 

MNS 3 3 1.44224957 

BM3 3 3 1.44224957 

MBM4 4 3 1.58740105 

 

All computations are performed by using Maple 13.0 with 

850 digits floating point arithmetics for the following several 

test functions. 

 1| |  n nx x       (44) 

dengan 9510  .  

 

The used real functions are as following: 

1( ) 0,1xf x xe  ,  = 0.111832559158, 

2
2( ) 4xf x e x  ,  = 4.306584728220,  

3( ) cos( )f x x x  ,  = 0.739085133215,  

3 2
4( ) 4 10f x x x   ,  = 1.365230013414,  

2 2 3
5( ) cos( 1) 1x xf x e x x       ,  = 1.0000000000000000,  

2 2
6( ) sin ( ) 1f x x x   ,  = 1,4044916482153412.  

 

The number  of iteration and COC for compared iterative 

methods shown at the Table 1 following.  

 
Table 2 Comparison of the number of iterations (IT) for several iterative methods 

f (x) x0 NM HM NSM BM3 MBM4 

f1(x) 
0.2 

0.3 

8 (2.0000) 

8 (2.0000) 

5 (3.0000) 

5 (3.0000) 

5 (3.0000) 

5 (3.0000) 

5(3.0000) 

4(3.0000) 

4(4.0000) 

4(4.0000) 

f2(x) 
4.0 

4.5 

8 (2.0000) 

7 (2.0000) 

5 (3.0000) 

5 (3.0000) 

5 (3.0000) 

5 (3.0000) 

4(3.0000) 

4(3.0000) 

4(4.0000) 

4(4.0000) 

f3(x) 
0.1 

1.5 

8 (2.0000) 

7 (2.0000) 

5 (3.0000) 

5 (3.0000) 

5 (3.0000) 

5 (3.0000) 

5 (3.0000) 

5 (3.0000) 

4(4.0000) 

4(4.0000) 

f4(x) 
1.0 

2.0 

8 (2.0000) 

8 (2.0000) 

5 (3.0000) 

5 (3.0000) 

5 (3.0000) 

5 (3.0000) 

5 (3.0000) 

5 (3.0000) 

4(4.0000) 

4(4.0000) 

f5(x) 
 1.5 

0.0 

7 (2.0000) 

7 (2.0000) 

5 (3.0000) 

6 (3.0000) 

5 (3.0000) 

5 (3.0000) 

5 (3.0000) 

5 (3.0000) 

4(4.0000) 

4(4.0000) 

f6(x) 
1.2 
2.0 

8 (2.0000) 
8 (2.0000) 

5 (3.0000) 
5 (3.0000) 

5 (3.0000) 
5 (3.0000) 

5(3.0000) 
5(3.9999) 

4(4.0000) 
4(3.9999) 

 

Based on Table 1, the proposed method converges 

quartically for all test function. This gives an information 

that the convergene order of the method is four. Beside in, 

for all compared iteration method, the proposed method has 

the least number of  iteration. 

Furthermore, to find an accuration for compared iterative 

methods, we use absolute value of f(xn) and of relatif error to 

measure the accuration with Total Number of Functional 

Evaluation (TNFE) = 12 which  given at Table 3 and 4. 

 

Table 3. Value of | f (xn+1) | for TNFE = 12 

f (x) x0 NM HM NSM BM3 MBM4 

f1(x) 
0.2 

0.3 

3.0850 (e36) 

1.0735 (e42) 

2.7757 (e55) 

3.5153 (e66) 

1.2725 (e45) 

9.0538 (e54) 

1.6466 (e093) 

3.7952 (e115) 

2.6777 (e131) 

2.0988 (e149) 

f2(x) 
4.0 

4.5 

5.0253 (e33) 

3.1919 (e52) 

2.1103 (e53) 

5.2464 (e76) 

5.5769 (e42) 

2.4261 (e66) 

1.3675 (e100) 

8.3696 (e111) 

2.6862 (e114) 

4.5289 (e198) 
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f3(x) 
0.1 

1.5 

2.0345 (e46) 

3.7607 (e64) 

3.9683 (e49) 

1.1496 (e51) 

4.7468 (e58) 

3.5077 (e80) 

6.4494 (e61) 

6.1628 (e53) 

1.6745 (e138) 

2.9422 (e197) 

f4(x) 
1.0 
2.0 

3.9823 (e43) 

1.2361 (e37) 

2.2349 (e60) 

4.6600 (e52) 

9.1052 (e55) 

7.8139 (e48) 

2.9042 (e86) 

1.6196 (e66) 

4.3768 (e150) 

1.3781 (e137) 

f5(x) 
 1.5 

0.0 

5.7389 (e66) 

1.9261 (e65) 

1.5261 (e43) 

6.3918 (e26) 

5.1899 (e92) 

9.3636 (e73) 

3.4133 (e40) 

2.2303 (e23) 

1.2949 (e173) 

2.9415 (e154) 

f6(x) 
1.2 

2.0 

2.0864 (e47) 

2.2623 (e32) 

1.5527 (e64) 

8.6200 (e39) 

7.4954 (e60) 

8.2994 (e41) 

3.6987 (e88) 

1.5465 (e45) 

6.9377 (e163) 

5.7027 (e110) 

 
Table 4. Value of | xn+1 – xn  |  for TNFE = 12 

f (x) x0 NM HM NSM BM3 MBM4 

f1(x) 
0.2 

0.3 

1.9116 (e18) 

1.1277 (e21) 

8.4084 (e19) 

1.9599 (e22) 

1.1234 (e15) 

2.1608 (e18) 

4.1542 (e31) 

2.7504 (e38) 

2.0729 (e33) 

6.1679 (e38) 

f2(x) 
4.0 

4.5 

1.2322 (e17) 

3.1056 (e27) 

1.1156 (e18) 

3.2560 (e26) 

5.8707 (e15) 

4.4483 (e23) 

4.5871 (e34) 

1.8077 (e37) 

1.6572 (e29) 

1.8884 (e50) 

f3(x) 
0.1 

1.5 

2.3464 (e23) 

3.1900 (e32) 

1.2697 (e16) 

1.8100 (e17) 

1.7984 (e19) 

7.5471 (e27) 

1.6151 (e20) 

7.3841 (e18) 

7.2436 (e35) 

1.4830 (e49) 

f4(x) 
1.0 
2.0 

2.2179 (e22) 

1.2356 (e19) 

9.0968 (e21) 

5.3942 (e18) 

6.1217 (e19) 

1.2533 (e16) 

3.0899 (e29) 

1.1805 (e22) 

3.3680 (e38) 

4.4865 (e35) 

f5(x) 
 1.5 

0.0 

2.3956 (e33) 

4.3887 (e33) 

4.0291 (e15) 

3.0145 (e09) 

6.7780 (e31) 

1.7777 (e24) 

5.2077 (e14) 

2.0975 (e08) 

7.7383 (e44) 

5.3423 (e39) 

f6(x) 
1.2 

2.0 

3.2750 (e24) 

1.0784 (e16) 

4.9165 (e22) 

1.8755 (e13) 

1.7005 (e20) 

3.7902 (e14) 

8.7910 (e30) 

1.4162 (e15) 

2.3648 (e41) 

4.0043 (e28) 

 
Table 3 and 4 shown that the proposed method (MBM4) has 

the lowest absolute value of f(xn) and relatif error for all 

tested real functions. It is clearly that the accuration of the 

iterative method  in (27) – (28) is better than others.  

 

V. CONCLUSION AND FUTURE SCOPE  

This research work have developed a new fourth-order 

convergence method for solving nonlinear equation  = 1,  

 = 3 + 2,   . The method requires two evaluation 

of functions and one its first derivative per iteration with the 

efficiency index equal to 4
1/3

  1.5874. The numerical results 

show that the proposed method has better performance as 

compared with the other methods. Therefore, the results of 

this study provide a new contribution in computational 

sciences area.  
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